AN INTRODUCTION TO SESSION TYPES BY WEN KOKKE

DRAMATIS PERSONÆ

- channel a tube to send messages through
- endpoint either end of a channel
- session series of messages sent over one channel

SESSION TYPES AT A GLANCE

```
server :: Recv RFC (Send (Either Cake Nope) End) -> IO ()
server c = do
    (msg, c') <- recv c
    case msg of
        "May I have cake, please?" -> do c'' <- send (Left 😬) c'; close c''
        "May I have cake?" -> do c'' <- send (Right 🙌) c'; close c''
client :: Send RFC (Recv (Maybe Cake) End) -> IO Mood
client c = do
    c' <- send "May I have cake, please?" c</pre>
    (resp, c'') <- recv c'</pre>
    wait c''
    case resp of
      Left 🁑 -> return 🙂
       Right 🙌 -> return 🔯
```

SESSION TYPES AT A GLANCE

```
server :: ?RFC.!(Either Cake Nope).End -> IO ()
server c = do
    (msg, c') <- recv c
    case msg of
        "May I have cake, please?" -> do c'' <- send (Left 😬) c'; close c''
        "May I have cake?" -> do c'' <- send (Right 🙌) c'; close c''
client :: !RFC.?(Either Cake Nope).End -> IO Mood
client c = do
    c' <- send "May I have cake, please?" c</pre>
    (resp, c'') <- recv c'</pre>
    wait c''
    case resp of
      Left 👑 -> return 🙂
       Right 🙌 -> return 🔯
```

ROADMAP

- The untyped λ -calculus! (So powerful, so scary...)
- Taming the λ -calculus with types...
- The untyped π -calculus! (Is even scarier...)
- Taming the π -calculus with types...
- · Concurrent λ -calculus! (λ and π together...)

THE UNTYPED LAMBDA CALCULUS

Term L, M, N $::= x \mid \lambda x.M \mid MN$

 $(\lambda x.\,M) \: N \longrightarrow M\{N/x\}$

THE UNTYPED LAMBDA CALCULUS IS POWERFUL $= \lambda f(\lambda x. x x)(\lambda x. f(x x))$ Y $Y f \longrightarrow f(Y f)$ $\longrightarrow f(f(Yf))$ $\longrightarrow f(f(f(Yf)))$ \longrightarrow

THE UNTYPED LAMBDA CALCULUS IS SCARY $Y = \lambda f. (\lambda x. x x) (\lambda x. f (x x))$

THE UNTYPED LAMBDA CALCULUS IS SCARY If we want more than just functions...

plus 1 true

...we have to worry about silly stuff like this!

TAMING THE LAMBDA CALCULUS WITH TYPES

$\Gamma i x : A$ $\Gamma, x: A \vdash M: B$ $\Gamma \vdash x : A \qquad \Gamma \vdash \lambda x . M : A \to B$

$\Gamma \vdash M : A \rightarrow B$ $\Gamma \vdash N : A$ $\Gamma \vdash M N : B$

TAMING THE LAMBDA CALCULUS WITH TYPES $\Gamma, x: A \vdash M: B$ $x: A \vdash x: A$ $\Gamma \vdash \lambda x. M: A \multimap B$

$\Gamma \vdash M : A \multimap B \quad \Delta \vdash N : A$ $\Gamma, \Delta \vdash M N : B$

LET'S TALK PI CALCULUS

HE UNTYPED PI CALCULUS SYNTAX

Process P, Q, R:= $(\nu x)P$ — create new channel | (P || Q) - put P and Q in parallel— done 0 $| x \langle y \rangle . P - \text{send } y \text{ on } x$ | x(y).P - receive y on xP — replicate P

THE UNTYPED PI CALCULUS SEMANTICS $(\nu x)(x\langle y\rangle, P \parallel x(z), Q) \longrightarrow (\nu x)(P \parallel Q\{y/z\})$

THE UNTYPED PI CALCULUS SEMANTICS

How do we reduce...?

 $(\nu x)(x(z). Q \parallel x \langle y \rangle. P)$

Maybe we can apply...?

 $(
u x)(x \langle y \rangle. P \parallel x(z). Q) \longrightarrow (
u x)(P \parallel Q\{y/z\})$

Nope!

