
Rusty
Variation
(or, Deadlock-free sessions
with failure in Rust)

by Wen Kokke

Why Session Types in Rust?

The Ping Protocol
 fn send_ping(s1: Send<(), End>)
 -> Result<(), Box<Error>> {

 let s2 = send((), s1)?;
 close(s2)

 }

The Ping Protocol — Re-use
 fn send_ping(s1: Send<(), End>)
 -> Result<(), Box<Error>> {

 let s2 = send((), s1)?;
 close(s2)?;

 let s3 = send((), s1)?; // reuse `s1`
 close(s3)

 }

The Ping Protocol — Dropping
 fn send_ping(s1: Send<(), End>)
 -> Result<(), Box<Error>> {

 // this function body
 // unintentionally left blank.

 Ok(())
 }

The Ping Protocol — A Long Wait
 let (s1, r1) = Send<Void, End>::new();
 let (s2, r2) = Send<Void, End>::new();
 std::thread::spawn(move || {
 let (v, r1) = recv(r1)?;
 close(r1)?;
 let s2 = send(v, s2);
 close(s2)
 });
 let (v, r2) = recv(r2)?;
 close(r2)?;
 let s1 = send(v, s1);
 close(s1)

A Tale of Two Languages

In Four Examples

Exceptional GV
(by Fowler et al.)

Looks like this:

Rusty Variation
(by me)

Looks like this:

 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

I know, the fonts are very different

Roadmap
» talk about Exceptional GV

» talk about Rusty Variation

» what are the differences?

» what are the similarities?

Exceptional GV
Let's see how our example EGV program executes!

We mark the main thread with a
Next we evaluate the fork instruction

Exceptional GV
Let's see how our example EGV program executes!

This forks off the process and allocates a buffer
Next we evaluate the let binding

Exceptional GV
Let's see how our example EGV program executes!

The receive instruction blocks on the empty buffer
Next we evaluate the send instruction

Exceptional GV
Let's see how our example EGV program executes!

This moves the value to the buffer
Next we evaluate the let binding

Exceptional GV
Let's see how our example EGV program executes!

The close instruction blocks (it is synchronous)
Next we evaluate the receive instruction

Exceptional GV
Let's see how our example EGV program executes!

This moves the value to the main thread
Next we evaluate the let binding

Exceptional GV
Let's see how our example EGV program executes!

The close instructions are no longer blocked

(The buffer is empty and there is a close instruction
waiting on either side)

Next we evaluate the close instructions

Exceptional GV
Let's see how our example EGV program executes!

Fin

Rusty Variation
What about our Rust program?

 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
 let (s, here) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let s = send((), s)?;
 close(s)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let s = here
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Sounds familiar?

Let's talk about errors

Exceptional GV
(by Fowler et al.)

Looks like this:

Rusty Variation
(by me)

Looks like this:

 let s = fork!(move |s: Send<(), End>| {
 cancel(s);
 Ok(())
 });
 let ((), s) = recv(s)?;
 close(s)

I know, the fonts are very different

Exceptional GV
Let's see how EGV handles errors!

We mark the main thread with a
Next we evaluate the fork instruction

Exceptional GV
Let's see how EGV handles errors!

This forks off the process and allocates a buffer
Next we evaluate the let binding

Exceptional GV
Let's see how EGV handles errors!

The receive instruction blocks on the empty buffer
Next we evaluate the cancel instruction

Exceptional GV
Let's see how EGV handles errors!

↯

This cancels the session and creates a zapper thread
Next we evaluate the receive instruction

Exceptional GV
Let's see how EGV handles errors!

↯
↯

Receiving on a channel raises an exception
if the other endpoint is cancelled

Exceptional GV
Let's see how EGV handles errors!

↯
↯

An uncaught exception turns into halt
Next we garbage collect the buffer

Exceptional GV
Let's see how EGV handles errors!

Fin

Rusty Variation
What about the Rust library?

 let s = fork!(move |s: Send<(), End>| {
 cancel(s);
 Ok(())
 });
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
For that, let's look at how cancel is implemented:

 fn cancel<T>(x: T) -> () {
 // this function body
 // intentionally left blank.
 }

Wait, what happened to x?

It went out of scope!

Rusty Variation
What happens when a channel x leaves scope unused?

» destructor is called

» values in buffer are deallocated

» destructors for values in buffer are called

» buffer is marked as DISCONNECTED

» calling recv on DISCONNECTED buffer returns Err

Sounds familiar?

What are the differences?
» explicit cancellation vs. implicit cancellation

(what happens if we forget to complete a session?)

» try/catch vs. error monad

(using the " " instruction)

» channel vs. shared memory

(process calculus vs. heap-based semantics)

What are the differences?
» simply-typed linear lambda calculus vs. Rust

this means we have:

» no recursion vs. general recursion

» lock freedom vs. deadlock freedom

» etc.

How can we get deadlocks in
Rusty Variation?
» by using mem::forget

 let s = fork!(move |s: Send<(), End>| {
 mem::forget(s);
 Ok(())
 });
 let ((), s) = recv(s)?;
 close(s)

» by storing channels in manually managed memory
and not cleaning up

What are the similarities?
» in theory, everything else?

» can we prove it?

“doesn't Rust have formal semantics?
I heard so much about RustBelt!

no.

RustBelt formalises elaborated Rust and
doesn't support many features we depend on.

What are the similarities?
» in theory, everything else?

» can we prove it? no.

» can we test it?

 #[test]
 fn ping_works() {
 assert!(|| -> Result<(), Box<Error>> {

 // ...insert example here...

 }().is_ok()); // it actually is!
 }

What are the similarities?
» in theory, everything else?

» can we prove it? no.

» can we test it? yes.

» can we properly test it?

How efficient is Rusty Variation?
» buffers are either empty or non-empty

» size of buffers is statically known

(unless you're sending boxed references)

» each buffer only involves a single allocation

» size of session is statically known

(but buffers are allocated lazily)

» it's really quite efficient y'all

Related work

session-types
(by Laumann et al.)

» library for session types in Rust

» dibsed the best package name

» embeds LAST2 in Rust

(a linear language embedded in an affine one)

» forget to complete a session? segfault!

2 Linear type theory for asynchronous session types, Gay & Vasconcelos, 2010

The Ping Protocol — Dropping
 fn send_ping(s1: Send<(), End>)
 -> Result<(), Box<Error>> {

 // this function body
 // unintentionally left blank.

 Ok(())
 }

The Ping Protocol — Dropping
 fn recv_ping(s1: Recv<(), End>)
 -> Result<(), Box<Error>> {

 // this function body
 // unintentionally left blank.

 Ok(())
 }

Conclusions

Rusty
Variation
» embeds EGV into Rust

» is unit tested

» will be QuickChecked

» is very efficient

» improves session-types

