'ROGRAMMING PROGRAMMING
[ANGUAGE FOUNDATIONS
[N AGDATN AGDA

BY WEN ROKKE

You: "What's an 'Agda’?"
Me: "It's a proof assistant!"

You: "What's a proof assistant?"
Me: "Uh..."

ACL2, AGDA, AGDA 2, ALBATROSS, ALF. AQUARLUS, ATS, AUTOMATH,
A BLACKBOARD. BLODWEN, CAMBRIDGE LCE CAYENNE, CEDILLE, CLAM,
CLAM 2, CLam3, CLIN EOQ, DAFNY. DEPENDENT ML DISCOUNT
EPTGRAM. EQP, E1PS, B HaSKeLL, HOL LzeT HOLE HOLSS, HOLYO'
[DRIS, IMPS, INKA. INTERCAL, ISABELLE, JAPE, KEY. LAMBDACLAM,
LCH1] LEAN, TEGO. LOGIC THEORTST. MACE, MACEL MATITA. METAMATH,
ME, MINLOG, MIzAR, MKRP. NQTHM. NUPRL OLEG, OMEGA OSHL.
(TTER PEERS, PEERS-MCD.A, PEERS-MCD.B, DEERS-MCD.C. PeERs-
MCD.D, PHOX. PLTP. PRESS, PROCOM. PROVERS. PRV. VS, RDL SCUNAC
SETHEQ. SNARK. SASYLE TPS. TWELF TUTCH. TYPELAB. YARROW

by Bruno Barras, Yves Bertot, Pierre
Castéran, Thierry Coquand, Jean-
Christophe Filliatre, Hugo Herbelin,
Geérard Pierre Huet, Chetan Murthy,
and Christine Paulin-Mohring
(and at least 133 other contributors)

AGDA

by Andreas Abel, Stevan Andjelkovic,
Marcin Benke, James Chapman,
Jesper Cockx, Jean-Philippe
Bernardy, Nils Anders Danielsson,
Dominique Devriese, Péter
Divianszky, Olle Fredriksson, Samuel
Gélineau, Daniel Gustafsson, Patrik
Jansson, Alan Jeffrey, Fredrik
Lindblad, Stefan Monnier, Darin
Morrison, Guilhem Moulin, Fredrik
Nordvall Forsberg, Ulf Norell, Nicolas
Pouillard, Andreés Sicard-Ramirez,
Wouter Swierstra, Makoto Takeyama,
Andrea Vezzosi, and Nobuo Yamashita
(and at least 74 other contributors)

UIf Norell and 18 others liked your Tweet - 1h

WEN @wenkokke JGD’
Took the liberty of making some slight tweaks to @ulfnorell's Agda ...

AGDA

by Andreas Abel, Stevan Andjelkovic,
Marcin Benke, James Chapman,
Jesper Cockx, Jean-Philippe
Bernardy, Nils Anders Danielsson,
Dominique Devriese, Péter
Divianszky, Olle Fredriksson, Samuel
Gélineau, Daniel Gustafsson, Patrik
Jansson, Alan Jeffrey, Fredrik
Lindblad, Stefan Monnier, Darin
Morrison, Guilhem Moulin, Fredrik
Nordvall Forsberg, Ulf Norell, Nicolas
Pouillard, Andreés Sicard-Ramirez,
Wouter Swierstra, Makoto Takeyama,
Andrea Vezzosi, and Nobuo Yamashita
(and at least 74 other contributors)

You: "Why use proof assistant in my class?"

Me: "This... Is all I've ever known???"

Lambda,
The Ultimate TA

Using a Proof Assistant to Teach
Programming Language Foundations

ICFP 2009

Benjamin C. Pierce
University of Pennsylvania

PENN

4

My List

® |nductively defined relations
® |Inductive proof techniques

® programs as data,
polymorphism, recursion, ...

® Precise description of program

structure and behavior
® operational semantics
® |ambda-calculus

® Program correctness
® Hoare Logic

® Types

Oops, forgot one thing...

