Taking Apart Classical Processes

Wen Kokke

December 18th, 2017

University of Edinburgh

Dramatis personæ

Mary

John

Cake

Money

Dramatis personæ

Mary

John

Cake

Money

Dramatis personæ

Mary

John

Cake

Money

"Gimme the cake, and you'll have your money!" "No! Money first!"

$$(\nu x)(x(z).x\langle s\rangle. \bigcirc | x(y).x\langle s\rangle. \bigcirc)$$

Classical Processes – Types, Contexts, and Typing Rules

Type
$$A, B := A \otimes B \mid A \otimes B \mid \dots$$

Ctxt $\Gamma, \Delta := x_1 : A_1, \dots, x_n : A_n$

$$\frac{}{x \leftrightarrow y \vdash x : A, y : A^{\perp}} \mathsf{AX} \quad \frac{P \vdash \Gamma, x : A \quad Q \vdash \Delta, x : A^{\perp}}{(\nu x)(P \mid Q) \vdash \Gamma, \Delta} \mathsf{CUT}$$

Classical Processes – Types, Contexts, and Typing Rules

Type
$$A, B := A \otimes B \mid A \otimes B \mid ...$$

Ctxt $\Gamma, \Delta := x_1 : A_1, ..., x_n : A_n$

$$\frac{P \vdash \Gamma, y : A \quad Q \vdash \Delta, x : B}{x[y].(P \mid Q) \vdash \Gamma, \Delta, x : A \otimes B} (\otimes) \quad \frac{P \vdash \Gamma, y : A, x : B}{x(y).P \vdash \Gamma, x : A \otimes B} (\otimes)$$

$$\frac{P \vdash \Gamma}{x[].0 \vdash x : 1} (1) \quad \frac{P \vdash \Gamma}{x().P \vdash \Gamma, x : \bot} (\bot)$$

Classical Processes – Best Facilitator of Illegal Cake Resale

"Fine! I'll go first!"

$$(\nu X)(x[u].(u\leftrightarrow s) \mid X(z).) \mid X(y).X[v].(v\leftrightarrow s) \mid s))$$

Classical Processes – Terms

```
P, Q, R := (\nu x)(P \mid Q) Communication
        |x[y].(P | Q) Independence, "send"
        |x(y).P| Interdependence, "receive"
        X[].0
                   Halt
        |x().P|
                     Wait
```

HCCP – Types, Contexts, and Typing Rules

Type

Ctxt

I'm gonna talk about hypersequent CP, about constrained cyclic Me

$$\frac{P \vdash \mathcal{G} \mid \Gamma, x : A, y : A^{\perp}}{(\nu x)P \vdash \mathcal{G} \mid \Gamma, \Delta} \vdash AX \quad 0 \vdash \varnothing \quad H - HALT$$

$$\frac{P \vdash \mathcal{G} \mid \Gamma, x : A \mid \Delta, x : A^{\perp}}{P \mid Q \vdash \mathcal{G} \mid \mathcal{H}} \vdash H - MIX$$

HCCP - An Intuition for Semicolons

If P is typed by $P \vdash \Gamma$, it will reduce to a single process.

If P is typed by $P \vdash \Gamma_1 \mid \ldots \mid \Gamma_n$, it will reduce to a series of n parallel processes.

HCCP - Cut is Derivable

$$\frac{P \vdash x: A, \Gamma \quad Q \vdash \bar{x}: A^{\perp}, \Delta}{\frac{(P \mid Q) \vdash x: A, \Gamma \mid \bar{x}: A^{\perp}, \Delta}{(\nu x \bar{x})(P \mid Q) \vdash \Gamma, \Delta}} MIX$$
CYCLE

HCCP – Cut is Derivable

$$\frac{P \vdash x:A, \Gamma \mid X \quad Q \vdash \overline{x}:A^{\perp}, \Delta \mid Y}{\frac{(P \mid Q) \vdash x:A, \Gamma \mid \overline{x}:A^{\perp}, \Delta \mid X \mid Y}{(\nu x \overline{x})(P \mid Q) \vdash \Gamma, \Delta \mid X \mid Y}} MIX$$

$$\frac{(P \mid Q) \vdash x:A, \Gamma \mid \overline{x}:A^{\perp}, \Delta \mid X \mid Y}{(\nu x \overline{x})(P \mid Q) \vdash \Gamma, \Delta \mid X \mid Y} CYCLE$$

