Where the linear lambdas go
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let s = fork(A(s : !1. End).
let s = send((), s)

close(s)

)
let ((),

s) = recv(s)
close(s)



"fn Rust.

t liers
)




s = fork!( |s: <(), End>| {
s = send((), s)?;
close(s)
1),
((), s) = recv(s)?:
close(s)






#[test]

() {
(1] -> <(), <Error>> {
s = fork!( |s: <(), End>| {
s = send((), s)?:
close(s)

1),
((), s) = recv(s)?:
close(s)

1().is_ok());
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hold. Specifically, Rust employs a strong, ownership-based type system, but then extends the expressive power
of this core type system through libraries that internally use unsafe features. In this paper, we give the first
formal (and machine-checked) safety proof for a language representing a realistic subset of Rust. Our proof is
extensible in the sense that, for each new Rust library that uses unsafe features, we can say what verific: .on
condition it must satisfy in order for it to be deemed a safe extension to the language. We have carrie . out
this verification for some of the most important libraries that are used throughout the Rust ecosystem.
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1 INTRODUCTION

Systems programming languages like C and C++ give programmers low-level control over resource
management at the expense of safety, whereas most other modern languages give programmers safe,
high-level abstractions at the expense of control. It has long been a “holy grail” of programming
languages research to overcome this seemingly fundamental tradeoff and design a language that
offers programmers both high-level safety and low-level control.
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Rust represents a major advancement in production programming languages because of its success in bridging
the gap be 'veer 4igh-level applicati .. programming and -~ vel systems prog : mming. At the heart of its
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> 1e. hip d or. i1 .vithoult he. ° s - flifetim ana. sis. 7 us --—.ant. n lels a high-level un-
derstanding of ownership and as a result is close to source-level Rust (but with full type annotations) which
A*%~rs from the recent RustBelt effort that essentially models MIR, a CPS-style IR used in the Rust compiler.
var 1, while RustBelt aims to verify the safety of unsafe code in Rust’s standard library, we model standard
1 cary APIs as primitives, which is sufficient to reason about their behavior. This yields a simpler model of
F st and its type system that we think researchers will find easier to use as a starting point for investigating
Rust extensions. Unlike RustBelt, we aim to prove type soundness using progress and preservation instead
of a Kripke logical relation. Finally, our semantics is a family of languages of increasing expressive power,
where subsequent levels have features that are impossible to define in previous levels. Following Felleisen,
expressive power is defined in terms of observational equivalence. Separating the language into different
levels of expressive power should provide a framework for future work on Rust verification and compiler
optimization.

1 INTRODUCTION

Programming languages have long been divided between “systems” languages, which enable low-
level reasoning that has proven critical in writing systems software, and “high-level” languages,
which empower programmers with high-level abstractions to write software more quickly and
more safely. For many language researchers then, a natural goal has been to try to enable both
low-level reasoning and high-level abstractions in one language. To date, the Rust programming
language has been the most successful endeavour toward such a goal.
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languages research to overcome this seemingly fundamental tradeoff and design a language that
offers programmers both high-level safety and low-level control.

IS~ U B S

~ (=N w

iuv

17
18
19
20
21
22
23
24
25
26
27
28
29
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Rust represents a major advancement in production programming langi~ges because of its success in bridging
the gap between high-level application programming and lo - vel sy  as programming. At the heart of its
design lies a novel approach to ownership that remains high - rogre  able.

In this talk, we will describe our ongoing work on desiy ¢ gaf( il semantics for Rust that captures
ownership a ) gvw'’ e der “otimea ' /sis.” sem  smod  high-level un-
derstanding: +© o.up?e d sar 'tisclose. s iwce- |Rust twit [ ltype: tations) which
differs from- centRus } - hat~ " v mod¢ 3 IR,a  ~sty! [ usedin Rust compiler.
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Rust extensions. Unlike RustBelt, we aim to prove type soundness using progress and {  rvation instead
of a Kripke logical relation. Finally, our semantics is a family of languages of increas’ xpressive power,
where subsequent levels have features that are impossible to define in previou sowing Felleisen,
expressive power is defined in terms of observational equivalence. Separating the language into different
levels of expressive power should provide a framework for future work on Rust verification and compiler
optimization.

1 INTRODUCTION

Programming languages have long been divided between “systems” languages, which enable low-
level reasoning that has proven critical in writing systems software, and “high-level” languages,
which empower programmers with high-level abstractions to write software more quickly and
more safely. For many language researchers then, a natural goal has been to try to enable both
low-level reasoning and high-level abstractions in one language. To date, the Rust programming
language has been the most successful endeavour toward such a goal.

