
Programming Programming
 Language Foundations

 in Agda in Agda
by Wen Kokke

You: "What's an 'Agda'?"
Me: "It's a proof assistant!"

You: "What's a proof assistant?"
Me: "Uh..."

ACL2, Agda, Agda 2, Albatross, ALF, Aquarius, ATS, Automath,
 a blackboard, Blodwen, Cambridge LCF, Cayenne, Cedille, Clam,

Clam 2, Clam 3, CLIN, Coq, Dafny, Dependent ML, DISCOUNT,
Epigram, EQP, ETPS, F*, Haskell, HOL Light, HOL4, HOL88, HOL90,
Idris, IMPS, InKa, Intercal, Isabelle, Jape, KeY, LambdaClam,

LCF77, Lean, LEGO, Logic Theorist, Mace, Mace4, Matita, Metamath,
me, MINLOG, Mizar, MKRP, NQTHM, NuPRL, OLEG, OMEGA, OSHL,
Otter, Peers, Peers-mcd.a, Peers-mcd.b, Peers-mcd.c, Peers-

mcd.d, PhoX, PLTP, PRESS, ProCom, Prover9, PRV, PVS, RDL, scunac,
SETHEO, SNARK, SASyLF, TPS, Twelf, Tutch, Typelab, Yarrow

Coq
by Bruno Barras, Yves Bertot, Pierre

Castéran, Thierry Coquand, Jean-
Christophe Filliâtre, Hugo Herbelin,
Gérard Pierre Huet, Chetan Murthy,

and Christine Paulin-Mohring
 (and at least 133 other contributors)

Agda
by Andreas Abel, Stevan Andjelkovic,

Marcin Benke, James Chapman,
Jesper Cockx, Jean-Philippe

Bernardy, Nils Anders Danielsson,
Dominique Devriese, Péter

Diviánszky, Olle Fredriksson, Samuel
Gélineau, Daniel Gustafsson, Patrik

Jansson, Alan Jeffrey, Fredrik
Lindblad, Stefan Monnier, Darin

Morrison, Guilhem Moulin, Fredrik
Nordvall Forsberg, Ulf Norell, Nicolas

Pouillard, Andrés Sicard-Ramírez,
Wouter Swierstra, Makoto Takeyama,
Andrea Vezzosi, and Nobuo Yamashita

 (and at least 74 other contributors)

Agda
by Andreas Abel, Stevan Andjelkovic,

Marcin Benke, James Chapman,
Jesper Cockx, Jean-Philippe

Bernardy, Nils Anders Danielsson,
Dominique Devriese, Péter

Diviánszky, Olle Fredriksson, Samuel
Gélineau, Daniel Gustafsson, Patrik

Jansson, Alan Jeffrey, Fredrik
Lindblad, Stefan Monnier, Darin

Morrison, Guilhem Moulin, Fredrik
Nordvall Forsberg, Ulf Norell, Nicolas

Pouillard, Andrés Sicard-Ramírez,
Wouter Swierstra, Makoto Takeyama,
Andrea Vezzosi, and Nobuo Yamashita

 (and at least 74 other contributors)

You: "Why use proof assistant in my class?"
Me: "This... is all I've ever known???"

Lambda,
The Ultimate TA

Benjamin C. Pierce
University of Pennsylvania

Using a Proof Assistant to Teach
Programming Language Foundations

ICFP 2009

Logic

• Inductively defined relations

• Inductive proof techniques

Functional Programming

• programs as data,
polymorphism, recursion, ...

PL Theory

• Precise description of program
structure and behavior
• operational semantics

• lambda-calculus

• Program correctness
• Hoare Logic

• Types

My List

Oops, forgot one thing...

• The difficulty with teaching many of these
topics is that they presuppose the ability to
read and write mathematical proofs.

• In a course for arbitrary computer science
students, this appears to be a really bad
assumption.

automated proof assistant

=
one TA per student

You: "This... is all you've ever known?"
Me: "Y-y-yes?"

(2014)
 I was taught from

Software Foundations,
and learned Coq and Agda

in the same course,
 one after the other,
 taught by this guy.

(2014–2016)
 Formalised several

calculi using Agda,
 mostly substructural,

 with this guy.

(2016)
 Taught Software

foundations,
 with this guy.

 He did most of the
lecturing, tbh.

(2017)
 Taught Software

foundations,
 with this guy.

 I gave several additional
lectures on Agda!

(2018)
 Taught Programming
Language Foundations

 in Agda!

You: "Hold on. Why Agda? Isn't So!ware
Foundations, just like, fine???"