® The difficulty with teaching many of these
topics is that they presuppose the ability to
read and write mathematical proofs.

® |[n a course for arbitrary computer science
students, this appears to be a really bad
assumption.

automated proof assistant

one TA per student

You: "This... is all you've ever known?"

Me: "Y-y-yes?"

JL
WAS TAUGHT FROM
SOFTWARE FOUNDATIONS,
AND LEARNED COQ AND AGDA
[N THE SAME (OURS,
ONE AFTER THE OTRER,
TAUGHT BY THIS GUY.

J014-2010)
FORMALISED SEVERAL
CALCULT USING AGDA,
MOSTLY SUBSTRUCTURAL,
WLTH THIS GUY.

[M- — -_—
R - OT\ °
=L D = —I=
== = 0
— o2 = .
— — ™ A WDO
— S = —
= O e
=T . W i
- e

I §
- &Ph\ -

T
P

-

e
e
-

Al

Py TAUGHT SOFTWARE

FOUNDATION,
WLTH THIS GUY.

| GAVE SEVERAL ADDITIONAL
[ECTURES ON AGDA!

—— so Cogq and Agda are kinda the same, yet very different

—— * it's said Coqg looks like ML and Agda looks like Haskell
—— (I don't really know ML, but I know Haskell, so for me...)

data Bool : Set where
true : Bool
false : Bool

{—+}
not : Bool - Bool
not b = ?

{+-}

—— * bad news? Agda doesn't really have tactics...
—= (1t forces you wrote write programs by hand)
== (but it doesn't force you to learn magic, i.e. Ltac)

—— * good news? Agda has a lot fewer quirks than Coqg...
— (overall, I'd say it is a lot easier to get what is going on in Agda)

—— * this 1s as good a time as any to bring up Unicode

(2] % 0 *All Done* AgdaInfo 1| utf-8 | 1: 0 all

(W
rl..UN
— =
— =
P

GEE——

= o

)AND

S5

— D =T

i U J
g
G.’U
A”N
——
PE— |

b

™
=
-

You: "Hold on. Why Agda? Isn't Software
Foundations, just like, fine???"

Me: "Uh... good question!"

MY TROUBLES WITH C00...

 everything is done twice,
once in Gallina, once in Ltac:

pair and matchvs.splitanddestruct

 everything is done four times,
'cuz names and notation are different things:

(prod A B) iswritten (A x B)
(pair A B) iswritten (A , B)

MY TROUBLES WITH C00...

. it's not even just four times! &

split

vs.apply pair

vs. constructor 1
VS. constructor
vS. auto

o this landscape of spurious equivalences burdens
and confuses the students!

.. DISAPPEAR WITH AGDA!

« Agda doesn't have tactics
 everything is done once
_X_and _, _

e no distinction between name and notation,
the name for the product typeis _x_

MY TROUBLES WITH C00...

o Ltac code is imperative
you're manipulating an invisible proof stack

 to understand Ltac you have to step through
o Ltac is not readable

.. DISAPPEAR WITH AGDA!

« Agda doesn't have tactics

e Wait, is that fair?

MY TROUBLES WITH C00...

"For me, if [induction] was the only thing they

got out of this course, that would be okay."
— Benjamin Pierce

e Induction can be confusing

 iInduction does the same as destruct, but gives
you this random other data... sometimes?

e iInduction interacts with intros

.. DISAPPEAR WITH AGDA!

 In Agda, induction is recursion

You: "Okay. I'm convinced. Let's talk PLFA."

e .m .n?v .
t..#.t...o..ﬁ..»_,.bfh h..o..« -

o L..... \.....m.}o..m.
o 0..&.#..;:0{ &' #) A

e S e
“\Eauu.& B

Wen Kokke,
Stanasiuk,

imjasevic,

k
Philip Wadler, and Yasu Watanabe

igniew

. Zb

e

(and 32 other contributors)

by Marko D
Jeremy S

HOW MOST OF PLEA WAS
PRODUCED:

JUR CONCERNS WITH AGDA. .

o Is Agda stable enough?
» does the lack of automation blow up proof size?

