
Where the linear lambdas go
by Wen Kokke

Me, reading "Session Types without Tiers" by Fowler et al.

Me, implementing "Session Types without Tiers" in Rust.

 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

They look the same.

Do they do the same?

#[test]
fn ping_works() {
 assert!(|| -> Result<(), Box<Error>> {

 let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
 });
 let ((), s) = recv(s)?;
 close(s)

 }().is_ok()); // it actually is!
}

Well that sounds ok.

Maybe we prove?

There's formal semantics for Rust,
right?

No. Not really.

Let's try QuickCheck?

No, not that one.

Yes, thank you.

What is this "QuickCheck"
you speak of?

QuickCheck 101
You write...
import Test.QuickCheck

prop_revapp :: [Int] -> [Int] -> Bool
prop_revapp xs ys = reverse (xs ++ ys) == reverse ys ++ reverse xs

You test...

>>> quickCheck prop_revapp
+++ OK, passed 100 tests.

QuickCheck 102
QuickCheck knows how to make random numbers...

instance Arbitrary Int where
 arbitrary = choose (minBound, maxBound)
 -- ^ pick number between -2^29 and 2^29-1

instance Arbitrary a => Arbitrary [a] where
 arbitrary = do n <- arbitrary
 replicateM n arbitrary
 -- ^ pick arbitrary length n
 -- pick n things of type a

So now we all know exactly
how QuickCheck works...

My good plan:
1. make some programs
2. run them programs
3. translate them to Rust
4. run them in Rust
5. see if they same

QuickCheck, please make some
programs?
"There is no generic arbitrary implementation included
because we don't know how to make a high-quality one.
If you want one, consider using the testing-feat or
generic-random packages."
— xoxo QuickCheck

Fine, I'll write one!
type Name
 = String

data Term
 = Var Name
 | Lam Name Term
 | App Term Term

instance Arbitrary Term where
 arbitrary = oneof
 [Var <$> arbitrary
 , Lam <$> arbitrary <*> arbitrary
 , App <$> aribtrary <*> arbitrary
]

Lam ">h" (Var "\EOT\NAKW")

Oh no!
!

Eugh, I guess I'll do some thinking
data Z -- Z has no elements

data S n -- S n has |n| + 1 elements
 = FZ -- e.g. TwoOfFour :: S (S (S (S Z)))
 | FS n -- TwoOfFour = FS (FS FZ)

data Term n -- every term is
 = Var n -- well-scoped
 | Lam (Term (S n)) -- so no more
 | App (Term n) (Term n) -- nonsense

How do I random these?
instance Arbitrary Z where
 arbitrary = oneof [] -- a lie

instance Arbitrary n => Arbitrary (S n) where
 arbitrary = oneof [pure FZ , FS <$> arbitrary]

instance Arbitrary n => Arbitrary (Term n) where
 arbitrary = oneof
 [Var <$> arbitrary
 , Lam <$> arbitrary
 , App <$> aribtrary <*> arbitrary
]

Lam (Lam (Var (FS FZ)))

Yay!

But types?

Cool, let's add some types...
data Type
 = Void
 | Type :-> Type

data Term n
 = Var n
 | Lam (Term (S n))
 | App (Term n) (Term n) Type -- this is new!

check :: [Type] -> Type -> Term n -> Bool
check env a (Var n) = lookup env n == a
check env (a :-> b) (Lam t) = check (a : env) b t
check env b (App f s a) = check env (a :-> b) f && check env a s
check _ _ _ = False

Only the well-typed ones plz?
instance Arbitrary Type where
 arbitrary = oneof
 [pure Void
 , (:->) <$> arbitrary <*> arbitrary
]

newtype WellTyped n = WellTyped (Term n)

instance Arbitrary WellTyped Z where
 arbitrary = do
 a <- arbitrary -- an arbitrary type
 t <- arbitrary -- an arbitrary *closed* term
 if check [] t a then WellTyped t else arbitrary

...

Uh?

...

What's going on?

...

Why is nothing happening?

Halp?!

