


A TALE OF FOUR EXAMPLES



EXCEPTIONAL GV

(by Fowler et al.)

Looks like this:

let s = fork(A(s : !1.End).
let s = send((), s)
close(s)

)
let ((),s) = recv(s)

close(s)



RUSTY VARIATION

(by me)
Looks like this:

S = fOIk![ IS:

s = send((), s)?;

close(s)

});
((), s) = recv(s)?;
close(s)

<(),

End>| {



| KNOW, THE FONTS ARE VERY DIFFERENT






EXCEPTIONAL GV

Let's see how our example EGV program executes!

let s = fork(A(s : !1. End).
/ |

let s = send((), s)
. close(s)
)
let ((),s) = recv(s)
\ close(s) )

We mark the main thread with a e
Next we evaluate the fork instruction



EXCEPTIONAL GV

Let's see how our example EGV program executes!

( let s=a \

o | let ((),s) =recv(s) |
close(s)
(va)(vb) : (let s = send((), b)) ”
close(s)
\  a(e)~ble) /

This forks off the process and allocates a buffer
Next we evaluate the let binding



EXCEPTIONAL GV

Let's see how our example EGV program executes!

.(let ((),s):recv(a)) | \

close(s)

(va)(vh) . (let s = send((), b)) |

close(s)

\  a(e)emb(e) )

The receive instruction blocks on the empty buffer
Next we evaluate the send instruction




EXCEPTIONAL GV

Let's see how our example EGV program executes!

.(let ((),3)=recv(a)) )

close(s)

(va)(vb) . (let s = b)

close(s) |

\ a((), €)emmb(e) )

This moves the value to the buffer
Next we evaluate the let binding




EXCEPTIONAL GV

Let's see how our example EGV program executes!

let ((),s) = recv(a)
(close(s) ) |
o (close(b)) [

a((), €) ~~b(e)

The close instruction blocks (it is synchronous)
Next we evaluate the receive instruction

(va)(vb)



EXCEPTIONAL GV

Let's see how our example EGV program executes!

(5297707

o (close(b)) I
a(€)e~b(e€)

(va)(vb)

This moves the value to the main thread
Next we evaluate the let binding



EXCEPTIONAL GV

Let's see how our example EGV program executes!

o (close(a)) |
(va)(vb) o(close(b)) |
a(e)«~b(e)

The close instructions are no longer blocked

(The buffer is empty and there is a close instruction
waiting on either side)

Next we evaluate the close instructions



EXCEPTIONAL GV

Let's see how our example EGV program executes!

*()

Fin



RUSTY VARIATION

What about our Rust program?

s = fork!( |s: <(), End>| ¢
s = send((), s)?;
close(s)

})s
((), s) = recv(s)?;
close(s)



RUSTY VARIATION

s = fork!( |s: <(), End>| ¢
s = send((), s)?;
close(s)

});



RUSTY VARIATION

(s, here) = < <(), End> Session>: :new();
std::thread: : spawn( [l (
r = ( Il -> <_, <Error>> {
s = send((), s)?;
close(s)
3)(0)s
r {
() => (),
(e) => ( , e.description()),
}

})s

S = here



RUSTY VARIATION

(b, a) = < <(), End> Session>: :new();
std: :thread: : spawn( || (
r = ( |l -> <_, <Error>> {
b = send((), b)?;
close(b)
30D
r {
() => (),
(e) => ( , e.description()),
}

})s



RUSTY VARIATION

(b, a) = < <(), End> Session>: :new();



RUSTY VARIATION

std: :thread: :spawn(

})s

{



RUSTY VARIATION

r = ( Il -> <, <Error>> {
b = send((), b)?;
close(b)

IDIQF



RUSTY VARIATION

r {
() => (),
(e) => ( , e.description()),



RUSTY VARIATION

b = send((), b)?;

((), a) = recv(a)?;



SOUNDS FAMILIAR?



LET'S TALK ABOUT ERRORS



EXCEPTIONAL GV

(by Fowler et al.)

