Formalising Session Types

Without Worries

With Fewer Worries

Wen Kokke, University of Edinburgh

Why are we sad?

Why are we sad?

e formalising programming languages is hard
e shakes fist at the abstract concept of binding &
e |ots of tools make it easier (ACMM, Ott, Autosubst, N&K)

e none of those tools work for linear type systems! &

e formalising evaluation is tricky

e formalising concurrent evaluation is really hard @

Prologue
What am | doing?

What am | doing?

| am formalising GV

e asession-typed functional language

e alambda calculus with channels, send, and receive
® reduction semantics up to structural congruence

e progress, preservation, deadlock-freedom

"Wadler, 2014. Propositions as sessions

Prologue
What do | want?

| want a formalisation
which you can teach to an
undergraduate student

Actl.

My Shameful Past

Formalising linearity w/ explicit exchange

data _F_ : Prectxt - Type - Set where
var exc : y F A y < O
o, AFn 52
A v , AFB R v A - B O F A
YA - B ¢+85FB
-— N.B.

—— Prectxt 1s a list of types (9, _,_), _+_ appends
—— lists, and _¢_ 1s a bijection between 1lists

Formalising linearity w/ explicit exchange

data _F_ : Prectxt - Type - Set where
var exc : y F A y < O
o, AFn 52
A v , AFB R v A - B O F A
YA - B ¢+85FB
-— N.B.

—— Prectxt 1s a list of types (9, _,_), _+_ appends
—— lists, and _¢_ 1s a bijection between 1lists

Formalising linearity w/ explicit exchange

data _F_ : Prectxt - Type - Set where
var exc : y F A y < O
o, AFn 52
A v , AFB R v A - B O F A
YA - B ¢+85FB
-— N.B.

—— Prectxt 1s a list of types (9, _,_), _+_ appends
—— lists, and _¢_ 1s a bijection between 1lists

Formalising linearity w/ explicit exchange

®* no variables, no problems, no worries!

e we only have to explicitly manipulate the context!

—— what we mean:
swap = A p - case p of (x,y) - (y,Xx)

—— what we write:
swap = A (case (exc {...} (pair var var)))

/\

\Volg

Formalising linearity w/ explicit exchange

no variables, no problems, no worries!

we only have to explicitly manipulate the context!

—— what we mean:
swap = A p - case p of (x,y) - (y,Xx)

—— what we write:
swap = A (case (exc {...} (pair var var)))

Formalising linearity w/ explicit exchange

e understanding terms = understanding implicit context
o explicit exchange — extreme visual clutter
e formalisation of logic w/ explicit structural rules

® no clear correspondence w/ a programming language

Act ll.

ACMM? and PLFA®

2 Allais, Chapman, McBride, and McKinna. 2017. Type-and-scope Safe Programs and Their Proofs
®Kokke and Wadler. 2018. Programming Language Foundations in Agda

Formalising languages following ACMM

data _F_ : Prectxt - Type - Set where
_ Yy @ A
¢ -
A_ vy , A F B o y - A =B y H A
yFA-B vrB
—-— N.B.

—— _3_ 1s a de Bruijn index with type info (Z, S_)

Formalising languages following ACMM

data _F_ : Prectxt - Type - Set where
_ Yy @ A
vy F A
A_ vy , A F B o y - A =B y H A
yFA-B vrB
—-— N.B.

—— _3_ 1s a de Bruijn index with type info (Z, S_)

Formalising languages following ACMM

data _F_ : Prectxt - Type - Set where
_ y @ A
¢ -
A_ vy , A B o y A =B y H A
Y- A-B yrB
—-— N.B.

—— _3_ 1s a de Bruijn index with type info (Z, S_)

Formalising languages following ACMM

data _F_ : Prectxt - Type - Set where
_ Yy @ A
¢ -
A_ vy , A F B o y - A =B y H A
yFA-B vrB
—-— N.B.

—— _3_ 1s a de Bruijn index with type info (Z, S_)

Formalising languages following ACMM

no names, but... deBruijn indices, so... worries?

but at least we have variables now!