Eugh, I guess I'll do some research

Koen made QuickCheck,
so... not surprised?

...and the other two
authors are his students

So what is their trick?

Bag of tricks
1. do some really gross stuff to ensure sharing

(implemented in the size-based package)
2. do some DSL magic to enumerate data types

(implemented in the testing-feat package)
3. do some gross stuff to filter ill-typed terms eagerly

(implemented in the lazy-search package)

Really gross stuff
to ensure sharing

(hint: it's encapsulated global state)

DSL magic to enumerate data types
instance Enumerable Z where
 enumerate = datatype [] -- no longer a lie

instance Enumerable n => Enumerable (S n) where
 enumerate = datatype [v0 FZ , v1 FS]

instance Enumerable Type where
 enumerate = datatype [v0 Void , v2 (:->)]

instance Enumerable n => Enumerable (Term n) where
 enumerate = datatype [pay (v1 Var) , pay (v1 Lam) , pay (v3 App)]

Does it work out of the box?
-- get me all programs of size <30
$ eleanor --system Untyped --action Print --size 30
[Lam (Var FZ), Lam (Lam (Var FZ)), Lam (Lam (Var (FS (FZ)))), ...]

-- how many programs of size <30?
$ eleanor --system Untyped --action Count --size 30
7964948391145

-- how many programs of size <100?
$ eleanor --system Untyped --action Count --size 100
4503787720194931500936021688288566428450647198899831131920

Does it work out of the box?
-- how many programs of size <1000?
$ eleanor --system Untyped --size 1000
308979047539797286389554754656050850905240507708427967498701817852887971931069975365901
857378119631500575402859069294978611884417142648912870521418834178736010885629562442174
695729552893817244891920582785029398882622008238200608644806387090253102487903461107900
446985363433164099802667368836306482954336643903824771835185388183129889962918463489147
669085392503510337274432408608493215807279736697555590998870222330656848190305130272295
748823658429313198623977474018608312268715019965824283441864212858719037406270777784320
128035445486523339972120044617149804509803809721945756672127484790222562203093028297330
701810553080361603375463934103265024019533365037819232420615636268119286995638542364078
581194561105664479452966258068391627683565675385447131617537498143916191855677543179164
38424355480696688647214814359468956803017461383159776132586

real 1m 26.740s
user 1m 23.087s
sys 0m 1.216s

Gross stuff to filter ill-typed lamdas eagerly

univ :: (a -> Bool) -> (b -> a) -> Maybe Bool
univ pred val = unsafePerformIO $
 Just (pred (val undefined)) `catch` \err -> Nothing

-- will this program ever be well-typed?
> univ (check [] Void) (\hole -> Lam hole)
Just False -- no

-- will this program ever be well-typed?
> univ (check [] (Void :-> Void)) (\hole -> Lam hole)
Nothing -- dunno?

Only works if your
predicate is eager!

Does it work out of the box?
-- get me the programs of type `Void :-> Void` and size <30!
$ eleanor --system SimplyTyped --action Print --size 30
[Lam (Var FZ), Lam (App (Lam (Var FZ)) (Var FZ) Void), ...]

-- how many programs of type `Void :-> Void` and size <30?
$ eleanor --system SimplyTyped --action Count --size 30
11369362

real 6m 31.701s -- does not look as good
user 6m 25.991s -- slower by a magnitude
sys 0m 3.950s -- but better than anything I've written

Problem solved!

I made a lie
!

This is linear!

(i.e. variables must be used exactly once)

This is affine!
let s = fork!(move |s: Send<(), End>| {
 let s = send((), s)?;
 close(s)
});
let ((), s) = recv(s)?;
close(s)

(i.e. variables can be used at most once)

This is neither!
data Type
 = Void
 | Type :-> Type

data Term n
 = Var n
 | Lam (Term (S n))
 | App (Term n) (Term n) Type -- this is new!

check :: [Type] -> Type -> Term n -> Bool
check env a (Var n) = lookup env n == a
check env (a :-> b) (Lam t) = check (a : env) b t
check env b (App f s a) = check env (a :-> b) f && check env a s
check _ _ _ = False

(i.e. variables can do whatever they want!
!