HCCP - "Multicut" is Derivable

"Multicut"

$$\frac{P \vdash x_1 : A_1, \Gamma_1 \mid \ldots \mid x_n : A_n, \Gamma_n \mid X \qquad Q \vdash \bar{x}_1 : A_1^{\perp}, \Delta_1 \mid \ldots \mid \bar{x}_n : A_n^{\perp}, \Delta_n}{(\nu x_1 \bar{x}_1 \ldots x_n \bar{x}_n)(P \mid Q) \vdash \Gamma_1, \Delta_1 \mid \ldots \mid \Gamma_n, \Delta_n \mid X \mid Y}$$

HCCP – Types, Contexts, and Typing Rules (cont'd)

Type
$$A, B := A \otimes B \mid A \otimes B \mid 1 \mid \bot \mid ...$$

Ctxt $\Gamma, \Delta := x_1 : A_1, ..., x_n : A_n$
Meta $X, Y := \Gamma_1 \mid ... \mid \Gamma_n$

$$\frac{P \vdash \mathcal{G} \mid \Gamma, y : A \mid \Delta, x : B}{x[y].P \vdash \mathcal{G} \mid \Gamma, \Delta, x : A \otimes B} \otimes \frac{P \vdash \mathcal{G} \mid \Gamma, y : A, x : B}{x(y).P \vdash \mathcal{G} \mid \Gamma, x : A \otimes B} (\otimes)$$

$$\frac{P \vdash \mathcal{G}}{x[].P \vdash \mathcal{G} \mid x : 1} 1 \frac{P \vdash \mathcal{G} \mid \Gamma}{x().P \vdash \mathcal{G} \mid \Gamma, x : \bot} (\bot)$$

"Fine! I'll go first!"

$$(\nu X \overline{X})(X[u].(u \leftrightarrow \overline{\$} \mid X(Z). \bigcirc)$$
$$|\overline{X}(y).\overline{X}[v].(v \leftrightarrow \underline{\$} \mid \overline{\$}))$$

HCCP – Terms

```
P, Q, R := (\nu x \bar{x}) P Channel Creation
        |(P|Q)| ParallelComposition
           HaltedProcess
        [x[y].P] Independence, "send"
        |x(y).P| Interdependence, "receive"
```

HCCP – Setting Send Free

$$x[y].P := (\nu y \overline{y})(x \langle y \rangle.P)$$

$$\frac{P \vdash \mathcal{G} \mid \Gamma, x : B}{x \langle y \rangle.P \vdash \mathcal{G} \mid \Gamma, x : A \otimes B, y : A^{\perp}} \otimes$$

$$\frac{P \vdash y:A,\Gamma \mid x:B,\Delta \mid X}{x\langle y\rangle.P \vdash y:A,\Gamma \mid x:A\otimes B,\bar{y}:A^{\perp},\Delta \mid X} \otimes (\nu y\bar{y})(x\langle y\rangle.P) \vdash x:A\otimes B,\Gamma,\Delta \mid X$$
 CYCLE

"Fine! I'll go first!"

$$(\nu X)(X\langle \S \rangle.X(Z). \bigcirc | X(y).X\langle \circledast \rangle. \bigcirc)$$

We have taken CP apart, and its term constructs now match that of the π -calculus, more or less*!

HCCP – An Interesting Theorem...

If
$$P \vdash \Gamma_1 \mid \dots \mid \Gamma_{n+1}$$
,
then there exist $x_1 \dots x_n$ and $\pi_1 \dots \pi_{n+1}$, such that
 $(\nu x_1 \bar{x_1}) \dots (\nu x_n \bar{x_n})(\pi_1.0 \mid \dots \mid \pi_{n+1}.0) \vdash \Gamma_1 \mid \dots \mid \Gamma_{n+1}.$

HCCP - ...and its Awkward Cousin

If
$$P \vdash \Gamma_1 \mid \dots \mid \Gamma_{n+1}$$
,
then there exist $x_1 \dots x_n$ and $\pi_1 \dots \pi_{n+1}$, such that
 $(\nu x_1 \bar{x_1}) \dots (\nu x_n \bar{x_n})(\{\pi_1, \dots, \pi_{n+1}\}, (0^{n+1})) \vdash \Gamma_1 \mid \dots \mid \Gamma_{n+1},$
where (0^n) represents n halted processes in parallel.

HCCP – ...and its Awkward Cousin

So, for instance

$$(\nu X \bar{X})(X().0 \mid \bar{X}\langle\rangle.0)$$

corresponds to

$$(\nu X \overline{X})(X().\overline{X}\langle\rangle.(0\mid 0))$$

which looks deadlocked to me.