Looks like this:

let s = fork(\(s : !1. End).

cancel(s)

)
let ((),s) = recv(s)

close(s)



RUSTY VARIATION

(by me)
Looks like this:

s = fork!( |s:
cancel(s)
}):

((), s) = recv(s)?;

close(s)

<(),

End>| (



| KNOW, THE FONTS ARE VERY DIFFERENT



EXCEPTIONAL GV

Let's see how EGV handles errors!

i

\

let s = fork(A(s :!1. End).

cancel(s)
)
let ((),s) = recv(s)
close(s)

We mark the main thread with a e
Next we evaluate the fork instruction

|




EXCEPTIONAL GV

Let's see how EGV handles errors!

( let s=a \

o | let ((),s) =recv(s) |
(va)(vb) close(s)

o (cancel(b)) |

\ a(e)«~b(e) )

This forks off the process and allocates a buffer
Next we evaluate the let binding




EXCEPTIONAL GV

Let's see how EGV handles errors!

(07w

o (cancel(b)) |
a(e)«~b(e)

(va)(vb)

The receive instruction blocks on the empty buffer
Next we evaluate the cancel instruction



EXCEPTIONAL GV

Let's see how EGV handles errors!

. let ((),s) = recv(a)
(close(s) ) |
a(e)«~b(e) I
4a

(va)(vb)

This cancels the session and creates a zapper thread
Next we evaluate the receive instruction



EXCEPTIONAL GV

Let's see how EGV handles errors!

[ . (let (), 8) = raise)

close(s)
(va)(vb) a(e)«~b(e)
b

\ za

Receiving on a channel raises an exception
1f the other endpoint is cancelled




EXCEPTIONAL GV

Let's see how EGV handles errors!

e halt |
a(e)«~b(e) ||
fa |
sb

(va)(vb)

An uncaught exception turns into halt
Next we garbage collect the buffer



EXCEPTIONAL GV

Let's see how EGV handles errors!

e halt

Fin



RUSTY VARIATION

What about the Rust library?

s = fork!( | s:
cancel(s)
});

((), s) = recv(s)?;

close(s)

<(),

End>| (



RUSTY VARIATION

For that, let's look at how cancel is implemented:

<T>(x: T) -> <(), <Error>> {

(())

Wait, what happened to x?

It went out of scope!



RUSTY VARIATION

What happens when a channel x leaves scope unused?

»

»

»

»

»

destructor is called

values in buffer are deallocated
destructors for values in buffer are called
buffer is marked as DISCONNECTED

calling recv on DISCONNECTED buffer returns Err



SOUNDS FAMILIAR?



WHAT ARE THE DIFFERENGCES?

» try/catch vs. error monad

(using the "try Laszin N otherwise M" instruction)

» explicit close vs. implicit close

(s: End) -> <(), <Error>> ({

(())
}

» explicit cancellation vs. implicit cancellation

(what happens if we forget to complete a session?)



WHAT ARE THE DIFFERENGCES?

» simply-typed linear lambda calculus vs. Rust

this means we have:

» N0 recursion vs. general recursion

» lock freedom vs. deadlock freedom

» etc.



HOW GAN WE GET DEADLOCKS IN
RUSTY VARIATION?

» by using mem: :forget

s = fork!( |s: <(), End>]| {
mem: : forget(s);
(())
});

((). s) = recv(s)?;
close(s)

» by storing channels in manually managed memory
and not cleaning up



WHAT ARE THE SIMILARITIES?

» 1n theory, everything else?

» can we prove 1it?
“doesn't Rust have formal semantics?
I heard so much about RustBelt!
no.

RustBelt formalises elaborated Rust and
doesn't support many features we depend on.



WHAT ARE THE SIMILARITIES?

» 1n theory, everything else?
» can we prove it? no.
» can we test it?

#[test]

() (

(rr -> <), <Error>> ({

}Y().is_ok());
}



WHAT ARE THE SIMILARITIES?

» 1n theory, everything else?
» can we prove it? no.
» can we test 1t? vyes.

» can we properly test it?




TESTING RUSTY VARIATION

generate random EGV term
compile EGV term to Rust
run Rust term and log trace
check trace with EGV term

(o Y an Y an Y e
— ed d \d



The following is an ad for
FEAT/NEAT

by Claessen, Duregard, & Patka



| wanna make stuff like this...

let s = fork(A(s : !1. End).
let s = send((), s)

close(s)

)
let ((),s) = recv(s)
close(s)



Let's not get ahead of ourselves, though...
AMf:0—0).A(x:0).fx
AMf:0—0).AX(g:0—0).Ax:0).f(g9x)

(A(f:0 = 0). f) (A(z : 0).z)

(A(g: (0 —=0) — (0 —0)).9) (A(f:0—0).f)



Let's try...



