
Rusty
Variation
(or, Deadlock-free sessions
with failure in Rust)

by Wen Kokke

A Tale of Four Examples

Exceptional GV
(by Fowler et al.)

Looks like this:

Rusty Variation
(by me)

Looks like this:

 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

I know, the fonts are very different

Roadmap
» talk about Exceptional GV

» talk about Rusty Variation

» what are the differences?

» what are the similarities?

Exceptional GV
Let's see how our example EGV program executes!

We mark the main thread with a
Next we evaluate the fork instruction

Exceptional GV
Let's see how our example EGV program executes!

This forks off the process and allocates a buffer
Next we evaluate the let binding

Exceptional GV
Let's see how our example EGV program executes!

The receive instruction blocks on the empty buffer
Next we evaluate the send instruction

Exceptional GV
Let's see how our example EGV program executes!

This moves the value to the buffer
Next we evaluate the let binding

Exceptional GV
Let's see how our example EGV program executes!

The close instruction blocks (it is synchronous)
Next we evaluate the receive instruction

Exceptional GV
Let's see how our example EGV program executes!

This moves the value to the main thread
Next we evaluate the let binding

Exceptional GV
Let's see how our example EGV program executes!

The close instructions are no longer blocked

(The buffer is empty and there is a close instruction
waiting on either side)

Next we evaluate the close instructions

Exceptional GV
Let's see how our example EGV program executes!

Fin

Rusty Variation
What about our Rust program?

 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
 let (s, here) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let s = send((), s)?;
 close(s)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let s = here
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Rusty Variation
 let (b, a) = <Send<(), End> as Session>::new();
 std::thread::spawn(move || {
 let r = (move || -> Result<_, Box<Error>> {
 let b = send((), b)?;
 close(b)
 })();
 match r {
 Ok(_) => (),
 Err(e) => panic!("{}", e.description()),
 }
 });
 let ((), a) = recv(a)?;
 close(a)

Sounds familiar?

Let's talk about errors

Exceptional GV
(by Fowler et al.)

Looks like this:

Rusty Variation
(by me)

Looks like this:

 let s = fork!(move |s: Send<(), End>| {
 cancel(s)
 });
 let ((), s) = recv(s)?;
 close(s)

I know, the fonts are very different

Exceptional GV
Let's see how EGV handles errors!

We mark the main thread with a
Next we evaluate the fork instruction

Exceptional GV
Let's see how EGV handles errors!

This forks off the process and allocates a buffer
Next we evaluate the let binding

Exceptional GV
Let's see how EGV handles errors!

The receive instruction blocks on the empty buffer
Next we evaluate the cancel instruction

Exceptional GV
Let's see how EGV handles errors!

↯

This cancels the session and creates a zapper thread
Next we evaluate the receive instruction

Exceptional GV
Let's see how EGV handles errors!

↯
↯

Receiving on a channel raises an exception
if the other endpoint is cancelled

Exceptional GV
Let's see how EGV handles errors!

↯
↯

An uncaught exception turns into halt
Next we garbage collect the buffer

Exceptional GV
Let's see how EGV handles errors!

Fin

Rusty Variation
What about the Rust library?

 let s = fork!(move |s: Send<(), End>| {
 cancel(s)
 });
 let ((), s) = recv(s)?;
 close(s)

Rusty Variation
For that, let's look at how cancel is implemented:

 fn cancel<T>(x: T) -> Result<(), Box<Error>> {
 Ok(())
 }

Wait, what happened to x?

It went out of scope!

Rusty Variation
What happens when a channel x leaves scope unused?

» destructor is called

» values in buffer are deallocated

» destructors for values in buffer are called

» buffer is marked as DISCONNECTED

» calling recv on DISCONNECTED buffer returns Err

Sounds familiar?

What are the differences?
» try/catch vs. error monad

(using the " " instruction)

» explicit close vs. implicit close

 fn close(s: End) -> Result<(), Box<Error>> {
 Ok(()) // `End` doesn't have a buffer
 }

» explicit cancellation vs. implicit cancellation

(what happens if we forget to complete a session?)