OY7E ol e [J aY7e o o 1 o
Al L (\ L} 14S 4150 (] ODEU SOIT] Qe Ol d DULALION 10




Let's try QuickCheck?
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of QuickCheck's functionality is exported by the main Test.QuickCheck module. The main exception is the monadic
y ¢ ,ting library in Test.QuickChecl| .' lonac
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What is this "QuickCheck"
you speak of?



QuickCheck 101

You write...

Test.QuickCheck

2 [Int] = [Int] -

XS ys = reverse (Xs ++ ys) == reverse ys ++ reverse Xs

You test...

>>> quickCheck prop_revapp
+++ OK, passed 100 tests.



QuickCheck 102

QuickCheck knows how to make random numbers...

arbitrary = choose (minBound, maxBound)

arbitrary

h <- arbitrary
replicateM n arbitrary



So now we all know exactly
how QuickCheck works...



My good plan:

. make some programs
2. run them programs

3. translate them to Rust
4. run them in Rust

5. see if they same



QuickCheck, please make some
programs?

“There is no generic arbitrary implementation included
because we don’t know how to make a high-quality one.
If you want one, consider using the testing-feat or
generic-random packages.”

— XoX0 QuickCheck



Fine, I'll write one!

arbitrary = oneof

[ <$> arbitrary
<$> arbitrary <x> arbitrary
<$> aribtrary <x> arbitrary

]



2, I'll write one!

- Name

Lam ">h" (Var "\EOT\NAKW")

= Var Name
IPLam Name Term
I App Term Term

@ance Arbitrary Term

arbitrary = oneof

[ Var <$> arbitrary

Lam <$> arbitrary <x> arbitrary
<$> aribtrary <x> arbitrary



Eugh, | gquess I'll do some thinking

data Z —— Z has no elements
data S n —— S n has |[n| + 1 elements
= FZ —— e.g. TwoOfFour :: S (S (S (S Z)))
| FS n —— TwoOfFour = FS (FS FZ)
data Term n —-— every term 1s
= Var n —— well-scoped
| Lam (Term (S n)) —— SO hOo more
|

App (Term n) (Term n) —— nonsense



How do | random these?

arbitrary = oneof []
arbitrary = oneof [ pure , <$> arbitrary ]

arbitrary = oneof
| <$> arbitrary
, <$> arbitrary
, <$> aribtrary <x> arbitrary

]



do | random these?

stance Arbitrary

“tai (Cah (Var (FS F2)))

[Stance Arbitr: n =>
arbitrary = oneof [ pure , <$> arbitrary ]

Btance Arbitrary n =»> . n)
arbitrary = oneof

[ Var <$> arbitrary

, Lam <$> arbitrary

, App <$> aribtrary <x> arbitrary

]






Cool, let's add some types...

| Lan (Tern (5 n))
| ( n) ( n)
[ | -5 -5
lookup env n == a

check (a : env) b t
check env (a :-> b) f && check env a s

()
>
<
Q)
~
>
~
nm i 1 n S



Only the well-typed ones plz?

arbitrary = oneof
[ pure
, (:=>) <$> arbitrary <x> arbitrary

]

arbitrary =
a <— arbitrary
t <- arbitrary
check [] t a t arbitrary



y the well-typed ones plz?

ance Arbitrary Tyg

arbitrary = oneof

[ pure Void

, (:=>) <$> arbitrary > ;;bigrary

]

2ype WellTyped n = ( 1)

ance Arbitrary Welll

arbitrary = <o

a <— arbitrary -- an arbitrary type

€ <— arbitrary —-- an arbitrary ~closed~ term
check [] t a then WellTyped t else arbitrary



y the well-typed ones plz?

ance Arbitrary Typ
arbitrary = oneof

[ pure Void . .
, (:=>) <$> arbitrary <x> arbitrary
]
gype WellTy «« n = ( |

ance Arbitrary Welll

arbitrary = <o
a <— arbitrary -- an arbitrary type
€ <— arbitrary —-- an arbitrary ~closed~ term

check [] t a then WellTyped t else arbitrary



y the well-typed ones plz?

ance Arbitrary Type w
arbitrary = oneof
[ pure Void 2 =
, (:=>) <$> arbitrary <x> arbitrary

]
/'\"/pu iU S

ince Arbitrary WellT
arbitrary = <o
a <— arbitrary -- an arbitrary type
<— arbitrary —-- an arbitrary ~closed~ term
£ check [] t a then Welllvped t el=e arbitrary




ne well-typed ones plz?