Me: "Uh... good question!"

My Troubles with Coq...
• everything is done twice,

once in Gallina, once in Ltac:
pair and match vs. split and destruct

• everything is done four times,
'cuz names and notation are different things:
(prod A B) is written (A * B)
(pair A B) is written (A , B)

My Troubles with Coq...
• it's not even just four times!

!

split
vs. apply pair
vs. constructor 1
vs. constructor
vs. auto

• this landscape of spurious equivalences burdens
and confuses the students!

...disappear with Agda!
• Agda doesn't have tactics
• everything is done once
× and _,_

• no distinction between name and notation,
the name for the product type is _×_

My Troubles with Coq...
• Ltac code is imperative

you're manipulating an invisible proof stack
• to understand Ltac you have to step through
• Ltac is not readable

...disappear with Agda!
• Agda doesn't have tactics !

• wait, is that fair?

My Troubles with Coq...
"For me, if [induction] was the only thing they

got out of this course, that would be okay."
— Benjamin Pierce

• induction can be confusing
• induction does the same as destruct, but gives

you this random other data... sometimes?
• induction interacts with intros

...disappear with Agda!
• in Agda, induction is recursion

You: "Okay. I'm convinced. Let's talk PLFA."

PLFA
by Marko Dimjašević, Wen Kokke,
Jeremy Siek, Zbigniew Stanasiuk,
Philip Wadler, and Yasu Watanabe

 (and 32 other contributors)

How most of PLFA was
produced:

Our Concerns with Agda...

• is Agda stable enough?
• does the lack of automation blow up proof size?

You: "How does PLFA compare to SF?"
Me: "Uh, we're pretty close, actually..."

New Syllabus

• inductive definitions

• operational
semantics

• untyped λ-calculus

• simply typed λ-
calculus

• references and
exceptions

• records and
subtyping

• Featherweight Java

• functional
programming

• logic (and Curry-
Howard)

• while programs

• program equivalence

• Hoare Logic

• Coq

• Coq
• while programs
• Hoare Logic
• records and subtyping
• Agda
• untyped λ-calculus
• deBruijn indices
• bidirectional typing

You: "Okay. What are some fundamental
differences?"

Cultural Differences
 booleans vs. decidable

Progress and Preservation
 equals Evaluation

How to Animate a Language

• repeatedly apply progress and preservation:
it's evaluation!

• progress proof is an evaluation strategy:
determines which step you take

• reservations about non-confluent systems

Inherently-Typed Terms
 & deBruijn indices

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?

• DeBruijn indices?

• Locally Nameless?

• Switch to Isabelle? Twelf?

• Finesse the problem!

5ZQF�BOE�4DPQF 4BGF 1SPHSBNT BOE 5IFJS 1SPPGT

(VJMMBVNF "MMBJT
HBMMBJT!DT�SV�OM

_�/#Qm/ lMBp2`bBiv-
h?2 L2i?2`H�M/b

+BNFT $IBQNBO $POPS .D#SJEF
\KBNFT�DIBQNBO
DPOPS�NDCSJEF^!TUSBUI�BD�VL

lMBp2`bBiv Q7 ai`�i?+Hv/2- lE

+BNFT .D,JOOB
KBNFT�NDLJOOB!FE�BD�VL

lMBp2`bBiv Q7 1/BM#m`;?- lE

"CTUSBDU
8F BCTUSBDU UIF DPNNPO UZQF�BOE�TDPQF TBGF TUSVDUVSF GSPN
DPNQVUBUJPOT PO ౠ�UFSNT UIBU EFMJWFS
 F�H�
 SFOBNJOH
 TVC�
TUJUVUJPO
 FWBMVBUJPO
 $14�USBOTGPSNBUJPO
 BOE QSJOUJOH XJUI
B OBNF TVQQMZ� #Z FYQPTJOH UIJT TUSVDUVSF
 XF DBO QSPWF
HFOFSJD TJNVMBUJPO BOE GVTJPO MFNNBT SFMBUJOH PQFSBUJPOT
CVJMU UIJT XBZ� 5IJT XPSL IBT CFFO GVMMZ GPSNBMJTFE JO "HEB�

$BUFHPSJFT BOE 4VCKFDU %FTDSJQUPST %���� <4PGUXBSF � 1SP�
HSBN 7FSJ͢DBUJPO>� $PSSFDUOFTT 1SPPGT� %���� <-BOHVBHF
$MBTTJ͢DBUJPOT>� "QQMJDBUJWF 	GVODUJPOBM
 MBOHVBHFT� '����
<4FNBOUJDT PG 1SPHSBNNJOH -BOHVBHFT>� %FOPUBUJPOBM TF�
NBOUJDT
 1BSUJBM FWBMVBUJPO