—— what we mean:
swap = A p - case p of (x,y) - (y,Xx)

—— what we write:
swap = A case (- 0) (pair (1) (0))

Formalising languages following ACMM

ext

rename

exts

subst

extend
simultaneous
renaming

y

apply
simultaneous
renaming

v

extend
simultaneous
substitution
v

apply
simultaneous
substitution

Formalising languages following ACMM

subst

subst
subst
subst

Q

subst (exts o) N)

(subst o M)

Formalising languages following ACMM

Take-Home Message:
Formalisation following ACMM is lightweight and readable.”

“Each proof fits on a slide, and we can teach it to undergraduate students.

Formalising languages following ACMM

progress : V {A} -
progress (- ())
progress (A N)
progress (L - M)
with progress L |
| step L—L' |
| done V-A |
| done V-A |

(M : @ F A)

progress M

gtep M—M'
done VM

-~ Progress M
—— 1impossible
= done V-A

= step (¢--, L—L")
= step (&--, V-A M—M')
= step (B—-A VM)

Act lll.

Quantitative Type Theory®

>McBride, 2016. | Got Plenty o' Nuttin' & Atkey, 2017. The Syntax and Semantics of Quantitative Type Theory

Formalising languages following QTT

® contexts w/ resource annotations
* countresource usage with {0, 1, w}

® contexts parameterised over precontexts on the type level

Formalising languages following QTT

2,1 A, 0« A - AFA

Formalising languages following QTT

2,1 A, 0« A - AFA

Formalising languages following QTT

2,1 A, 0« A - AFA

Formalising languages following QTT

data {vy?}

—— N.B.
—— ' and A both annotate

-~ Ctxt y » Type - Set where

—— N.B.
1 for x, 0 for each
—— other wvariable in vy

y; + 1s vector addition

Formalising languages following QTT

data {vy?}

—— N.B.
—— ' and A both annotate

-~ Ctxt y » Type - Set where

—— N.B.
1 for x, 0 for each
—— other wvariable in vy

y; + 1s vector addition

Formalising languages following QTT

data {vy?}

—— N.B.
—— ' and A both annotate

-~ Ctxt y » Type - Set where

—— N.B.
1 for x, 0 for each
—— other wvariable in vy

y; + 1s vector addition

Formalising languages following QTT

data {vy?}

—— N.B.
—— ' and A both annotate

-~ Ctxt y » Type - Set where

—— N.B.
1 for x, 0 for each
—— other wvariable in vy

y; + 1s vector addition

Formalising languages following QTT

data {vy?}

—— N.B.
—— ' and A both annotate

-~ Ctxt y » Type - Set where

—— N.B.
1 for x, 0 for each
—— other wvariable in vy

y; + 1s vector addition

Formalising languages following QTT

data {vy?}

—— N.B.
—— ' and A both annotate

-~ Ctxt y » Type - Set where

—— N.B.
1 for x, 0 for each
—— other wvariable in vy

y; + 1s vector addition

Formalising languages following QTT

Take-Home Message:
Formalisation following QTT is still lightweight and readable.®

¢ Each proof fits on a slide, and we can teach it to undergraduate students. They get a little bit sadder than before.

Formalising languages following QTT

subst : (o : V {A} » (x : y ©A) - & xXx F A)
-~ [- B —— E 1s a matrix listing,
————————— —— for each variable x,
- [* & B —— the resources used by (0 x)
subst o (& x) = rewr lem— (0o x)
subst o (A N) = A (rewr lem—-A (subst (exts o) N))

subst o (L - M) = rewr lem—- (subst o L - subst o M)

Formalising languages following QTT

subst ¢ (0 : V {A} » (x : vy 2 A) - & x F A)
- ' - B —— B 1s a matrix listing,
————————— —— for each variable x,
- [* B B —— the resources used by (0 Xx)
subst o (x) = rewr lem— (0 X)
subst o (A N) = A (rewr lem—-A (subst (exts o) N))

subst o (L - M) = rewr lem—- (subst o L - subst o M)

Problems with using QTT?