What are the differences?
» simply-typed linear lambda calculus vs. Rust

this means we have:

» no recursion vs. general recursion

» lock freedom vs. deadlock freedom

» etc.

How can we get deadlocks in
Rusty Variation?
» by using mem::forget

 let s = fork!(move |s: Send<(), End>| {
 mem::forget(s);
 Ok(())
 });
 let ((), s) = recv(s)?;
 close(s)

» by storing channels in manually managed memory
and not cleaning up

What are the similarities?
» in theory, everything else?

» can we prove it?

“doesn't Rust have formal semantics?
I heard so much about RustBelt!

no.

RustBelt formalises elaborated Rust and
doesn't support many features we depend on.

What are the similarities?
» in theory, everything else?

» can we prove it? no.

» can we test it?

 #[test]
 fn ping_works() {
 assert!(|| -> Result<(), Box<Error>> {

 // ...insert example here...

 }().is_ok()); // it actually is!
 }

What are the similarities?
» in theory, everything else?

» can we prove it? no.

» can we test it? yes.

» can we properly test it?

Testing Rusty Variation

(x) generate random EGV term
() compile EGV term to Rust
() run Rust term and log trace
() check trace with EGV term

The following is an ad for
FEAT/NEAT

by Claessen, Duregård, & Pałka

I wanna make stuff like this...

Let's not get ahead of ourselves, though...

Let's try...

QuickCheck

Intermission
"What is this QuickCheck you speak of?"

QuickCheck 101
You write...
import Test.QuickCheck

prop_revapp :: [Int] -> [Int] -> Bool
prop_revapp xs ys = reverse (xs ++ ys) == reverse ys ++ reverse xs

You test...

>>> quickCheck prop_revapp
+++ OK, passed 100 tests.

QuickCheck 101
instance Arbitrary Int where
 arbitrary = choose (minBound, maxBound)
 -- ^ pick number between -2^29 and 2^29-1

instance Arbitrary a => Arbitrary [a] where
 arbitrary = do n <- arbitrary
 replicateM n arbitrary
 -- ^ pick arbitrary length n
 -- pick n things of type a

So now we all know exactly
how QuickCheck works...

My good plan
1. make some programs
2. run them programs
3. compile them to Rust
4. run them in Rust
5. see if they same

QuickCheck, some programs please?

"There is no generic arbitrary implementation included
because we don't know how to make a high-quality one.
If you want one, consider using the testing-feat or
generic-random packages."
— xoxo QuickCheck

Fine! I'll write one myself!
!

type Name = String

data Term = Var Name
 | Lam Name Term
 | App Term Term

instance Arbitrary Term where
 arbitrary = oneof
 [Var <$> arbitrary
 , Lam <$> arbitrary <*> arbitrary
 , App <$> aribtrary <*> arbitrary]

Lam ">h" (Var "\EOT\NAKW")
...

Oh, right
!

Uhh, I guess I'll do some thinking...
!

data Z -- Z has no elements

data S n -- S n has |n| + 1 elements
 = FZ -- e.g. TwoOfFour :: S (S (S (S Z)))
 | FS n -- TwoOfFour = FS (FS FZ)

data Term n -- "every term is
 = Var n -- well-scoped,
 | Lam (Term (S n)) -- so no more
 | App (Term n) (Term n) -- nonsense."

How do I random these?
!

instance Arbitrary Z where
 arbitrary = oneof [] -- a blatant lie

instance Arbitrary n => Arbitrary (S n) where
 arbitrary = oneof [pure FZ , FS <$> arbitrary]

instance Arbitrary n => Arbitrary (Term n) where
 arbitrary = oneof
 [Var <$> arbitrary
 , Lam <$> arbitrary
 , App <$> aribtrary <*> arbitrary]

Lam (Lam (Var (FS FZ)))
...