,FZXPSET -BNCEB�DBMDVMVT
 .FDIBOJ[FE .FUB�5IFPSZ

/PSNBMJTBUJPO CZ &WBMVBUJPO
 4FNBOUJDT
 (FOFSJD 1SPHSBN�
NJOH
 "HEB

�� *OUSPEVDUJPO
" QSPHSBNNFS JNQMFNFOUJOH BO FNCFEEFE MBOHVBHF XJUI
CJOEJOHT IBT B XFBMUI PG QPTTJCJMJUJFT�)PXFWFS
 TIPVME TIF
XBOU UP CF BCMF UP JOTQFDU UIF UFSNT QSPEVDFE CZ IFS VTFST
JO PSEFS UP PQUJNJTF PS FWFO DPNQJMF UIFN
 TIF XJMM IBWF UP
XPSL XJUI B EFFQ FNCFEEJOH� 8IJDI NFBOT UIBU TIF XJMM
IBWF UP 	SF
JNQMFNFOU B HSFBU OVNCFS PG USBWFSTBMT EPJOH
TVDI NVOEBOF UIJOHT BT SFOBNJOH
 TVCTUJUVUJPO
 PS QBSUJBM
FWBMVBUJPO� 4IPVME TIF XBOU UP HFU IFMQ GSPN UIF UZQFDIFDLFS
JO PSEFS UP GFOE Pࣽ DPNNPO CVHT
 TIF DBO PQU GPS JOEVDUJWF
GBNJMJFT 	%ZCKFS ����
 UP FOGPSDF QSFDJTF JOWBSJBOUT� #VU UIF
USBWFSTBMT OPX IBWF UP CF JOWBSJBOU QSFTFSWJOH UPP�

*O BO VOQVCMJTIFE NBOVTDSJQU
 .D#SJEF 	����
 PCTFSWFT
UIF TJNJMBSJUZ CFUXFFO UIF UZQFT BOE JNQMFNFOUBUJPOT PG SF�
OBNJOH BOE TVCTUJUVUJPO GPS TJNQMZ UZQFE ౠ�DBMDVMVT 	45ౠ$

JO B EFQFOEFOUMZ UZQFE MBOHVBHF BT TIPXO JO ࣾH� �� 5IFSF
BSF UISFF EJࣽFSFODFT CFUXFFO UIF JNQMFNFOBUJPOT PG SFOBN�

ଧଚଣ ң)ѭ౨/ ଑ଖଧ ౨ ా Ј ଑ଖଧ ౨ ి* Ј)ѭ౨/ ଏଢ ౨ ా Ј ଏଢ ౨ ి*
ଧଚଣ ౦)༝ଫଖଧ ৖* > ༝ଫଖଧ)౦ ৖*
ଧଚଣ ౦)ে ༝% ৔* > ଧଚଣ ౦ ে ༝% ଧଚଣ ౦ ৔
ଧଚଣ ౦)༝ౠ ৃ* > ༝ౠ)ଧଚଣ))ନପ ҅ ౦* ѿ- ଯଚ* ৃ*

ନପଗ ң)ѭ౨/ ଑ଖଧ ౨ ా Ј ଏଢ ౨ ి* Ј)ѭ౨/ ଏଢ ౨ ా Ј ଏଢ ౨ ి*
ନପଗ ౦)༝ଫଖଧ ৖* > ౦ ৖
ନପଗ ౦)ে ༝% ৔* > ନପଗ ౦ ে ༝% ନପଗ ౦ ৔
ନପଗ ౦)༝ౠ ৃ* > ༝ౠ)ନପଗ))ଧଚଣ ନପ ҅ ౦* ѿ- ༝ଫଖଧ ଯଚ* ৃ*

'JHVSF �� 3FOBNJOH BOE 4VCTUJUVUJPO GPS UIF 45ౠ$

ଠଞ଩ ң)ѭ౨/ ଑ଖଧ ౨ ా Ј ! ౨ ి* Ј)ѭ౨/ ଏଢ ౨ ా Ј ଏଢ ౨ ి*
ଠଞ଩ ౦)༝ଫଖଧ ৖* > ଆଞ଩/ଫଖଧ ౟)౦ ৖*
ଠଞ଩ ౦)ে ༝% ৔* > ଠଞ଩ ౦ ে ༝% ଠଞ଩ ౦ ৔
ଠଞ଩ ౦)༝ౠ ৃ* > ༝ౠ)ଠଞ଩))ଆଞ଩/ବଠଣ ౟ ҅ ౦* ѿ- ଆଞ଩/ଯଧତ ౟* ৃ*

'JHVSF �� ,JU USBWFSTBM GPS UIF 45ౠ$
 GPS ɹ PG UZQF ଆଞ଩ !