® some unrestricted open terms are typeable

_: 2, ws+A, 1 +«A-A-AFA
= 2z (sz) - (S5 2Z)

e linearity is a global property

- linear (@@ , A , A - A) + A
_ = (0 2) - (S 2Z)

e true linearity is a partial semiring, as 1 + 1 is undefined

Conclusions

e formalising programming languages is hard
e formalising linearly typed programming languages is harder

e quantitative type theory helps

Act (Bonus).

Formalising concurrent
evaluation

Formalising concurrent evaluation

Take Home Message:
Encode the invariants you need in your proof in your data types.

Formalising concurrent evaluation

Theorem 1 (Progress).

For every n channels there are n + 1 processes trying to act on
those channels. There are at most two processes ready to act on
any particular channel. When two processes act on the same
channel, they do so with opposite behaviours.

Therefore, there is at least one channel on which there are exactly
two processes ready to communicate with opposite behaviours.

Formalising concurrent evaluation

Invariants used in proof of progress:

e For every n channels there are n + 1 processes trying to act
on those channels.

e There are at most two processes ready to act on any
particular channel.

e \When two processes act on the same channel, they do so
with opposite behaviours.

Formalising concurrent evaluation

Definition of configurations
C,D:= eM | oM | ((wz)C | (C| D)
Typing rules for configurations

Iz:S'HC Lz:SHFC A,z:-SEHD
'+ (vz)C I,A,z:S8F(C| D)

Formalising concurrent evaluation

e add channels to our context

@, 0 « Send Int End | @ , 1 « Int F Int
= 7,

® use vectors to represent configurations

Conf @ ' =Vec (3 A . & | I' HA) (length &)

e correspondsto (vey...x,)(Py || -« || Pas1)

e vectors are sorted by the channel they're ready to act on

Formalising concurrent evaluation

e add channels to our context

@, 0 « Send Int End | @ , 1 « Int F Int
= 7,

® use vectors to represent _onfigurations

Conf @ ' =Vec (3 A . & | I' HA) (length &)

e correspondsto (vey...x,)(Py || -« || Pas1)

e vectors are sorted by the channel they're ready to act on

Formalising concurrent evaluation

e channels are used in dual ways, so precontexts differ...

S

o, 1 .

o send

@ , 1 .
« letpair

S letunit

(chan 27)

(recv

(walt

Send uoc4d End |

1024

(chan 2))

B

Recv uo4d End |

Z))

@ + End

@ F uod

%

S

Z)

Formalising concurrent evaluation

e channels are used in dual ways, so precontexts differ...

S

o, 1 .

o send

@ , 1 .
« letpair

S letunit

(chan 27)

(recv

(walt

Send uoc4d End |

1024

(chan 2))

B

Recv uo4d End |

Z))

@ + End

@ F uod

%

S

Z)

Formalising concurrent evaluation

* count channel usage with integers or {—w, —1,0,1, w}...

S

S

Send u64 End

1024

Send u64 End

g , +1 o
o send (chan® Z)
g, =1 o
« letpair (recv
S letunit (wait

(chan

%

Z))

@ + End

@ F uod

Z))
C

S

Z)

Formalising concurrent evaluation

* count channel usage with integers or {—w, —1,0,1, w}...

S

S

Send u64 End

1024

Send u64 End

g , +1 o
o send (chan® Z)
g, =1 o
« letpair (recv
S letunit (wait

(chan

%

Z))

@ + End

@ F uod

Z))
C

S

Z)

Conclusions

e formalising programming languages is hard
e formalising linearly typed programming languages is harder

e formalising concurrent evaluation is really hard

e quantitative type theory helps

e we can extend QTT to cover duality (probably)

(Hiya! I'm Wen, and if you'd like to, you can find my stuff at https://wenkokke.github.io /)

Conclusions

e formalising programming languages is hard
e formalising linearly typed programming languages is harder

e formalising concurrent evaluation is really hard

e quantitative type theory helps

e we can extend QTT to cover duality (probably)

(Hiya! I'm Wen, and if you'd like to, you can find my stuff at https://wenkokke.github.io /)