Progress

We would like to show that every term is either a value or takes a reduction step. However, this is not
true in general. The term

‘zero - ‘suc "zero

is neither a value nor can take a reduction step. Andif s : “n - '~ then the term

s - ‘zero

cannot reduce because we do not know which function is bound to the free variable s . The first of
those terms is ill-typed, and the second has a free variable. Every term that is well-typed and closed
has the desired property.

Progress: If @ - v : A theneither » isavalueorthereisan n suchthat ¥ — n.

To formulate this property, we first introduce a relation that captures what it means foraterm M to
make progess.

data Progress (M : Term) : Set where

step : V {N}
-oM—-.N

- Progress M

done :
Value M

- Progress M

A term M makes progress if either it can take a step, meaning there exists aterm ~n such that v —
N , or if it is done, meaning that M is a value.

If a term is well-typed in the empty context then it satisfies progress.

progress : V {M A}
- @FM:A
- Progress M
progress (" ())

progress (A KN) = done V-A
progress (FL - M) with progress KL
| step L—L' = step (&--1 L—-L’)
| done VL with progress M
| step M—M’ = step ((--2 VL M—M’)
| done VM with canonical L VL
| C-A _ = step (f-A VM)
progress kzero = done V-zero

progress (Fsuc M) with progress HM

| step M—M’ = step (E-suc M—M’)
| done VM = done (V-suc VM)
progress (Fcase FL FM FN) with progress KL
| step L—L' = step (E-case L—L’)
| done VL with canonical FL VL
| C-zero = step P-zero
| C-suc CL = step (B-suc (value CL))

progress (Fu FM) step PB-np

We induct on the evidence that » is well-typed. Let’s unpack the first three cases.
* The term cannot be a variable, since no variable is well typed in the empty context.
« |f the term is a lambda abstraction then it is a value.

» |f the termis an application 1. - m, recursively apply progress to the derivation that 1 is well-
typed.

o |f the term steps, we have evidence that . — 1.’ , whichby z-.1 means that our original
termstepsto .’ - M

o |f the term is done, we have evidence that 1 is a value. Recursively apply progress to the
derivation that » is well-typed.

= |f the term steps, we have evidence that v — M’ , which by z-.2 means that our
original term stepsto . - m’ .Step z-.2 applies only if we have evidence that = isa
value, but progress on that subterm has already supplied the required evidence.

= |f the term is done, we have evidence that v is a value. We apply the canonical forms
lemma to the evidence that 1 is well typed and a value, which since we are in an
application leads to the conclusion that . must be a lambda abstraction. We also have
evidence that M is a value, so our original term steps by p-x .

The remaining cases are similar. If by induction we have a step case we applya z rule, and if we
have a done case then either we have a value or apply a g rule. For fixpoint, no induction is required
as the g rule applies immediately.

Our code reads neatly in part because we consider the step option before the done option. We
could, of course, do it the other way around, but then the ... abbreviation no longer works, and we
will need to write out all the arguments in full. In general, the rule of thumb is to consider the easy
case (here step) before the hard case (here done). If you have two hard cases, you will have to
expand out ... orintroduce subsidiary functions.

Progress

The progress theorem tells us that closed, well-typed terms are not stuck: either a well-typed term is a value, or it can
take a reduction step. The proof is a relatively straightforward extension of the progress proof we saw in the Types
chapter. We'll give the proof in English first, then the formal version.

Theorem progress : V t T,
empty |- t € T »
value t v 3 t', t ==>t'.

Proof: By induction on the derivation of | - t € T.
* The last rule of the derivation cannot be T_Var, since a variable is never well typed in an empty context.

* TheT _True, T _False, and T_Abs cases are trivial, since in each of these cases we can see by inspecting the
rule that t is a value.

* If the last rule of the derivation is T_App, then t has the form t,; t, for some t; and t,, where |-t; €T, > T

and |- t, € T, for some type T,. By the induction hypothesis, either t, is a value or it can take a reduction

step.

o If t, is a value, then consider t,, which by the other induction hypothesis must also either be a value or

take a step.