: Automatic testing of Haskell programs

ng ] [ Propose Tags ]

s a library for random testing of program properties. The programmer provides a specification of the prot
f properties which functions should satisfy, and QuickCheck then tests that the properties hold in a large ni
y generated cases. Specifications are expressed in Haskell, using combinators provided by QuickCheck. QuickCh
combinators to define properties, observe the distribution of test data, and define test data generators.

. ~eck's functionality i~ ~xported by the 1in Test.Quick”™ du : The main exception is the monac
test. ' ibrary in Test.Quic...ieck.Monadic.

enew ) Jui ¢ necl \ wci tryl 7 ..yat | F  _wing yurces:

“ficiy uic [ eck 7 nui ts:t ioutoff i e “ome ilsanddoe r tcov 18 i wpuwekCl ¥ {feature
7 pod | ee

‘egriffs.com/posts/2017-01-14-design-use-quickcheck.html, a detailed tutorial written by a user of QuickChe

check-instances companion package provides instances for types in Haskell Platform packages at the cost of

Versions
1.0,1.1.0.0,1.2.0.0,1.2.0.1, 2.1, 2.1.(



Intermission

"What is this QuickCheck you speak of?"



QuickCheck 101

You write...

Test.QuickCheck

:r [Int] = [Int] -

XS ys = reverse (Xs ++ ys) == reverse ys ++ reverse Xxs

You test...

>>> quickCheck prop_revapp
+++ OK, passed 100 tests.



QuickCheck 101

arbitrary = choose (minBound, maxBound)

arbitrary = n <— arbitrary
replicateM n arbitrary



So now we all know exactly
how QuickCheck works...



My good plan

I. make some programs
2. run them programs
3. compile them to Rust
4. run them in Rust

5. see if they same



QuickCheck, some programs please?

“There is no generic arbitrary implementation included
because we don’t know how to make a high-quality one.
If you want one, consider using the testing-feat or
generic-random packages.”

— x0X0 QuickCheck



\r
- -

Fine! I'll write one myself! &=

arbitrary = oneof
[ <$> arbitrary
, <$> arbitrary <> arbitrary
, <$> aribtrary «<x> arbitrary ]



I'll write one myself! &9
m-">h" (Var "\EOT\NAKW

ferm = Var Nai
| Lam N

AA

(‘ | App Te
NadPy AR N BB :;ii;;7

rbitrary = ineof

[ Var <$> arbitrary

, Lam <$> arbitrary <x»> arbitrary
App <$> aribtrary <x> arbitrary ]



Uhh, | guess I'll do some thinking...

data Z —— Z has no elements

data S n —— S n has |n| + 1 elements
= FZ —— e.g. TwoOfFour :: S (S (S (S Z)))
| FS n —— TwoOfFour = FS (FS FZ)

data Term n —— "every term is
= Var n —— well-scoped,
| Lam (Term (S n)) —— SO ho more
I

App (Term n) (Term n) —— nonsense."



How do | random these? &

arbitrary = oneof []

arbitrary = oneof [ pure , <$> arbitrary ]

arbitrary = oneof
[ <$> arbitrary
, <$> arbitrary
, <$> aribtrary «<x> arbitrary ]



do | random these?

«LLam (Var..(ES FZ))

PAnce Arbitr n > (S n)
b .rarv = oneof [ pure : <$> arb .rary |

y W BN R ' n) W re
arbitrary = oneof

[ Var <$> arbitrary

, Lam <$> arbitrary

, App <$> aribtrary <x»> arbitrary ]



But types?



Let's add some types...

= n
I ( (5 n))
| ( n) ( n)

JE | ] = -> ->

env a ( n) lookup env n == a

env (a :=> b) ( t)
env b ( f s a)

check (a : env) b t
check env (a :-> b) f && check env a s

nm umn n n s



Only the well-typed ones plz?

arbitrary = oneof
[ pure
, (:=>) <$> arbitrary <x> arbitrary ]

arbitrary =
a <- arbitrary
t <- arbitrary
check [] t a t arbitrary



the well-typed ones plz?

