ROBUSTVESS AS A REFINEMENT YPE

Wen Kokke, Ekaterina Komendantskaya, and Daniel Kienitz

Lab for Al and Verification, Heriot-Watt University

‘ o N MY AN TS il.ﬂ.iw., wuﬂr..q,.t..uw L3
Kw‘.l et v 32. A .ﬁl .«)
e o e LRl o

& rxnl..r.uaf.m.? ‘\A...
s)f . o ..f&‘ E..Pb..;:.\

A
4
o/
<
D
2
S’

T mm..wcfmwm;m —

PE— @3mjﬂ&5$ —

T mmwgfwwum e

T mmwgfwwum e

[/

NN

A.ll mm.w;c@w;m —

WHAT HAVE WE SEEN SO FAR!

WHAT'S STILL 10 COME?

SOk DIDWE AREWE
DATA~ FINDTHE ROBUST
GOOD! RIGHT AROUND
FEATURES! THESE
FEATURES!

SOUR - DIDWE — AREWE
DATA FINDTHE— ROBUST
50007 RIGHT AROUND

FEATURES! THESE

FEATURES!

ROBUSTVESS AS A REFINEMENT 1YPE

WHAT'S A REFINEMENT TYPE!

A type refined with an SMT-checkable predicate.

let R* = (x:R { R <= x}) // positive reals

let

R : R // 0.0R = 4.0R
let vector a n = (xs:list a {length xs = n}) // lists of length n

let = [Rj R] : vector R* // length [0.5R; 1.0R] = 2

classify : (1 — R) — (z2 —

classify 1 2 = f (w121 + woxs — b)

R) — (y:

classify :

s -4

(213‘1 — Q) — (213‘2 —

1, ifx >0
0, otherwise

NE=RCE
classify 1 o = S (0.527 + 0.525 — 0.9)

val model : network (*withx) (*1nputsx) (*outputx) (*layerx)
let model = NLast // makes single-layer network

{ weights = [[©.5R]5 [0.5R]]
; biases = [R]

s activation = Threshold

¥

val classify ¢ (x1 : R) » (x2 : R) » (y : R)
let classify x1 x2 = run model [x1l; x2]

let & = R // how big are tiny steps?

val doggy ¢ (x ¢ R) > bool

let doggy x = R - & = x && x = R
val _ = (x1 : R{doggy x1})

> (x2 : R{doggy x2})

> (y R{y = R})

val = classify

(define-fun classify ((x1 Real) (x2 Real)) Real

(ite (>= (- (+ (* x1 0.5) (* x2 0.5)) 0.9) 0.0) 1.0 0.0))
(define-fun doggy ((x Real)) Bool (and (<= 0.9 x) (<= x 1.1)))
(assert (forall ((x1 Real) (x2 Real))

(=> (and (doggy x1) (doggy x2)) (= (classify x1 x2) 1.0))))
(check-sat)

> sat ;; 1t works! your network 1is totally robust! gj!

0 TTWORKS. -

» @ O

SOLVERS INTEGRATION~~ SOLVERS
DONIDO WITHE® DON'TSCALS
LN IVHONGSA 10T

(DD SOLVERS DON'T DO NON - LINEAR ARTTHMETI(

Let’s make our activation functions linear!

(DD SOLVERS DON'T DO NON - LINEAR ARTTHMETI(

Train with tanh, run with linear approximation!

(2) INTEGRATION WITH E* INTRODUCES A STGNTFICANT SLOWDOWN

Ahh! An exponentiall!

Don’t make Z3 do
reduction!

Don’t tell Z3 about
data-types.

(Unless you have to.)

(3) SOLVERS DON'T SCALE TO REALTSTIC STZES

Z3 ignores tons of structure!

MetiTarski solves exponentials!

nnenum solves ReLUs!

Marabou solves piecewise-linear functions!

ROBUSTVESS AS A REFINEMENT 1YPE

- encode robustness as a refinement type
- leverage existing integration with solvers

- lightweight verification of robustness
but

- need to Improve integration with solvers
- need more flexibility in choosing solvers

