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What have we seen so far?



What’s still to come?
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good?
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right 
features?
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Robustness as a Refinement Type



What’s a refinement type?
A type refined with an SMT-checkable predicate.
let ℝ⁺ = (x:ℝ {0.0R ≤ x}) // positive reals

let _ = 4.0R : ℝ⁺ // 0.0R ≤ 4.0R

let vector a n = (xs:list a {length xs = n}) // lists of length n

let _ = [0.5R; 1.0R] : vector ℝ⁺ 2 // length [0.5R; 1.0R] = 2







val model : network (*with*) 2 (*inputs*) 1 (*output*) 1 (*layer*)
let model = NLast // makes single-layer network
  { weights    = [[0.5R]; [0.5R]]
  ; biases     = [-0.9R]
  ; activation = Threshold
  }

val classify : (x1 : ℝ) → (x2 : ℝ) → (y : ℝ)
let classify x1 x2 = run model [x1; x2]



let ε = 0.1R // how big are tiny steps?

val doggy : (x : ℝ) → bool
let doggy x = 1.0R - ε ≤ x && x ≤ 1.0R + ε

val _ = (x1 : ℝ{doggy x1})
      → (x2 : ℝ{doggy x2})
      → (y  : ℝ{y = 1.0R})
val _ = classify



(define-fun classify ((x1 Real) (x2 Real)) Real
  (ite (>= (- (+ (* x1 0.5) (* x2 0.5)) 0.9) 0.0) 1.0 0.0))
(define-fun doggy ((x Real)) Bool (and (<= 0.9 x) (<= x 1.1)))
(assert (forall ((x1 Real) (x2 Real))
  (=> (and (doggy x1) (doggy x2)) (= (classify x1 x2) 1.0))))
(check-sat)

> sat ;; it works! your network is totally robust! gj!



So it works.
But does it WORK?



①
Solvers 

don’t do 
non-linear 
arithmetic

②
Integration 

with F* 
introduces a 
significant 

slowdown

③
Solvers 

don’t scale 
to realistic 

sizes



① Solvers don’t do non-linear arithmetic
Let’s make our activation functions linear!



① Solvers don’t do non-linear arithmetic
Train with tanh, run with linear approximation!



② Integration with F* introduces a significant slowdown
Ahh! An exponential!

Don’t make Z3 do 
reduction!

Don’t tell Z3 about 
data-types.

(Unless you have to.)



③ Solvers don’t scale to realistic sizes
Z3 ignores tons of structure!

MetiTarski solves exponentials!
nnenum solves ReLUs!

Marabou solves piecewise-linear functions!



Robustness as a Refinement Type
· encode robustness as a refinement type
· leverage existing integration with solvers
· lightweight verification of robustness
but
· need to improve integration with solvers
· need more flexibility in choosing solvers