I

ance Arbitrary
arbitrary = oneof

[ pure Vo:

, (:=>) <$> arbitrary <x»> arbitrary ]

type WellTyped n = (Tep~\n)

rbitrary = <o

a <- arbitrary -- an arbitrary type

£t <- arbitrary -- an arbitrary xclosedx term
B check [] t a then WellTyped t else arbitrary




the well-typed ones plz?

m,

hce Arbitrary
arbitrary = oneof

[ pure Voicd

, (:=>) <$> arbitrary <x»> arbitrary ]

ype WellTyped n = ( n)

®
hce Arbitrary Wel
rbitrary = <o

a <- arbitrary -- an arbitrary type

£t <- arbitrary -- an arbitrary xclosedx term

ifcheck [] t a then WellTyped t else arbitrary



the well-typed ones plz?

nce Arbitrary T

arbitrary = oneof

[ pure Voicd

, (:=>) <$> arbitrary <x»> arbitrary ]

ype Wel)Typed n = ( n)

fice Arbit.ary Well

bitrary = <o

a <— arbitrary -- an arbitrary type

£t <- arbitrary -- an arbitrary xclosedx term
ifcheck [] t a then WellTyped t else arbitrary




the well-typed ones plz?

I

ance Arbitrary
arbitrary = oneof

[ pure Vo:

, (:=>) <$> arbitrary <x»> arbitrary ]

type WellTyped n = / @
: a\74

rbitrary = <o

a <- arbitrary -- an arbitrary type

£t <- arbitrary -- an arbitrary xclosedx term
B check [] t a then WellTyped t else arbitrary




Blech!

| guess I'll do some research...



What proportion of lambda terms is typeable?

A Natural Counting of Lambda Terms

Maciej Bendkowski! 9| Katarzyna Grygiel',
Pierre Lescanne?, and Marek Zaionc!

1 Faculty of Mathematics and Computer Science,
Theoretical Computer Science Department, Jagiellonian University,
ul. Prof. Lojasiewicza 6, 30-348 Krakdéw, Poland
{bendkowski,grygiel,zaionc}@tcs.uj.edu.pl
2 Ficole Normale Supérieure de Lyon,

LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA),
University of Lyon, 46 Allée d’'Italie, 69364 Lyon, France
pierre.lescanne@ens-lyon.fr

Abstract. We study the sequence of numbers corresponding to A-terms
of given size in the model based on de Bruijn indices. It turns out that the
sequence enumerates also two families of binary trees, i.e. black-white and

ziozac_froo amoae Wa nravide a canctrictive nranf af thic fart hy avhihiting




What proportion of lambda terms is strongly normalising?

”Corollary l.
Asymptotically almost no A-term is strongly
hormalizing.”

-- xoxo Bendkowski, Grygiel, Lescanne, and Zaionc

” 3

= 9 =

el



Can we solve this through engineering?

Generating Constrained Random Data
with Uniform Distribution

Koen Claessen, Jonas Duregard, and Michat H. Patka

Chalmers University of Technology
{koen, jonas.duregard,michal.palka}@chalmers.se

Abstract. We present a technique for automatically deriving test data generators
from a predicate expressed as a Boolean function. The distribution of these gen-
erators is uniform over values of a given size. To make the generation efficient
we rely on laziness of the predicate, allowing us to prune the space of values
quickly. In contrast, implementing test data generators by hand is labour intensive
and error prone. Moreover, handwritten generators often have an unpredictable
distribution of values, risking that some values are arbitrarily underrepresented.
We also present a variation of the technique where the distribution is skewed in a
limited and i way, p i i ing the performance. Experimental
evaluation of the techniques shows that the uniform derived generators are much
er to define than hand-written ones, and their performance, while lower, is
adequate for some realistic applications.




Can we solve this through engineering?

Tugsis ror itk Decree os Docto oF PruLosory

Tussis vow 1k Dicxie or Doctox of PHILosODIY

Automating Black-Box

Random Structured
ntom e e Property Based Testing

Test Data Generation
for Black-Box Testing

MicHAL H. PALKA 2
Jonas DUREGARD

CHALMERS | GOTEBORG UNIVERSITY

CHALMERS ‘ GOTEBORG UNIVERSITY

Department of Computer Science and Engineering
Craraers UNIVERSITY 0F TECHNOLOGY
AND GBTEBORG UNIVERSITY.
Goteborg, Sweden 2014

Department of Computer Science and Engineering
Cratates Universiry or TECHNOLOGY AND GiTEpoRG UNiveRsiTy
Goteborg, Sweden 2016



So what is their trick?



