
An introduction to

Session Types
by Wen Kokke

Dramatis Personæ
· channel

a tube to send messages through
· endpoint

either end of a channel
· session

series of messages sent over one channel

Session Types at a glance
server :: Recv RFC (Send (Either Cake Nope) End) -> IO ()
server c = do
 (msg, c') <- recv c
 case msg of
 "May I have cake, please?" -> do c'' <- send (Left

!

) c'; close c''
 "May I have cake?" -> do c'' <- send (Right

"

) c'; close c''

client :: Send RFC (Recv (Maybe Cake) End) -> IO Mood
client c = do
 c' <- send "May I have cake, please?" c
 (resp, c'') <- recv c'
 wait c''
 case resp of
 Left

!

 -> return

#

 Right

"

 -> return

$

Session Types at a glance
server :: ?RFC.!(Either Cake Nope).End -> IO ()
server c = do
 (msg, c') <- recv c
 case msg of
 "May I have cake, please?" -> do c'' <- send (Left

!

) c'; close c''
 "May I have cake?" -> do c'' <- send (Right

"

) c'; close c''

client :: !RFC.?(Either Cake Nope).End -> IO Mood
client c = do
 c' <- send "May I have cake, please?" c
 (resp, c'') <- recv c'
 wait c''
 case resp of
 Left

!

 -> return

#

 Right

"

 -> return

$

Roadmap
· The untyped λ-calculus! (So powerful, so scary…)
· Taming the λ-calculus with types…

· The untyped π-calculus! (Is even scarier…)
· Taming the π-calculus with types…

· Concurrent λ-calculus! (λ and π together…)

The untyped lambda calculus

The untyped lambda calculus is powerful

The untyped lambda calculus is scary

The untyped lambda calculus is scary
If we want more than just functions…

…we have to worry about silly stuff like this!

Taming the lambda calculus with types

Taming the lambda calculus with types

Let’s talk pi calculus

The untyped pi calculus syntax

The untyped pi calculus semantics

The untyped pi calculus semantics

The untyped pi calculus semantics

The untyped pi calculus semantics

The untyped pi calculus is scary

The untyped pi calculus is scary

✨ ✨

Taming the pi calculus with types

Taming the pi calculus with types

Taming the pi calculus too much

!

Taming the pi calculus too little

✨ ✨

Concurrent lambda calculus

⚞ λ
!

 π ⚟

Concurrent lambda calculus

Concurrent lambda calculus

Concurrent lambda calculus

Session Types at a glance
server :: ?RFC.!(Either Cake Nope).End -> IO ()
server c = do
 (msg, c') <- recv c
 case msg of
 "May I have cake, please?" -> do c'' <- send (Left

!

) c'; close c''
 "May I have cake?" -> do c'' <- send (Right

"

) c'; close c''

client :: !RFC.?(Either Cake Nope).End -> IO Mood
client c = do
 c' <- send "May I have cake, please?" c
 (resp, c'') <- recv c'
 wait c''
 case resp of
 Left

!

 -> return

#

 Right

"

 -> return

$

Concurrent lambda calculus is still unsafe

✨ ✨

Where do we go from here?
Deny deadlocks?

· acyclic communication graphs
· priorities and global deadlock freedom

Where do we go from here?
Controlled non-determinism?

· non-deterministic local choice
· guarded global choice
· shared channels
· …

Roadmap
· Taming the λ-calculus

Recursion and termination
· Taming the π-calculus

Concurrent λ-calculus
Deadlock freedom
Controlled non-determinism