Woohoo~!
✨

But types?

Let's add some types...
data Type
 = Void
 | Type :-> Type

data Term n
 = Var n
 | Lam (Term (S n))
 | App (Term n) (Term n) Type -- this is new!

check :: [Type] -> Type -> Term n -> Bool
check env a (Var n) = lookup env n == a
check env (a :-> b) (Lam t) = check (a : env) b t
check env b (App f s a) = check env (a :-> b) f && check env a s
check _ _ _ = False

Only the well-typed ones plz?
instance Arbitrary Type where
 arbitrary = oneof
 [pure Void
 , (:->) <$> arbitrary <*> arbitrary]

newtype WellTyped n = WellTyped (Term n)

instance Arbitrary WellTyped Z where
 arbitrary = do
 a <- arbitrary -- an arbitrary type
 t <- arbitrary -- an arbitrary *closed* term
 if check [] t a then WellTyped t else arbitrary

...
Uh?

!

...
What's going on?

!

...
Why is nothing happening?

!

...

Halp?!
!

Blech!
I guess I'll do some research...

What proportion of lambda terms is typeable?

What proportion of lambda terms is strongly normalising?

"Corollary 1.
Asymptotically almost no λ-term is strongly
normalizing."

-- xoxo Bendkowski, Grygiel, Lescanne, and Zaionc!

Can we solve this through engineering?

Can we solve this through engineering?

So what is their trick?

Bag of tricks
1. some gross stuff to ensure sharing

(implemented in the size-based package)

2. some DSL magic for building enumerations
(implemented in the testing-feat package)

3. some gross stuff to filter ill-typed terms eagerly
(implemented in the lazy-search package)

QuickCheck, some programs please?

"There is no generic arbitrary implementation included
because we don't know how to make a high-quality one.
If you want one, consider using the testing-feat or
generic-random packages."
— xoxo QuickCheck

Gross stuff to ensure sharing

(hint: it's encapsulated global mutable state)

DSL magic for building enumerations

instance Enumerable Z where
 enumerate = datatype [] -- a blatant truth

instance Enumerable n => Enumerable (S n) where
 enumerate = datatype [v0 FZ , v1 FS]

instance Enumerable Type where
 enumerate = datatype [v0 Void , v2 (:->)]

instance Enumerable n => Enumerable (Term n) where
 enumerate = datatype [pay (v1 Var) , pay (v1 Lam) , pay (v3 App)]

Does it work out of the box?

-- get me all programs of size <30
$ eleanor --system Untyped --action Print --size 30
[Lam (Var FZ), Lam (Lam (Var FZ)), Lam (Lam (Var (FS (FZ)))), ...]

-- how many programs of size <30?
$ eleanor --system Untyped --action Count --size 30
7964948391145

-- how many programs of size <100?
$ eleanor --system Untyped --action Count --size 100
4503787720194931500936021688288566428450647198899831131920

Does it work out of the box?

-- how many programs of size <1000?
$ eleanor --system Untyped --size 1000
308979047539797286389554754656050850905240507708427967498701817852887971931069975365901
857378119631500575402859069294978611884417142648912870521418834178736010885629562442174
695729552893817244891920582785029398882622008238200608644806387090253102487903461107900
446985363433164099802667368836306482954336643903824771835185388183129889962918463489147
669085392503510337274432408608493215807279736697555590998870222330656848190305130272295
748823658429313198623977474018608312268715019965824283441864212858719037406270777784320
128035445486523339972120044617149804509803809721945756672127484790222562203093028297330
701810553080361603375463934103265024019533365037819232420615636268119286995638542364078
581194561105664479452966258068391627683565675385447131617537498143916191855677543179164
38424355480696688647214814359468956803017461383159776132586

real 1m 26.740s
user 1m 23.087s
sys 0m 1.216s

Gross stuff to filter ill-typed terms eagerly

univ :: (a -> Bool) -> (b -> a) -> Maybe Bool
univ pred val = unsafePerformIO $
 Just (pred (val undefined)) `catch` \err -> Nothing

-- will this program ever be well-typed?
> univ (check [] Void) (\hole -> Lam hole)
Just False -- no

-- will this program ever be well-typed?
> univ (check [] (Void :-> Void)) (\hole -> Lam hole)
Nothing -- dunno?