= Suppose t, is a value. Since t, is a value with an arrow type, it must be a lambda abstraction;

hence t, t, can take a step by ST_AppAbs.
= Otherwise, t, can take a step, and hence so can t, t, by ST _App2.
o If £, can take a step, then so can t; t, by ST Appl.

* If the last rule of the derivation is T_If, thent =if t; then t, else t;, where t; has type Bool. By the IH,

t, either is a value or takes a step.

o If t, is a value, then since it has type Bool it must be either true or false. If itis true, then t steps to

t,; otherwise it steps to t;.

© Otherwise, t, takes a step, and therefore so does t (by ST_If).

Proof with eauto.
intros t T Ht.
remember (€empty ty) as Gamma.
induction Ht; subst Gamma...
- (* T Var *)
(* contradictory: variables cannot be typed in an
empty context ¥*)
inversion H.

- (* T _App *)
(* t = t; t. Proceed by cases on whether t; is a

value or steps... *)
right. destruct IHHtl...
+ (* t; is a value *)
destruct IHHt2...
* (* t, is also a value ¥*)

assert (3 xp tg, t; = tabs xy Ty;; tp).

eapply canonical forms fun; eauto.
destruct H; as [Xg [to Heq]]). subst.

* (* t, steps ¥*)
inversion Hy as [tp' Hstp]. 3 (tapp t; t2')...
+ (* t; steps *)
inversion H as [t;' Hstp]. 3 (tapp t;' t3)...

- (* T If *)
right. destruct IHHtl...

+ (* t; is a value *)
destruct (canonical forms bool t;); subst; eauto.

+ (* t, also steps *)
inversion H as [t;' Hstp]. 3 (tif t;' t; t3)...
Qed.

You: "How does PLFA compare to SF?"

Me: "Uh, we're pretty close, actually..."

New Syllabus

® inductive definitions ® functional
® operational programming
semantics ® |ogic (and Curry-

® untyped-A-calculus Howard)

® simply typed A- ® while programs
calculus ® program equivalence

® references—and ® Hoare Logic
seeaptions ® Coqg

® records and
subtyping

® Featherweisht{ava

e Agda

 untyped A-calculus
» deBruijn indices

e bidirectional typing

Part 1: Logical Foundations

e Naturals: Natural numbers

e |nduction: Proof by induction

e Relations: Inductive definition of relations

e Equality: Equality and equational reasoning

e [somorphism: Isomorphism and embedding

e Connectives: Conjunction, disjunction, and implication

e Negation: Negation, with intuitionistic and classical logic
e Quantifiers: Universals and existentials

e Decidable: Booleans and decision procedures

e | ists: Lists and higher-order functions

Part 2: Programming Language Foundations

e L ambda: Introduction to Lambda Calculus

e Properties: Progress and Preservation

e DeBruijn: Inherently typed De Bruijn representation

e More: Additional constructs of simply-typed lambda calculus
e Bisimulation: Relating reductions systems

e |nference: Bidirectional type inference

e Untyped: Untyped lambda calculus with full normalisation

You: "Okay. What are some fundamental
differences?"

CULTURAL DIFFERENCES
BOOLEANS V3. DECIDABLE

'ROGRESS AND PRESERVATION
FQUALS EVALUATION

Is Coq The Ultimate TA!?

Pros:

® Can really build everything we need from scratch
® Curry-Howard

® Proving = programming
® Good automation

Cons:

® Curry-Howard

® Proving = programming — deep waters

® Constructive logic can be confusing to students
® Annoyances

® |ack of animation facilities
® “User interface”

® Notation facilities ,
My Coq proof scripts do not have the
® ChOice Of variable names conciseness and elegance of Jérome

Vouillon's. Sorry, I've been using Coq
for only 6 years...