Ar rary Type where
bitr: . : oneof
[ | 7 Void
- <$

We T r»ed 1+ = W yper Term

A. rary 2 Z Ye
trary = do
arbitrary -- an arbitrar 1 pe
= arbitrary -- an arbitrar. losed~ term
heck [] t a then WellTyped t else arbitrary




Eugh, | gquess I'll do some research
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Abstract. We present a technique for aut matically deriving test data generators
from a predicate expressed as a Boole@ifunction. The distribution of these gen-
erators is uniform over valii s of a given size. To make the genc.ation efficient
werelyonla/ . s /1 w jwedica calliwig st pr % "ae ida eof @ 0/s

uw'Dh Inco ra', or/!m.~fingtr=* .a‘ ¢ n¢ator _-aatdis b~ i\ =31 °
and error prone. Moreover, handwritten generators (' ten have an unpredictable
distribution of values, risking that some values are arbitrarily underrepresented.
We also present a variation of the technique where the distribution is skewed in a
limited and predictable way, potentially increasing the performance. Experimental
evaluation of the techniques shows that the uniform derived generators are much
easier to define than hand-written ones, and their performance, while lower, is
adequate for some realistic applications.

1 Introduction
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So what is their trick?



Bag of tricks

l. do some really gross stuff to ensure sharing
(implemented in the size-based package)

2. do some DSL magic to enumerate data types
(implemented in the testing-feat package)

3. do some gross stuff to filter ill-typed terms eagerly
(implemented in the 1azy-search package)



Really gross stuff
to ensure sharing

(hint: it's encapsulated global state)




DSL magic to enumerate data types

enumerate = datatype []

enumerate = datatype [ vO . vl |

enumerate = datatype [ vO , v2 (=) ]

enumerate

datatype [ pay (v1 ) , pay (vi ) , pay (v3 ) ]



Does it work out of the box?

—— get me all programs of size <30
$ eleanor —-system Untyped —--action Print --size 30
[Lam (Var FZ), Lam (Lam (Var FZ)), Lam (Lam (Var (FS (FZ)))), ...]

—— how many programs of size <307
$ eleanor --system Untyped —--action Count --size 30
7964948391145

—— how many programs of size <1007
$ eleanor --system Untyped --action Count --size 100
4503787720194931500936021688288566428450647198899831131920



Does it work out of the box?

—— how many programs of size <10007?

$ eleanor --system Untyped --size 1000
308979047539797286389554754656050850905240507708427967498701817852887971931069975365901
857378119631500575402859069294978611884417142648912870521418834178736010885629562442174
695729552893817244891920582785029398882622008238200608644806387090253102487903461107900
446985363433164099802667368836306482954336643903824771835185388183129889962918463489147
669085392503510337274432408608493215807279736697555590998870222330656848190305130272295
748823658429313198623977474018608312268715019965824283441864212858719037406270777784320
128035445486523339972120044617149804509803809721945756672127484790222562203093028297330
701810553080361603375463934103265024019533365037819232420615636268119286995638542364078
581194561105664479452966258068391627683565675385447131617537498143916191855677543179164
38424355480696688647214814359468956803017461383159776132586

real 1m 26.740s
user 1m 23.087s
Sys Om 1.216s



Gross stuff to filter ill-typed lamdas eagerly

: (a = ) => (b => a) -»
pred val = unsafePerformIO $
(pred (val undefined)) ‘catch®™ \err -»

> univ (check [] ) (\hole -» hole)

> univ (check [] ( L= )) (\hole -» hole)



s stuff to filter ill-typed lamdas ea

g (a -> Bool) -> (b -> a -» Maybe B~9l

('\p"t‘ﬂ 2l — urscfeRe—€for7,
W B E (hxd (va\'A ' dif nid) pcaach’ \rer =0 €10 Al ) r

gl ®Ek l} @™ lynold -> hol: )

@ll this (r_gram eve: be well -typed? ﬂ
] & WU @

)l this program ever be well-typed?
(check [] (Void :=> Voicd)) (\hole -> L am hole)
dunno?




Does it work out of the box?

—— get me the programs of type "Void :-> Void  and size <30!
$ eleanor ——system SimplyTyped —--action Print --size 30
[Lam (Var FZ), Lam (App (Lam (Var FZ)) (Var FZ) Void), ...]

—— how many programs of type "Void :-> Void and size <30?
$ eleanor —--system SimplyTyped —--action Count --size 30
11369362

real 6m 31.701ls —- does not look as good
user ©o6m 25.991s —- slower by a magnitude
SysS Om 3.950s —- but better than anything I've written






| made a lie &



This is linear!

let s = fork(A(s : !1. End).
let s = send((), s)

close(s)

)
let ((),

s) = recv(s)
close(s)

(i.e. variables must be used exactly once)



This is affine!

s = fork!( |s: <(), End>| {
s = send((), s)?;
close(s)

});
((), s) = recv(s)?:
close(s)

(i.e. variables can be used at most once)



This is neither!

| Lan (Tern (S n))
I ( n) ( n)
JO | ] -» -> n ->
env a ( n) lookup env n == a

check (a : env) b t
check env (a :-> b) f && check env a s

()
-]
<
(on
—~
m
n
Q
~
| I | N | B |

(i.e. variables can do whatever they want! &)






ldea: generate programs,
then take the linear ones?




