Thinning Thinning

Fast and Safe Bits and Bobs for Type Checkers
by April Gonc¢alves and Wen Kokke

Let's say you're building a type checker...

type Ix = Int -- you, building a type checker:

- ~("0")r - "yay, I love me some
e nameless representation!”

data Tm where
Var @ IX > Tm
Lam = Tm > Tm
App = Tm > Tm > Tm

eval = Tm > Tm

— T example terms go here eval = 227

- 3

1dTm = Lam (Var 0) subst @ (Ix = Tm) > Tm > Tm
constTm = Lam (Lam (Var 1)) subst = 2?7

Let's say you're building a type checker...

type Ix = Int

data Tm where
Var @ IX > Tm
Lam = Tm > Tm
App = Tm > Tm > Tm

-- you, ten minutes later:

-- "why the numbers bad?" — (~ %=%7)

eval = Tm > Tm

— T example terms go here eval = 227

- 3

1dTm = Lam (Var 0) subst @ (Ix = Tm) > Tm > Tm
constTm = Lam (Lam (Var 1)) subst = 2?7

Let's say you're building a type checker...

type data N =Z [S N -- you, building a type checker:
data Ix (n :z N) where -- ~("0")- - "yay, I love me some
7 :: Ix (S n) —= well-scoped representation!”

S Ix n=>Ix (S n)

data Tm (n := N) where
Var @ IX n
Lam = Tm (S n) > Tm n
App * Tm n > Tm n > Tm n

eval == Tm n > Tm n
eval = aww_yeah 1ts easy

1dTm
constTm

Lam (Var Z) subst * Envnm=>Tmn>Tmm
Lam (Lam (Var (S Z))) subst = just_do_what_type_ says

Let's say you're building a type checker...

type data N =Z [S N

data Ix (n :x N) where
7 Ix (S n)

S:Ixn>1Ix (Sn) |
-- you, ten minutes later:

data Tm (n := N) where
Var @ IX n
Lam = Tm (S n) > Tm n
App * Tm n > Tm n > Tm n

-- "why it run so slow?" — (° %=%)

eval @ Tm n > Tm n
eval = aww_yeah_ 1ts_easy

1dTm
constTm

Lam (Var Z) subst * Envnm=>Tmn>Tmm
Lam (Lam (Var (S Z2))) subst = just_do_what_ type_ says

Do you ever wish you could have fast and safe?

Now, with the power of pattern synonyms, view patterns, and lies, you can!

newtype Ix (n :* N) = UnsafeIx Int -- ¢ that's gotta be a nominal role
—- but let's coerce as a shortcut

~

-- construct Z

mkZ = coerce 0 : Ix (S n) -- eliminate an "Ix n° into an "a’
el ' a > (Ix (Pn)>a)~>Ixn>a

-- construct 'S 1 from 1 el z s 1 =

mkS = Ix n > Ix (S n) if i = mkZ then z else s (unS 1)

mkS = coerce (+1)

=T type-level predecessor 1s here
- destruct S 1 1nto 1° - J

unS = Ix n > Ix (P n) type family P =z N > N where
unS = coerce (-1) P (S n) =n

Do you ever wish you could have fast and safe?

Now, with the power of pattern synonyms, view patterns, and lies, you can!

-- the base functor for the safe Ix
data IxF (ix ::

LF i

SF
prj : IXx n =
prj = el (uc

where uc =
emb :: IXF IX
emb ZF =
emb (SF 1) =

IXF Ix n

ZF) (uc SF)
unsafeCoerce

n > Ix n
mkZ
mkS 1

N> %) (n :x N) where
IxF (S n)

ix n > IxF (S n)

- so Pos n means P n exists
type Pos (n = Nat) = n ~S (P n)

pattern
pattern
where

pattern
pattern

where

-- ..and

Z (Pos n) = Ix n
Z ¢« (prj > ZF)
/ = emb ZF

S @ (Pos n) = Ix (Pn)>1Ixn
1 ¢« (prj » 7S 1)
S i=emb (SF i)

wn
(-

we have constructors!

Do you ever wish you could have fast and safe?

Now, with the power of pattern synonyms, view patterns, and lies, you can!