Bag of tricks

some gross stuff to ensure sharing
(implemented in the size-based package)

. some DSL magic for building enumerations

(implemented in the testing-feat package)

. some gross stuff to filterill-typed terms eagerly

(implemented in the 1azy-search package)



QuickCheck, some programs please?

“There is no generic arbitrary implementation included
because we don’t know how to make a high-quality one.
If you want one, consider using the testing-feat or

generic-random packages.” ———

— x0X0 QuickCheck



Gross stuff to ensure sharing

(hint: it's encapsulated global mutable state)



DSL magic for building enumerations

enumerate = datatype []

enumerate = datatype [ vO , vi ]

enumerate = datatype [ vO , v2 (:=>) 1]

enumerate = datatype [ pay (vi ) , pay (vi ) , pay (v3 ) ]



Does it work out of the box?

—— get me all programs of size <30
$ eleanor --system Untyped --action Print --size 30
[Lam (Var FZ), Lam (Lam (Var FZ)), Lam (Lam (Var (FS (FZ)))),

—— how many programs of size <30?
$ eleanor --system Untyped --action Count --size 30
7964948391145

—— how many programs of size <1007?
$ eleanor --system Untyped --action Count --size 100
4503787720194931500936021688288566428450647198899831131920



Does it work out of the box?

—— how many programs of size <1000?

$ eleanor —-system Untyped --size 1000
308979047539797286389554754656050850905240507708427967498701817852887971931069975365901
857378119631500575402859069294978611884417142648912870521418834178736010885629562442174
695729552893817244891920582785029398882622008238200608644806387090253102487903461107900
446985363433164099802667368836306482954336643903824771835185388183129889962918463489147
669085392503510337274432408608493215807279736697555590998870222330656848190305130272295
748823658429313198623977474018608312268715019965824283441864212858719037406270777784320
128035445486523339972120044617149804509803809721945756672127484790222562203093028297330
701810553080361603375463934103265024019533365037819232420615636268119286995638542364078
581194561105664479452966258068391627683565675385447131617537498143916191855677543179164
38424355480696688647214814359468956803017461383159776132586

real 1m 26.740s
user 1m 23.087s
sys Om 1.216s



Gross stuff to filterill-typed terms eagerly

:: (a = ) => (b => a) -»
pred val = unsafePerformIO $
(pred (val undefined)) ‘catch® \err -

> univ (check [] ) (\hole -» hole)

> univ (check [] ( 1—> )) (\hole -> hole)



stuff to filterill-typed terms eage

\;: (a—> Bool) -» (b -»> a‘ -> Maybe B~9l
p~—r4 @'\ - urszfeRe—€forT, 7
MIE (hxed (val 4 d:f nid) | “eanzh™ \eexr =10 Bl Bl

ikl this (xr_gram eve: be well -typed?
(®eik|[|| /j@i™ yinold => hol : )
SER - A

1 this program ever be well-typed?
(check [] (Void :=» Void)) (\hole -> Lam hole)
— dunno?



Does it work out of the box?

—— get me the programs of type "Void :-> Void™ and size <30!
$ eleanor --system SimplyTyped —--action Print --size 30
[Lam (Var FZ), Lam (App (Lam (Var FZ)) (Var FZ) Void), ...]

—— how many programs of type “Void :-> Void®™ and size <30?
$ eleanor --system SimplyTyped —--action Count --size 30
11369362

real ©6m 31.701s -- does not look as good
user 6m 25.991s -—- slower by a magnitude
sys Om 3.950s -- but better than anything I've written



Problem solved! &



| made a lie ®



This is linear’

let s = fork(A(s : !1. End).
let s = send((), s)

close(s)

)
let ((),s) = recv(s)
close(s)

'(i.e. variables must be used exactly once)



This is affine?

s = fork!( |s: <(), End>| {
s = send((), s)?;
close(s)

});
((), s) = recv(s)?;
close(s)

2(i.e.variables can be used at most once)



This is neither?