What proportion of all
programs is linear?



What proportion of affine
programs is linear?



Universal Logic Corner

How big is BCI fragment of BCK logic
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Abstract

We investigate quantitative properties of BCl and BCK logics. The first part of the article compares the number of formulas
provable in BCI versus BCK logics. We consider formulas built on implication and a fixed set of k variables. We investigate
the proportion between the number of such formulas of a given length n provable in BCl logic against the number of formulas
of length n provable in richer BCK logic. We examine an asymptotic behaviour of this fraction when length n of formulas
tends to infinity. This limit gives a probability measure that randomly chosen BCK formula is also provable in BCI . We prove
that this probability tends to zero as the number of variables tends to infinity. The second part of the article 1s devoted to the
number of lambda terms representing proofs of BCl and BCK logics. We build a proportion between number of such proofs
of the same length n and we investigate asymptotic behaviour of this proportion when length of proofs tends to infinity. We
demonstrate that with probability 0 a randomly chosen BCK proof is also a proof of a BCI formula.
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What proportion of affine programs is
linear?

“Theorem H2.
The density of BCI terms among BCK terms equals 0.”

— xoXo Grygiel, Idiziak, and Zaionc

o)

(|



Ok sad &

(The chance of getting a linear program goes to zero as we
increase program size... and pretty rapidly, actually...)



What can we do?

”Sometimes you just have to be stupid and try to

search an immensely huge search space just ‘cuz you
can.”

— X0X0 some A.|. researcher (probably)



Mission: make check check linearity

| Lan (Tern (S n))
| ( n) ( h)
[ | -> ->
lookup env n == a

check (a : env) b t
check env (a :-> b) f && check env a s

()
>
<
Q)
~
>
~
nm i 1 n S



Mission: make check check linearity

In a way which is parallelizable?



Mission: make check check linearity

In a way which is parallelizable?

ldea: when checking an application, try every
possible split of variables between function
and argument?

Uh, that sounds expensive?



| tried, it was

n = [(n, )] —» -> n ->
env a ( X) = env == [(x, a)]
env (a :=> b) ( t) = check ((FZ, a) : map (first FS) env) b t
env b ( f s a) = or

[ check envl (a :—=> b) f && check env2 a s
| n <= [0..length env] , (envli, env2) <- combinations n env ]

e -> [a] -> [([a], [al])]

0 xs = [([], xs)]

n (x:xs) =
[ (x:xs, ys) | (xs, ys) <-— combinations (n - 1) xs ] ++
[ (xs, x:ys) | (xs, ys) <- combinations (n - 1) xs ]

$ eleanor
0790



Mission: make check check linearity

In @ way which is parallelizable? X

In a way which is eager?

ldea: use some state to keep track of whether
a variable has been used yet?

Is that eager? &



| tried

- => -> n ->
a( X)=

env <- get

modify (delete x)

return $ lookup env ==
(a :=> b) ( t) =
modify (insert a . mapKeys

condl <- check a t
env <— get
cond2 = lookup env ==
modify (mapKeys pred)
return $ condl && cond2
b ( f s a) =
condl <- check (a :-> b) f
cond2 <- check a s
return $ condl && cond2
= return



| tried, it's pretty good, actually...

$ eleanor
0790

Om 2.580s
Om 2.361s
Om 0.264s



| == Linear (Feat)

{ —— Linear (Neat)

| == SimplyTyped (Feat)
| —— SimplyTyped (Neat)
] == Untyped (Feat)

10

30



Future work

Can we make some BCIl terms and translate them?

2 it’s way easier, but not complete ©@
@ e.g.wedontget \z. (\y.y) =
2 is that a problem?



Future work

Can we use the structure of linear programs to prune
our search space?

2+ each term has n lambas, n vars, and n — 1 apps
2 kinda hard, probably won’t scale well



Current work

Oh, right, | was testing a Rust library!

Let’s see if that works now...



h nol

I'm out of time!




What have we seen?

When you write a compiler or library...

2+ think about what Your thing does
2 reference and actualimplementation
2 do they do the same stuff???



What have we seen?

When you wanna QuickCheck your compiler or library...

2 generating random programs is really hard!
2 but coollibraries have Your back!
2+ even for hewfangled linear and affine stuff
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