Only works if your
predicate is eager!

Does it work out of the box?
-- get me the programs of type `Void :-> Void` and size <30!
$ eleanor --system SimplyTyped --action Print --size 30
[Lam (Var FZ), Lam (App (Lam (Var FZ)) (Var FZ) Void), ...]

-- how many programs of type `Void :-> Void` and size <30?
$ eleanor --system SimplyTyped --action Count --size 30
11369362

real 6m 31.701s -- does not look as good
user 6m 25.991s -- slower by a magnitude
sys 0m 3.950s -- but better than anything I've written

Problem solved!
!

I made a lie
!

This is linear1

1 (i.e. variables must be used exactly once)

This is affine2

let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
});
let ((), s) = recv(s)?;
close(s)

2 (i.e. variables can be used at most once)

This is neither3

data Type
 = Void
 | Type :-> Type

data Term n
 = Var n
 | Lam (Term (S n))
 | App (Term n) (Term n) Type -- this isn't new anymore

check :: [Type] -> Type -> Term n -> Bool
check env a (Var n) = lookup env n == a
check env (a :-> b) (Lam t) = check (a : env) b t
check env b (App f s a) = check env (a :-> b) f && check env a s
check _ _ _ = False

3 (i.e. variables can do whatever they want!
!

)

I sorry
!

Idea!
!

Generate programs, then
take the linear ones!

What proportion of all programs is linear?

What proportion of affine programs is linear?

"Theorem 42.
The density of BCI terms among BCK terms equals 0."
— xoxo Grygiel, Idiziak, and Zaionc!

Can we solve this through engineering?

"Sometimes you just have to be stupid and try to
search an immensely huge search space just 'cuz you
can."
— xoxo some A.I. researcher (probably)

I tried

check :: Fin => Type -> Term n -> State (Map n Type) Bool
check a (Var x) = do
 env <- get -- ...
 modify (delete x) -- remove variable
 return $ lookup FZ env == Just a -- was the type right?
check (a :-> b) (Lam t) = do
 modify (insert FS a . mapKeys FS) -- insert new variable
 cond1 <- check a t -- check body
 env <- get -- ...
 let cond2 = lookup FZ env == Nothing -- was new variable used?
 modify (mapKeys pred) -- restore old variables
 return $ cond1 && cond2
check b (App f s a) = do
 cond1 <- check (a :-> b) f -- check function
 cond2 <- check a s -- check argument
 return $ cond1 && cond2
check _ _ = do return False

(That's too much code, Wen!
!

)

I tried, it's pretty good, actually...

-- how many linear programs of type `Void :-> Void` and size <30?
$ eleanor --system Linear --action Count --size 30
9790

real 0m 2.580s
user 0m 2.361s
sys 0m 0.264s

Testing Rusty Variation

(x) generate random EGV term
() compile EGV term to Rust
() run Rust term and log trace
() check trace with EGV term

SO uh

Where were we

How efficient is Rusty Variation?
» buffers are either empty or non-empty

» size of buffers is statically known

(unless you're sending boxed references)

» each buffer only involves a single allocation

» size of session is statically known

(but buffers are allocated lazily)

» it's really quite efficient y'all

Related work

session-types
(by Laumann et al.)

» library for session types in Rust

» dibsed the best package name

» embeds LAST2 in Rust

(a linear language embedded in an affine one)

» forget to complete a session? segfault!

2 Linear type theory for asynchronous session types, Gay & Vasconcelos, 2010

Conclusions

Rusty
Variation
» embeds EGV into Rust

» is unit tested

» will be QuickChecked

» is very efficient

» improves session-types

toot