— Leroy (2005)

Aside: the normalize Tactic

When experimenting with definitions of programming languages in Coq, we often want to see what
a particular concrete term steps to — i.e., we want to find proofs for goals of the form t ==>* t ',
where t is a completely concrete term and t ' is unknown. These proofs are quite tedious to do by

hand. Consider, for example, reducing an arithmetic expression using the small-step relation
astep.

The following custom Tactic Notation definition captures this pattern. In addition, before each
step, we print out the current goal, so that we can follow how the term is being reduced.

Tactic Notation "print _goal" :=
match goal with |- ?x = idtac x end.

Tactic Notation "normalize" :=
repeat (print goal; eapply multi step ;

[(eauto 10; fail) | (instantiate; simpl)]);
apply multi refl.

The normalize tactic also provides a simple way to calculate the normal form of a term, by
starting with a goal with an existentially bound variable.

Example step examplel''' : 3d e’,
(P (C 3) (P (C 3) (C 4)))
==>% o',

Proof.

eapply ex intro. normalize.
(* This time, the trace 1is:
(P (C 3) (P (C 3) (C 4)) ==>* 2e')
(P (C 3) (C 7) ==>* ?e')
(C 10 ==>* ?2e')
where ?e' 1s the variable "~ guessed'' by eapply. *)
Qed.

Mechanized Metatheory for the Masses:
The POPLMARK Challenge

Brian E. Aydemir!, Aaron Bohannon!, Matthew Fairbairn?, J. Nathan Foster!,
Benjamin C. Pierce!, Peter Sewell?, Dimitrios Vytiniotis!, Geoffrey

Washburn', Stephanie Weirich!, and Steve Zdancewic!

! Department of Computer and Information Science, University of Pennsylvania
? Computer Laboratory, University of Cambridge

Challenge 2A: Type Safety for Pure F..

Typ-e soundness is usually proven in the style popularized by Wright and
Felleisen [51], in terms of preservation and progress theorems. Challenge 2A is

to prove these properties for pure F...
3.3 THEOREM |PRESERVATION|: f 't : Tandt — t/,then 't : T. O

3.4 THEOREM |PROGRESS|: If t is a closed, well-typed F.. term (i.e.,if -t : T
for some T), then either t is a value or else there is some t’ with t — t'. O

Challenge 3: Testing and Animating with Respect to the Semantics

Our final challenge is to provide an implementation of this functionality,
specifically for the following three tasks (using the language of Challenge 2B):

1. Given F.. terms t and t’, decide whether t — t’.

2. Given F.. terms t and t’, decide whether t —" t' -/, where —" is the
reflexive-transitive closure of —.

3. Given an F.. term t, find a term t’ such that t — t’.

10W T0 ANTMATE A LANGUAGE

 repeatedly apply progress and preservation:
It's evaluation!

o progress proof is an evaluation strategy:
determines which step you take

e reservations about non-confluent systems

Evaluation

By repeated application of progress and preservation, we can evaluate any well-typed term. In this
section, we will present an Agda function that computes the reduction sequence from any given closed,

well-typed term to its value, if it has one.

The evaluator takes gas and evidence that a term is well-typed, and returns the corresponding steps.

eval : V {L A}
- (Gas

- Steps L
eval {L} (gas zero) FL = steps (L ®8) out-of-gas
eval {L} (gas (suc m)) FL with progress kL
| done VL = steps (L #1) (done VL)

| step L—M with eval (gas m) (preserve FL L—M)
steps (L —¢(L—M > M—N) fin

| steps M—N fin

_ : eval (gas 100) (Ftwoc - Fsucc - lzero)

steps
((A "s" = (A "z" = ° "g" . (° "g" . " "z"))) - (A "n" = "suc ° "n")
" zero
—< &=-1 (B-A V-A))
(A "z2" = (A "n" = "suc " "n") .- ((A "n" = "suc ° "n") .- ° "z"))
" zero
—={ B-A V-zero)
(A "n" = "suc ° "n") - ((A "n" = "suc ° "n") - "“zero)
—»{ &--2 V-A (B-A V-zero))
(A "n" = "suc ° "n") - “suc zero

—+{ B-A (V-suc V-zero))
"suc (suc " zero)
")
(done (V-suc (V-suc V-zero)))
= refl

INHERENTLY- TYPED TERMS
& DEBRUTJN INDICES

The POPLMark Tarpit

® Dealing carefully with variable binding is
hard; doing it formally is even harder

® VWhat to do!