We can submit to a nice, sunny conference upstate...

We can restrict the type system further, to restrict access to named channels if their co-names are still in scope...

(Dardha and Gay, 2017) 19

This gets rid of stuff like

$$(\nu x \overline{x})((\nu y \overline{y})(x().\overline{x}\langle\rangle.y().\overline{y}\langle\rangle.(0\mid0)).$$

(Dardha and Gay, 2017)

We can equate all these processes,

$$\pi.(P \mid Q) \equiv (\pi.P \mid Q)$$
 if $fv(\pi) \cap fv(Q) = \emptyset$

which allows all deadlocked processes to proceed.

(Bellin and Scott, 1994)

Basically, this is like saying

$$(\nu x \bar{x})(x().\bar{x}\langle\rangle.(0\mid0))$$

is equivalent to

$$(\nu x \bar{x})(x().0 \mid \bar{x}\langle\rangle.0),$$

so it can reduce.

(Bellin and Scott, 1994)

HCCP - Reduction Rules

$$(\nu x \bar{x})(w \leftrightarrow x \mid P) \implies P\{w/\bar{x}\}$$

$$(\nu x \bar{x})(x(z).R \mid \bar{x}\langle y \rangle.P) \implies (\nu x \bar{x})(P \mid R)$$

$$(\nu x \bar{x})(x().R \mid \bar{x}\langle \rangle.P) \implies (\nu x \bar{x})(P \mid R)$$

$$P \implies P' \qquad P \implies P'$$

$$(\nu x \bar{x})P \implies (\nu x \bar{x})P' \qquad P \implies P'$$

$$(P \mid Q) \implies (P' \mid Q)$$

$$P \implies P' \qquad P \implies P'$$

HCCP – Structural Congruence

Where \equiv is reflexive, transitive, congruent, and has:

```
\begin{array}{lll} x \leftrightarrow y & \equiv y \leftrightarrow x \\ (P \mid Q) & \equiv (Q \mid P) \\ (P \mid (Q \mid R)) & \equiv ((P \mid Q) \mid R) \\ (\nu x \bar{x})(P \mid Q) & \equiv ((\nu x \bar{x})P \mid Q) & \text{if } x, \bar{x} \not\in \text{fv}(Q) \\ \pi.(P \mid Q) & \equiv (\pi.P \mid Q) & \text{if } \text{fv}(\pi) \cap \text{fv}(Q) = \varnothing \end{array}
```

I have found the calculus I was looking for, but maybe not the calculus I wanted...

HCCP – Types, Contexts, and Typing Rules

Туре

Ctxt

I'm gonna talk about hypersequent CP, about constrained cyclic Me

$$\frac{P \vdash \mathcal{G} \mid \Gamma, x : A, y : A^{\perp}}{(\nu x)P \vdash \mathcal{G} \mid \Gamma, \Delta} \vdash AX \quad 0 \vdash \varnothing \quad H - HALT$$

$$\frac{P \vdash \mathcal{G} \mid \Gamma, x : A \mid \Delta, x : A^{\perp}}{(\nu x)P \vdash \mathcal{G} \mid \Gamma, \Delta} \vdash H - CUT \quad \frac{P \vdash \mathcal{G} \quad Q \vdash \mathcal{H}}{P \mid Q \vdash \mathcal{G} \mid \mathcal{H}} \vdash H - MIX$$

HCCP – Types, Contexts, and Typing Rules (cont'd)

Type
$$A, B := A \otimes B \mid A \otimes B \mid 1 \mid \bot \mid ...$$

Ctxt $\Gamma, \Delta := x_1 : A_1, ..., x_n : A_n$
Meta $X, Y := \Gamma_1 \mid ... \mid \Gamma_n$

$$\frac{P \vdash \mathcal{G} \mid \Gamma, y : A \mid \Delta, x : B}{x[y].P \vdash \mathcal{G} \mid \Gamma, \Delta, x : A \otimes B} \otimes \frac{P \vdash \mathcal{G} \mid \Gamma, y : A, x : B}{x(y).P \vdash \mathcal{G} \mid \Gamma, x : A \otimes B} (\otimes)$$

$$\frac{P \vdash \mathcal{G}}{x[].P \vdash \mathcal{G} \mid x : 1} 1 \frac{P \vdash \mathcal{G} \mid \Gamma}{x().P \vdash \mathcal{G} \mid \Gamma, x : \bot} (\bot)$$