)

I sorry
!

Idea: generate programs,
then take the linear ones?

What proportion of all
programs is linear?

What proportion of affine
programs is linear?

What proportion of affine programs is
linear?
"Theorem 42.
The density of BCI terms among BCK terms equals 0."
— xoxo Grygiel, Idiziak, and Zaionc!

Ok sad
!

(The chance of getting a linear program goes to zero as we
increase program size... and pretty rapidly, actually...)

What can we do?
"Sometimes you just have to be stupid and try to
search an immensely huge search space just 'cuz you
can."
— xoxo some A.I. researcher (probably)

Mission: make check check linearity
data Type
 = Void
 | Type :-> Type

data Term n
 = Var n
 | Lam (Term (S n))
 | App (Term n) (Term n) Type -- this is new!

check :: [Type] -> Type -> Term n -> Bool
check env a (Var n) = lookup env n == a
check env (a :-> b) (Lam t) = check (a : env) b t
check env b (App f s a) = check env (a :-> b) f && check env a s
check _ _ _ = False

Mission: make check check linearity
In a way which is parallelizable?

Mission: make check check linearity
In a way which is parallelizable?

Idea: when checking an application, try every
possible split of variables between function
and argument?

Uh, that sounds expensive?

I tried, it was
check :: Fin n => [(n, Type)] -> Type -> Term n -> Bool
check env a (Var x) = env == [(x, a)]
check env (a :-> b) (Lam t) = check ((FZ, a) : map (first FS) env) b t
check env b (App f s a) = or
 [check env1 (a :-> b) f && check env2 a s
 | n <- [0..length env] , (env1, env2) <- combinations n env]
check _ _ _ = False

combinations :: Int -> [a] -> [([a], [a])]
combinations 0 xs = [([], xs)]
combinations n (x:xs) =
 [(x:xs, ys) | (xs, ys) <- combinations (n - 1) xs] ++
 [(xs, x:ys) | (xs, ys) <- combinations (n - 1) xs]

-- how many linear lambdas of type Void :-> Void and size <30?
$ eleanor --system Linear --strategy Stupid --action Count --size 30
9790 -- took like a few hours

Mission: make check check linearity
In a way which is parallelizable?

❌

In a way which is eager?

Idea: use some state to keep track of whether
a variable has been used yet?

Is that eager?
!

I tried
check :: Fin => Type -> Term n -> State (Map n Type) Bool
check a (Var x) = do
 env <- get -- ...
 modify (delete x) -- remove variable
 return $ lookup FZ env == Just a -- was the type right?
check (a :-> b) (Lam t) = do
 modify (insert FS a . mapKeys FS) -- insert new variable
 cond1 <- check a t -- check body
 env <- get -- ...
 let cond2 = lookup FZ env == Nothing -- was new variable used?
 modify (mapKeys pred) -- restore old variables
 return $ cond1 && cond2
check b (App f s a) = do
 cond1 <- check (a :-> b) f -- check function
 cond2 <- check a s -- check argument
 return $ cond1 && cond2
check _ _ = do return False

I tried, it's pretty good, actually...
-- how many linear programs of type `Void :-> Void` and size <30?
$ eleanor --system Linear --action Count --size 30
9790

real 0m 2.580s
user 0m 2.361s
sys 0m 0.264s

Future work
Can we make some BCI terms and translate them?

4 it's way easier, but not complete
!

4 e.g. we don't get
4 is that a problem?

Future work
Can we use the structure of linear programs to prune
our search space?

4 each term has lambas, vars, and apps
4 kinda hard, probably won't scale well

Current work
Oh, right, I was testing a Rust library!

Let's see if that works now...

Oh no!
I'm out of time!

What have we seen?
When you write a compiler or library...

4 think about what your thing does
4 reference and actual implementation
4 do they do the same stuff???!

What have we seen?
When you wanna QuickCheck your compiler or library...

4 generating random programs is really hard!
4 but cool libraries have your back!
4 even for newfangled linear and affine stuff!