® DeBruijn indices!?

® | ocally Nameless!?
® Switch to Isabelle? Twelf?

® Finesse the problem!

Type-and-Scope Safe Programs and Their Proofs

Guillaume Allais

gallais@cs.ru.nl

Radboud University,
The Netherlands

Abstract

We abstract the common type-and-scope safe structure from
computations on A-terms that deliver, e.g., renaming, sub-
stitution, evaluation, CPS-transformation, and printing with
a name supply. By exposing this structure, we can prove
generic simulation and fusion lemmas relating operations
built this way. This work has been fully formalised in Agda.

Categories and Subject Descriptors D.2.4 [Software/ Pro-
gram Verification]: Correctness Proofs; D.3.2 [Language
Classifications]: Applicative (functional) languages; F.3.2
[Semantics of Programming Languages]: Denotational se-
mantics, Partial evaluation

Conor McBride

{james.chapman,conor.mcbride } @strath.ac.uk
University of Strathclyde, UK

James Chapman

James McKinna

james.mckinna@ed.ac.uk
University of Edinburgh, UK

ren : (Vo.VarocI' > Varoc 4A) > (Vo. Tmo I’ - Tmo A4)
ren p (‘var v) = ‘var (p v)

renp(f '$1) =renp f 'Srenpt

renp(‘Ab) ="'A(ren((suop)—,ze)b)

sub : (Vo.VaroI' > Tmo 4A) - (Vo. Tmo I’ > Tmo A)
sub p (‘varv) =puv

subp (f '$1) =subp f '$Ssubpt

subp (*Ab) ="'A(sub ((rensue p)—, ‘var ze) b)

Figure 1. Renaming and Substitution for the STAC

CHEAP TRTCKS FOR SUBSTLTUTION

A Cheap Solution

® Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

® Second observation [Tolmach]: Replacing the
standard weakening+permutation with a “context

invariance” lemma makes this presentation very
clean.

Reserved Notation "'[' x ':=" s '"]'" t" (at level 20).

Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
match t with
| var x' =
if egb string x x' then s else t
| abs x' T t; =
abs x' T (if egb string x x' then t; else ([x:=s] ti))
| app t; tz =
app ([x:=s] t1) ([x:=s] tj)
| tru =
tru
| fls =
fls
| test t; ty t3 =
test ([x:=s] t1) ([x:=s] tjy) ([x:=s] t3)
end

where "'[' x ':=" s ']'" t" := (subst x s t).

Technical note: Substitution becomes trickier to define if we consider the case where s, the term
being substituted for a variable in some other term, may itself contain free variables. Since we are
only interested here in defining the step relation on closed terms (i.e., terms like \x:Bool. x that
include binders for all of the variables they mention), we can sidestep this extra complexity, but it
must be dealt with when formalizing richer languages.

For example, using the definition of substitution above to substitute the openterm s = \x:Bool.
r, where r is a free reference to some global resource, for the variable z in the term t =
\r:Bool. z, where r is a bound variable, we would get \r:Bool. \x:Bool. r, where the free
reference to r in s has been "captured” by the binder at the beginning of t.

Why would this be bad? Because it violates the principle that the names of bound variables do not
matter. For example, if we rename the bound variable in t, e.g., lett' = \w:Bool. z, then
[X:=s]t'is \w:Bool. \x:Bool. r, which does not behave the same as [Xx:=s]t =
\r:Bool. \x:Bool. r. That is, renaming a bound variable changes how t behaves under
substitution.

Lemma substitution preserves typing : VGamma x U t v T,
(x = U ; Gamma) - t € T -
empty - v € U -
Gamma + [xX:=v]t € T.