ଣଗଚ ң)ѭ౨/ ଑ଖଧ ౨ ా Ј ଑ଖଡ ౨ ి* Ј)ѭ౨/ ଏଢ ౨ ా Ј ଑ଖଡ ౨ ి*
ଣଗଚ ౦)༝ଫଖଧ ৖* > ౦ ৖
ଣଗଚ ౦)ে ༝% ৔* > ૼଋଋ)ଣଗଚ ౦ ে*)ଣଗଚ ౦ ৔*
ଣଗଚ ౦)༝ౠ ৔* > ଇૼଈ)ౠ ৒৆ ৖ Ј ଣଗଚ))ବଠ ৒৆ ҅ ౦* ѿ- ৖* ৔*

'JHVSF �� /PSNBMJTBUJPO CZ &WBMVBUJPO GPS UIF 45ౠ$

JOH BOE TVCTUJUVUJPO� 	�
 JO UIF WBSJBCMF DBTF
 BGUFS SFOBNJOH
B WBSJBCMF XF NVTU XSBQ JU JO B ༝ଫଖଧ DPOTUSVDUPS XIFSFBT B
TVCTUJUVUJPO EJSFDUMZ QSPEVDFT B UFSN� 	�
 XIFO XFBLFOJOH
B SFOBNJOH UP QVTI JU VOEFS B ౠ XF OFFE POMZ QPTU�DPNQPTF
UIF SFNBOJOH XJUI UIF %F #SVJKO WBSJBCMF TVDDFTTPS DPOTUSVD�
UPS ନପ 	XIJDI JT FTTFOUJBMMZ XFBLFOJOH GPS WBSJBCMFT
 XIFSFBT
GPS B TVCTUJUVUJPO XF OFFE B XFBLFOJOH PQFSBUJPO GPS UFSNT
XIJDI DBO CF HJWFO CZ SFOBNJOH WJB UIF TVDDFTTPS DPOTUSVD�
UPS ଧଚଣ ନପ� 	�
 BMTP JO UIF ౠ DBTF XIFO QVTIJOH B SFOBNJOH PS
TVCTUJUVUJPO VOEFS B CJOEFS XF NVTU FYUFOE JU UP FOTVSF UIBU
UIF WBSJBCMF CPVOE CZ UIF ౠ NBQQFE UP JUTFMG� 'PS SFOBNJOH
UIJT JOWPMWFT FYUFOEFE CZ UIF [FSPUI WBSJBCMF ଯଚ XIFSFBT GPS
TVCTJUVUJPOT XF NVTU FYUFOE CZ UIF [FSPUI WBSJBCMF TFFO BT B

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

CPP’17, January 16–17, 2017, Paris, France
ACM. 978-1-4503-4705-1/17/01...$15.00
http://dx.doi.org/10.1145/3018610.3018613

195

Cheap Tricks for Substitution

A Cheap Solution

• Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

• Second observation [Tolmach]: Replacing the
standard weakening+permutation with a “context
invariance” lemma makes this presentation very
clean.

Formalising languages following ACMM

ext : (∀ {A} → γ ∋ A → δ ∋ A) -- extend
 --------------------------------- -- simultaneous
 → (∀ {A B} → γ , B ∋ A → δ , B ∋ A) -- renaming
 -- ↓
rename : (∀ {A} → γ ∋ A → δ ∋ A) -- apply
 --------------------------------- -- simultaneous
 → (∀ {A} → γ ⊢ A → δ ⊢ A) -- renaming
 -- ↓
exts : (∀ {A} → γ ∋ A → δ ⊢ A) -- extend
 --------------------------------- -- simultaneous
 → (∀ {A B} → γ , B ∋ A → δ , B ⊢ A) -- substitution
 -- ↓
subst : (∀ {A} → γ ∋ A → δ ⊢ A) -- apply
 --------------------------------- -- simultaneous
 → (∀ {A} → γ ⊢ A → δ ⊢ A) -- substitution

System F in Agda, for fun and profit

James Chapman1, Roman Kireev1, Chad Nester2, and Philip Wadler2

1 Input Output HK Ltd, Hong Kong {james.chapman,roman.kireev}@iohk.io
2 University of Edinburgh, UK {cnester,wadler}@inf.ed.ac.uk