->
lookup env n == a

check (a : env) b t

check env (a :-> b) f & check env a s

[

=)

<

V]

—~

=)

~
nmun nn s

3(i.e. variables can do whatever they want! @)



| sorry &



Idea! ¥

Generate programs, then
take the linear ones!



What proportion of all programs is linear?

Universal Logic Corner

How big is BCI fragment of BCK logic

KATARZYNA GRYGIEL, PAWEL M. IDZIAK and MAREK ZAIONC
Department of Theoretical Computer Science, Faculty of Mathematics and
Computer Science, Jagiellonian University, Lojasiewicza 6, 30-348 Krakow,
Poland.

E-mail: grygiel @tcs.uj.edu.pl; idziak @tcs.uj.edu.pl; zaionc@tcs.uj.edu.pl

Abstract

We investigate quantitative properties of BCl and BCK logics. The first part of the article compares the number of formulas
provable in BCI versus BCK logics. We consider formulas built on implication and a fixed set of k variables. We investigate
the proportion between the number of such formulas of a given length n provable in BCI logic against the number of formulas
of length n provable in richer BCK logic. We examine an asymptotic behaviour of this fraction when length n of formulas
tends to infinity. This limit gives a probability measure that randomly chosen BCK formula is also provable in BCI . We prove
that this probability tends to zero as the number of variables tends to infinity. The second part of the article is devoted to the
number of lambda terms representing proofs of BCl and BCK logics. We build a proportion between number of such proofs
of the same length n and we investigate asymptotic behaviour of this proportion when length of proofs tends to infinity. We
demonstrate that with probability 0 a randomly chosen BCK proof is also a proof of a BCI formula.

Keywords: BCK and BCl logics, asymptotic probability in logic, analytic combinatorics.

2 /810'sfewnolpioyxo woogoy//:dny woiy papeoumoq



What proportion of affine programs is linear?

“Theorem H2.
The density of BCIl terms among BCK terms equals 0.”

— xoxo Grygiel, Idiziak, and Zaionc

o1e)




Can we solve this through engineering?

”Sometimes you just have to be stupid and try to
search an immensely huge search space just ‘cuz you
can.”

— XoX0 some A.l. researcher (probably)



| tried

check :: Fin => Type —-»> Term n -> State (Map n Type) Bool
check a (Var x) = do

env <- get -— ...

modify (delete x) —-— remove variable

return $ lookup FZ env == Just a —— was the type right?
check (a :=> b) (Lam t) = do

modify (insert FS a . mapKeys FS) —-- insert new variable

condl <- check a t —— check body

env <- get -— ...

let cond2 = lookup FZ env == Nothing -- was new variable used?

modify (mapKeys pred) -- restore old variables

return $ condl && cond2
check b (App £ s a) = do

condl <- check (a :-> b) f —-- check function
cond2 <- check a s —— check argument
return $ condl && cond2

check _ _ = do return False

(That’s too much code, Wen! @)



| tried, it's pretty good, actually...

—— how many linear programs of type "Void :-> Void™ and size <30?
$ eleanor --system Linear --action Count --size 30
9790

real Om 2.580s
user ©Om 2.361s
sys Om 0.264s



106;
10 4
1045
103é
102;

100 3

= = Linear (Feat)

] —— Linear (Neat)

1 == SimplyTyped (Feat)
1 = SimplyTyped (Neat)
1 == Untyped (Feat)

10

30



TESTING RUSTY VARIATION

(X) generate random EGV term

( ) compile EGV t¢Im us

( ) run Rust ter : *f: .o
( ) check trace wi EGV Term

Wheve were we ?



HOW EFFICIENT IS RUSTY VARIATION?

» buffers are either empty or non-empty
» size of buffers is statically known
(unless you're sending boxed references)
» each buffer only involves a single allocation
» size of session 1s statically known
(but buffers are allocated lazily)

» 1t's really quite efficient y'all




RELATED WORK



session-types

(by Laumann et al.)
» library for session types in Rust
» dibsed the best package name
» embeds LAST? in Rust
(a linear language embedded in an affine one)

» forget to complete a session? segfault!

2 Linear type theory for asynchronous session types, Gay & Vasconcelos, 2010



GONGLUSIONS