-- .Wwhich are just like the safe Ix -- ¢ except they take 2 words 1n
-- constructors we started out with! —— memory 1instead of 2*%n words
thin = Ix (S n) > Ix n > Ix (S n) =

thin / J =S 3 -- ¢ that's just the old linear time
thin (S) / =7 == function! boo! we can do better
thin (S 1) (S j) =S (thin 1 j) —

-- should you? no! make 1t go fast!

thin = Ix (S n) > Ix n > Ix (S n) =

thin = coerce $ \i j » -- ¢ that's constant time, babeeeee!
1f 1 < J then S J else J ==

Wasn't this talk about thinning thinning? Great segue, me!

-- a thinning n < m tells you how
-— you get from stuff with m things
-—- to stuff with n things 1n scope.

data (<) (n = N) (m :: N) where

Refl = n < n
Keep * ns£m=-=>5Snz=<5Sm
Drop = n £ m > n<Sm
—= 1 2 3 4 1 2

nm = Keep (Drop (Keep (Drop Refl)))

—= N2 N2 N2 N2 N2 N2
—= 1 3 1 2

Wasn't this talk about thinning thinning? Great segue, me!

-- a thinning n < m tells you how
-— you get from stuff with m things
-—- to stuff with n things 1n scope.

data (<) (n = N) (m :: N) where

Refl = n < n

Keep * ns£m=-=>5Snz=<5Sm

Drop = n £ m > n<Sm
—= 1 2 3 4 1 2
—= 0 1 0 1 0 0
—= N2 N2 N2 N2

Wasn't this talk about thinning thinning? Great segue, me!

-- a thinning n < m tells you how
-— you get from stuff with m things
-—- to stuff with n things 1n scope.

data (<) (n = N) (m :: N) where

Refl = n < n

Keep * ns£m=-=>5Snz=<5Sm

Drop = n £ m > n<Sm
—= 1 2 3 4 1 2
—= 0 1 0 1 0 0
—= N2 N2 N2 N2

Wasn't this talk about thinning thinning? Great segue, me!

-—— a thinning 'n < m tells you how - let's use the same technique!
-— you get from stuff with m things
-—- to stuff with n things 1n scope. newtype (<) (n = N) (m :: N) =
UnsafeTh Word
data (<) (n == N) (m :: N) where
Refl : n n

< -- a thinning 1s a bit vector
Keep * n=m->5n=<5m -—— % "Refl” is all "0 bits
Drop #* n s m-> n < 5m -—— % Keep adds 0 onto the start
-- % Drop adds "1 onto the start
- ! 2 3 . : e mkRef L = 0
mkKeep nm = nm “shift 1
—= 0 1 0 1 0 0 < .-
mkDrop nm = nm “shift™ 1 .|. 1
__ J d J J
— 1 3 1 2

-- not pictured: everything else!

We've got thin thinnings! Let's thin thinning thinning!

-- these are just the constructors of safe thinnings we started out with!
-- here's thinning thinnings — or thinning composition — to prove 1t!

thinThin @ nsm>1 < n->1z:s5m
thinThin nm Refl = nm
thinThin Refl ln = 1n
thinThin (Keep nm) (Keep 1n) = Keep (thinThin nm 1n)
thinThin (Keep nm) (Drop 1n) = Drop (thinThin nm 1n)
thinThin (Drop nm) 1n = Drop (thinThin nm 1n)

-- have we learned our lesson? apparently not. make 1t faster!

thinThin = coerce $ \nm 1n > nm .|. (pdep 1ln (complement nm))

—= ™

— that's one single x86 instruction {1 that's 3 instructions total, babeeeee!

Wrapping up. Let's do a speed run.

» Released on Hackage as data-debruijn

> |s it safe? QuickCheck says yes. Every fast function,
constructor, and pattern is checked against the safe version.

> |s it fast? | say yes. Have some graphs.

https://hackage.haskell.org/package/data-debruijn-0.1.0.0

Mean CPU time for evaluating "thin i j" (in ms)

& Fast[Int]
& Safe

100

40
09
o

&

Max allocated bytes for evaluating "thin i j"

2000

1500

sayAgxep
3
o
o

100

=
~

oy

09

$ Fast[Int]
& Safe

Mean CPU time for evaluating "thin nm In" (in ms)

Relevant Size

% Fast[Natural]
& Fast[Word64)]
&= Safe

Max allocated bytes for evaluating "thin nm In" (in ms)

% Fast[Natural]
& Fast[Word64]
& Safe

900

800

salAgxep

Relevant Size