Abstract. System F, also known as the polymorphic �-calculus, is a typed �-
calculus independently discovered by the logician Jean-Yves Girard and the com-
puter scientist John Reynolds. We consider F!µ, which adds higher-order kinds
and iso-recursive types. We present the first complete, intrinsically typed, exe-
cutable, formalisation of System F!µ that we are aware of. The work is motivated
by verifying the core language of a smart contract system based on System F!µ.
The paper is a literate Agda script [15]

1 Introduction

System F, also known as the polymorphic �-calculus, is a typed �-calculus indepen-
dently discovered by the logician Jean-Yves Girard and the computer scientist John
Reynolds. System F extends the simply-typed �-calculus (STLC). Under the principle
of Propositions as Types, the! type of STLC corresponds to implication; to this Sys-
tem F adds a 8 type that corresponds to universal quantification. Formalisation of Sys-
tem F is tricky: it, when extended with subtyping, formed the basis for the POPLmark
challenge [10], a set of formalisation problems widely attempted as a basis for compar-
ing di↵erent systems.

System F is small but powerful. By a standard technique known as Church encod-
ing, it can represent a wide variety of datatypes, including natural numbers, lists, and
trees. However, while System F can encode the type “list of A” for any type A that can
also be encoded, it cannot encode “list” as a function from types to types. For that one
requires System F with higher-kinded types, known as System F!. Girard’s original
work also considered this variant, though Reynolds did not.

The basic idea of System F! is simple. Not only does each term have a type, but also
each type has a kind. The first level, relating terms and types, includes an embedding
of STLC (plus quantification); while the second level, relating types and kinds, is an
isomorphic image of STLC.

Church encodings can represent any algebraic datatype recursive only in positive
positions; though extracting a component of a structure, such as finding the tail of a
list, takes time proportional to the size of the structure. Another standard technique,
known as Scott encoding, can formalise any algebraic type whatsoever; and extracting
a component now takes constant time. However, Scott encoding requires a second ex-
tension to System F, to represent arbitrary recursive types, known as System Fµ. The
system with both extensions is known as System F!µ, and will be the subject of our
formalisation.

You: "Did you make the right choice?"
Me: "What do you mean?"

You: "Well, you know, Agda, no tactics?"
Me: "Uh... we should talk..."

Quantitative Type Theory
 Linear Types by Counting

Formalising languages following QTT

• contexts w/ resource annotations

• count resource usage with

• contexts parameterised over precontexts on the type level

_ : Ctxt (∅ , A , B , C)

_ = ∅ , 1 ∙ A , 0 ∙ B , 0 ∙ C

Formalising languages following QTT

_ : ∅ , 1 ∙ A , 0 ∙ A # A ⊢ A

_ = ` S Z

_ : ∅ , 1 ∙ A , 1 ∙ A # A ⊢ A

_ = (` Z) · (` S Z)

_ : ∅ , ω ∙ A , 1 ∙ A # A # A ⊢ A

_ = (` Z) · (` S Z) · (` S Z)

Programming Language Foundations in Agda
• it's there for you to use!
• it's free!
• it covers:

• logical foundations
• functional programming
• simply-typed lambda calculus

Programming Language Foundations in Agda
• it's there for you to use!
• it's free!
• soon it will cover:

• system F
• denotational semantics
• whatever you'd like to contribute!

Conor McBride, James McKinna, Ulf Norell, Andreas Abel, David Darais,
Marko Dimjašević, Zbigniew Stanasiuk, Yasu Watanabe, Jeremy G. Siek,

Chad Nester, Juhana Laurinharju, phi16, Jonathan Prieto, Alexandru
Brisan, Michel Steuwer, caryoscelus, Reza Gharibi, Lorenzo Martinico,

Sebastian Miele, Murilo Giacometti Rocha, Spencer Whitt, Isaac Elliott,
Ingo Blechschmidt, Fangyi Zhou, Torsten Grust, Nicolas Wu, Kartik

Singhal, Phil de Joux, Stephan Boyer, Zack Grannan, Léo Gillot-Lamure,
Kenneth MacKenzie, Chike Abuah, Alexandre Moreno, James Wood, Stefan

Kranich, kenichi-asai, Rodrigo Bernardo, Orestis Melkonian, Deniz
Alp, Nathaniel Carroll, Guillaume Allais, Nils Anders Danielsson,

Miëtek Bak, Gergő Érdi, Adam Sandberg Eriksson, David Janin, András
Kovács, Liam O’Connor, N. Raghavendra, Roman Kireev, Amr Sabry