HE UNTYPED PI CALCULUS SEMANTICS

 $P \parallel Q \qquad \equiv \ Q \parallel P$ $\overrightarrow{P \parallel Q \parallel R} \equiv \overrightarrow{(P \parallel Q) \parallel R}$ $P \parallel 0 \equiv P$ $(
u x)(
u y)P \equiv (
u y)(
u x)P$ $(
u x)(P \parallel Q) \;\;\equiv\;\; (
u x)P \parallel Q, \;\;\;\; ext{if } x
otin Q$ $\equiv !P \parallel P$!P

> $P \equiv P' \quad P' \longrightarrow Q' \quad Q' \equiv Q'$ $P \longrightarrow Q$

THE UNTYPED PI CALCULUS SEMANTICS

$(u x)(x(z).\,Q\parallel x\langle y angle.\,P)$ $(u x)(x\langle y angle.P\parallel x(z).Q)$ $(u x)(x\langle y angle.\,P\parallel x(z).\,Q)$ $(\nu x)(P \parallel Q\{y/z\})$

 $(
u x)(x(z). Q \parallel x \langle y \rangle. P) \longrightarrow (
u x)(Q\{y/z\} \parallel P)$

$(u x)(P \parallel Q\{y/z\})$ $(u x)(Q\{y/z\} \parallel P)$

HF UNTYPFD PT (AI (UI US TS SCARY

$(u x) \left(egin{array}{c|c} x \langle y_1 angle. P_1 & \| x(z_1). Q_1 \| \ x \langle y_2 angle. P_2 & \| x(z_2). Q_2 \end{array} ight)$

 $egin{aligned} &(
u x) egin{pmatrix} P_1 \parallel Q_1 \{y_1/z_1\} \parallel \ P_2 \parallel Q_2 \{y_2/z_2\} \end{pmatrix} & or & (
u x) egin{pmatrix} P_1 \parallel Q_1 \{y_2/z_1\} \parallel \ P_2 \parallel Q_2 \{y_1/z_2\} \end{pmatrix} \end{aligned}$

THE UNTYPED PI CALCULUS IS SCARY

 $(\nu x)(x(z), P \parallel x(w), Q)$

TAMING THE PI CALCULUS WITH TYPES

Process P, Q, R::= (
u x x')P — create new channel $x \leftrightarrow x'$

Session	${\rm type}\;S$		Duality
::=	!S.S'	— send	!S.S'
	?S.S'	— receive	
	end	— done	?S.S'

end

 $= ?S.\overline{S'}$ $= !S.\overline{S'}$ = end

TAMING THE PI CALCULUS WITH TYPES $\overline{\Gamma} \vdash \overline{P}$ $\varnothing \vdash 0$ $\Gamma, x: \mathbf{end} \vdash P$ $\Gamma, x: B \vdash P$

 $\Gamma, x: !A.B, y: A \vdash x\langle y \rangle.P$

$\Gamma, y: A, x: B \vdash P$ $\Gamma, x: ?A. B \vdash x(y). P$

TAMING THE PI CALCULUS TOO MUCH

we can't do choice

TAMING THE PI CALCULUS TOO LITTLE

$(u x x')(u y y')(x(z). y'\langle z angle. P \parallel y(w). x'\langle w angle. Q)$

CONCURRENT LAMBDA CALCULUS

CONCURRENT LAMBDA CALCULUS Process P, Q, R ${ m Term} \ L, M, N$::= (u x x')Px = x $\lambda x.\,M$ $| (P \parallel Q)$ M N

 $x\langle y
angle.P$ x(y). P

CONCURRENT LAMBDA CALCULUS Term L, M, N Process P, Q, R::= x ::= (u x x')P $\lambda x. M$ $(P \parallel Q)$ $M\,N$ MK

Const K ::= send | recv

CONCURRENT LAMBDA CALCULUS Term L, M, N Process P, Q, R::= x ::= (u x x')P $| \lambda x. M | (P | Q)$ M NMK

Const K ::= send recv new spawn

SESSION TYPES AT A GLANCE

```
server :: ?RFC.!(Either Cake Nope).End -> IO ()
server c = do
    (msg, c') <- recv c
    case msg of
        "May I have cake, please?" -> do c'' <- send (Left 😬) c'; close c''
        "May I have cake?" -> do c'' <- send (Right 🙌) c'; close c''
client :: !RFC.?(Either Cake Nope).End -> IO Mood
client c = do
    c' <- send "May I have cake, please?" c</pre>
    (resp, c'') <- recv c'</pre>
    wait c''
    case resp of
      Left 👑 -> return 🙂
       Right 🙌 -> return 🔯
```

CONCURRENT LAMBDA CALCULUS IS STILL UNSAFE $(u x x')(u y y') egin{pmatrix} \operatorname{let}(_,z) = \operatorname{\mathbf{recv}} x ext{ in send } z \ y; M \ \operatorname{let}(_,w) = \operatorname{\mathbf{recv}} x' ext{ in send } w \ y'; N \end{pmatrix}$

WHERE DO WE GO FROM HERE? **Deny deadlocks?** acyclic communication graphs priorities and global deadlock freedom

WHERE DO WE GO FROM HERE?

Controlled non-determinism?

- non-deterministic local choice
- guarded global choice
- shared channels
- • •

ROADMAP

- Taming the λ-calculus Recursion and termination
- Taming the π-calculus Concurrent λ-calculus Deadlock freedom Controlled non-determinism