
Robustness as a Refinement Type
Wen Kokke, Ekaterina Komendantskaya, and Daniel Kienitz

Lab for AI and Verification, Heriot-Watt University

- Dog?

What have we seen so far?

What’s still to come?

Is our
data

good?

Did we
find the

right
features?

Are we
robust

around
these

features?

Is our
data

good?

Did we
find the

right
features?

Are we
robust

around
these

features?

Robustness as a Refinement Type

What’s a refinement type?
A type refined with an SMT-checkable predicate.
let ℝ⁺ = (x:ℝ {0.0R ≤ x}) // positive reals

let _ = 4.0R : ℝ⁺ // 0.0R ≤ 4.0R

let vector a n = (xs:list a {length xs = n}) // lists of length n

let _ = [0.5R; 1.0R] : vector ℝ⁺ 2 // length [0.5R; 1.0R] = 2

val model : network (*with*) 2 (*inputs*) 1 (*output*) 1 (*layer*)
let model = NLast // makes single-layer network
 { weights = [[0.5R]; [0.5R]]
 ; biases = [-0.9R]
 ; activation = Threshold
 }

val classify : (x1 : ℝ) → (x2 : ℝ) → (y : ℝ)
let classify x1 x2 = run model [x1; x2]

let ε = 0.1R // how big are tiny steps?

val doggy : (x : ℝ) → bool
let doggy x = 1.0R - ε ≤ x && x ≤ 1.0R + ε

val _ = (x1 : ℝ{doggy x1})
 → (x2 : ℝ{doggy x2})
 → (y : ℝ{y = 1.0R})
val _ = classify

(define-fun classify ((x1 Real) (x2 Real)) Real
 (ite (>= (- (+ (* x1 0.5) (* x2 0.5)) 0.9) 0.0) 1.0 0.0))
(define-fun doggy ((x Real)) Bool (and (<= 0.9 x) (<= x 1.1)))
(assert (forall ((x1 Real) (x2 Real))
 (=> (and (doggy x1) (doggy x2)) (= (classify x1 x2) 1.0))))
(check-sat)

> sat ;; it works! your network is totally robust! gj!

So it works.
But does it WORK?

①
Solvers

don’t do
non-linear
arithmetic

②
Integration

with F*
introduces a
significant

slowdown

③
Solvers

don’t scale
to realistic

sizes

① Solvers don’t do non-linear arithmetic
Let’s make our activation functions linear!

① Solvers don’t do non-linear arithmetic
Train with tanh, run with linear approximation!

② Integration with F* introduces a significant slowdown
Ahh! An exponential!

Don’t make Z3 do
reduction!

Don’t tell Z3 about
data-types.

(Unless you have to.)

③ Solvers don’t scale to realistic sizes
Z3 ignores tons of structure!

MetiTarski solves exponentials!
nnenum solves ReLUs!

Marabou solves piecewise-linear functions!

Robustness as a Refinement Type
· encode robustness as a refinement type
· leverage existing integration with solvers
· lightweight verification of robustness
but
· need to improve integration with solvers
· need more flexibility in choosing solvers