One technical subtlety in the statement of the lemma is that we assume v has type U in the empty
context — in other words, we assume v is closed. This assumption considerably simplifies the

T Abs case of the proof (compared to assuming Gamma +— v € U, which would be the other
reasonable assumption at this point) because the context invariance lemma then tells us that v has
type U in any context at all — we don't have to worry about free variables in v clashing with the
variable being introduced into the context by T Abs.

Here is the formal statement and proof that substitution preserves types:

subst {x = y} FV (' {x = x} Z) with x £ y

| yes refl = weaken HV

| no x#y = Jl-elim (x#y refl)
subst {x = y} FV (' {x = X} (S x#y 3x)) with x £ y

| yes refl = l-elim (x&y refl)

| no _ = | 35X
subst {x = y} FV (FA {x = X} FN) with x £ vy

| yes refl = FA (drop FN)

| no x#y = FA (subst FV (swap xZy FN))
subst +V (FL - M) = (subst +V FL) - (subst FV KM)
subst +V lzero = Fzero

subst FV (Fsuc M) Fsuc (subst FV M)
subst {x = y} FV (Fcase {x = X} FL FM FN) with x = y

| yes refl = tcase (subst FV FL) (subst FV FM) (drop EN)

| no XxX#y = lcase (subst FV L) (subst FV M) (subst FV (swap x#y FN))
subst {x = y} FV (Fp {x = X} M) with x £ vy

| yes refl = Fn (drop HM)

| no x#y = Fn (subst FV (swap x#y HM))

Single substitution

From the general case of substitution for multiple free variables it is easy to define the special case of
substitution for one free variable:

_[]1 + v {I" A B}
- T, BFA
- I" - B
- T+ A
_[_1 {r'} {A} {B} NM = subst {I" , B} {I'}) o {A} N
where
c :Vv {Ay T, BA->TFA
o Z = M

o (S x) = =~ x

Formalising languages following ACMM

ext

rename

exts

subst

extend
simultaneous
renaming

|

apply
simultaneous
renaming

|

extend
simultaneous

substitution
y

apply
simultaneous
substitution

A Cheap Solution

® Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

® Second observation [Tolmach]: Replacing the
standard weakening+permutation with a “context

invariance” lemma makes this presentation very
clean.

® Downside: Doesn’t work for System F

System F in Agda, for fun and profit

James Chapman', Roman Kireev!, Chad Nester?, and Philip Wadler?

! Input Output HK Ltd, Hong Kong {james.chapman,roman.kireev}@iohk.io
2 University of Edinburgh, UK {cnester,wadler}@inf.ed.ac.uk

Abstract. System F', also known as the polymorphic A-calculus, 1s a typed A-
calculus independently discovered by the logician Jean-Y ves Girard and the com-
puter scientist John Reynolds. We consider F,,,, which adds higher-order kinds
and 1so-recursive types. We present the first complete, intrinsically typed, exe-
cutable, formalisation of System F,, that we are aware of. The work 1s motivated
by verifying the core language of a smart contract system based on System F,,.
The paper 1s a literate Agda script [15]

You: "Did you make the right choice?"
Me: "What do you mean?"
You: "Well, you know, Agda, no tactics?"
Me: "Uh... we should talk..."

QUANTHATIVE [YPE THEORY
[INEAR TYPES BY COUNTING

Formalising languages following QTT

e contexts w/ resource annotations
® countresource usage with {0, 1, w}

® contexts parameterised over precontexts on the type level

Formalising languages following QTT

_: @, 1 «A, 0 s+« A - AL A

lem-A2 : v {y 8} (r : Context vy) {A} {u} {& : Matrix v &8} -
lem-2 {yv} {6} r {A} {n} {&} =
begin
(n ** 0s , *1# « A) «~ (C® (A X > = x , 0# - A))
=(®-zero* ' & |[> cong ((m ** Os , o * 1# . A) =) >
(m ** 0s , o * 1# - A) ~ (Ce = , O# « A)
=(>
n ** 0s ~TC e =, (on* 1#) + 0# - A
=(**.zero®* o |>cong ((, (o * 1#) + O# - A) o (~T ® E)) o sym)
Os ~ T e & , (o * 1#) + O# - A
=(~-identity! (r @) |> cong (, (mx * 1#) + O# - A) >
re = , (o * 1#) + 0# . A
=(+-identity® (o * 1#) |> cong (r® = , - A) >
re = , ox* 1# « A
=(*-identity® o |> cong (T & = , - A) >
r ® &= , o« A

1 4

—-— Donnacha Oisin Kidney
—— 17 April 2019

—— Compiled with Agda version 2.6.0, and standard library commit 09ebff3a4724891d8805ecedld48ecda7908d914
—— This contains the worked-through source code for:
—-— "Automatically And Efficiently Illustrating Polynomial Equalities in Agda"

—-— We present a new library which automates the construction of equivalence

b proofs between polynomials over commutative rings and semirings in the

b programming language Agda. It i1s asymptotically faster than Agda's existing
—-— solver. We use Agda's reflection machinery to provide a simple interface to
—= the solver, and demonstrate an interesting use of the constructed relations:
—= step-by-step solutions.

—-— Don't understand why something works? Wanna get 1t explained to you? Now ——
—-— you can! The solver can generate step-by-step, human-readable solutions - =
—-— for learning purposes. - =
module TracedExamples where - =
import Data.Nat.Show - =
open 1mport EqgBool ——
open import Relation.Traced Nat.ring Data.Nat.Show.show public - =
open AlmostCommutativeRing tracedRing - -

lemma : Vxy->x+y*1+ 32+ 1+ y+ x ——

lemma = solve tracedRing ——
explained _
showProof (lemma "x" "y") = "x + y + 3" ——

" ={ 4+-comm(x, y + 3) }" -
"y + 3 + x" __
) ={ t-comm(y, 3) }" -
"3+ y + x" -
[] ——

0,
Rt
O
—
Q
-
D
@D
Q.
|
Il
H
0
Hh
—
|
|

PROGRAMMING LANGUAGE FOUNDATIONS IN AGDA

o it's there for you to use!
o it's free!
o It covers:
e logical foundations
e functional programming
« simply-typed lambda calculus

PROGRAMMING LANGUAGE FOUNDATIONS IN AGDA

o it's there for you to use!

o it's free!

e soon it will cover:

o system F

» denotational semantics

» whatever you'd like to contribute!

LONOR MCBRIDE, JAMES MCKINNA, ULF NORELL, ANDREAS ABEL, DAVID DARALS,
MARKO DIMJASEVIC, IBIGNIEW STANASTUK, YASU WATANABE, JEREMY .. STEK,
CHAD NESTER, JUHANA LAURINARJU, PHILG, JONATHAN PRIETO, ALEXANDRU
BRISAN, MICHEL STEUWER, CARYOSCELUS, REZA GHARTBI,, LORENZO MARTINTCD,
SEBASTIAN MIELE, MURILO GTACOMETTL ROCHA, SPENCER WHITT, ISAAC ELLIOTT,
INGO BLECHSCHMIDT, FANGYT HOU, TORSTEN GRUST, NICOLAS WU, KARTIK
SINGHAL, PHIL DE JOUX, STEPHAN BOYER, ACK GRANNAN, LEO GILLOT-LAMURE,
KENNETH MACKENZIE, CHIKE ABUAH, ALEFANDRE MORENO, JAMES WOOD, STEFAN
KRANTCH, KENTCHI - ASAT, RODRTGO BERNARDO, ORESTIS MELKONTAN, DENTZ
ALP, NATHANTEL CARROLL, GUTLLAUME ALLATS, NILS ANDERS DANTELSSON,,
MIETEK BAK, GERGO ERDL, ADAM SANDBERG ERTKSSON, DAVID JANIN, ANDRAS
KOVACS, LTAM 0'CONNOR, N. RAGHAVENDRA, ROMAN KTREEY, AMR SABRY

