A bunch of things to do with NL),

Wen Kokke
December 7", 2016

What is NL,?

Formula A B =a|A\B|B/A

Structure™ T =-A- |AeB
Structure™ A =-A |A\B| B/A
oo
A- .B- M-A\.B-
r--A B-FA L\ \ R\
A\B-FT\A [--A\B-

!
% Res.\

M-r\A

What is NL,?

Formula A B =...|A\B|BJA
Structure™ T =...|AoB
Structure” A =...|A\B|B/JA
Context r =0|Zel|TeX
Y[rFA
(N)
o Ax.Z[x]F A
A BFA M--A\-B
L\ —————R
ANBITVA DO AR
!
LolbA g

rEr\A

So why this)\ rule?

° everything o
john ° — AX. °
— — T~
likes everything john °

likes x

Why should we like NL,?

Example 1
“l read a book [the author of which] feared the ocean”

Ix.book(x)
A fear(.(\y.of(y, author, x)), .(ocean))
A read(pepijn, x)

Why should we like NL,?

book °
= =
the/\o feared the ocean
author °
N

of which

Why should we like NL,?

feared the ocean

Why should we like NL,?

/\

book °
[] []
which ° feared the ocean

the author of t

which [np /(np \((m\n)/(np\s)))]
which = Ataoee. Aftoer. Abker. Axe.bk(x) A fto(tao(x))

Why should we like NL,?

book °
/\
[] []
T
which o feared the ocean
AX °
the °

Take-home message _
NL, gives us operational semantics for quantifier raising a la

delimited continuations, without changing any other part of our

type system.

Why should we like NL;?

book °
= =
the/\o feared the ocean
author °
N

of which

Why should we like NL;?

book °
= =
the/\o feared the ocean
author °
of 0o
N

which |

Why should we like NL;?

the ° feared the ocean

N
A\

Why should we like NL;?

book °
= =
the/\o feared the ocean
which °

/N

Why should we like NL;?

book °
/\
[] [
/\
which o feared the ocean
/\
[] []
VN T~
B the ° °
N PN
B author ° |
/N

Why should we like NL;?

Structure T =...|1|B|C

_rea
Folk-A

Me(frel3)FA (FTrelp)el3-A
e ((Bely)els)FA Me((Celp)els) A

How do we parse with NL,?

What do we change?

We restrict quantifier raising s.t.

only quantifiers can be raised; and
only once.

We add focusing to eliminate spurious proofs.!

'Following work by Michael Moortgat, Raffaella Bernardi and Richard Moot
(2012) and Arno Bastenhof (2011).

What does that look like?

Context X =0 |XeA |lTeX

—
I —=((CeX[[)el)
FTeX — (Bel)eX[])

o[’ —]
(ZeN)[M"+ (X[eT) Yol
(TeX)[M]—= (TeX[["]) Te

by

-.B. .C-FA . Y[A]kF-B- R
i.C JBlFA TH-A\B

Take-home message
If you had any qualms about the decidability and efficiency of

proof search with NL,, let them go, at least for the remainder of
this talk.

Scope islands

Example 2
“Someone said (Kurt wrote every book)"

dx.person(x) A said(x, Vy.book(y) O wrote(kurt, y))

Scope islands

T~

Someone °

Kurt wrote every book

said : [[(np\s)/<Cs]
said = ...

Not That Diamond and Box

Formula AB =...|CA| DA
Structure™ T =... | ()
Structure™ A = ... | [A]
((A)YEA M-.B
————— RO
SATA © (NF-oB
AFA | r-[8]
‘DA +[4] r-oB -
ME[A]
ResO<

(MEA

Take-home message
Things don’t have to be difficult.

Indefinite scope

Example 3
“Everyone said (Kurt dedicated a book to Mary)

Vx.person(x) D said(x, Jy.book(y) A dedicate(kurt, mary, y))
Vx.person(x) D Jy.book(y) A said(x, dedicate(kurt, mary, y))
Jy.book(y) A Vx.person(x) D said(x, dedicate(kurt, mary, y))

“Indefinites acquire their existential scope in a manner that
does not involve movement and is essentially syntactically
unconstrained.”

— Anna Szabolcsi, The Syntax of Scope

Indefinite scope

Example 3
“Everyone said (Kurt dedicated a book to Mary)

Vx.person(x) D said(x, Jy.book(y) A dedicate(kurt, mary, y))
Vx.person(x) D Jy.book(y) A said(x, dedicate(kurt, mary, y))
Jy.book(y) A Vx.person(x) D said(x, dedicate(kurt, mary, y))

(ramble about continuations)

Continuation Semantics

some: [np/n]
some (f, k) = Jex.f(x) A k(x)

f}— [s]F s e 2)

X[sJ(np \s)]k -s:

Kurt dedicated ... [s] “o
(Kurt dedicated ...) - everyone\'s- (3)

(np\s)/<s |k (everyone\-s-)/(Kurt dedicated ...)

Indefinite scope

Example 3
“Everyone said (Kurt dedicated a book to Mary)

Vx.person(x) D said(x, Jy.book(y) A dedicate(kurt, mary, y))
Vx.person(x) D Jy.book(y) A said(x, dedicate(kurt, mary, y))
Jy.book(y) A Vx.person(x) D said(x, dedicate(kurt, mary, y))

What makes up a bunch?

(e]

Display NL

e}

(Parasitic scope, delimited continuations)

o

Focusing and efficient proof search

(e]

Scope islands

e}

Indefinite scope

A little bit of Haskell

no, every :: Word (QW((S"INP) \ S)/N)-
no =lez_. (Afg—>-"(3Fc(Az—fzAgzx)))
every =lez.(A\f g > Ve (Az > fzDg2x))

$22 = nlq | mary reads a book (the author of which) john likes |]

3x0.(book x0 A like john (the (Axl.(of x0 (Ax2.(author x2))
x1)))) A read mary x0

§28 = [nlq | mary sees fozes |]

3x0.(3x1.(3x2.x0 x1 A x0 x2 A x1 # x2)) A (Vx3.x0 x3 D (fox
x3 A see mary x3))

A little bit of Agda

gR:Vz -+ NLQz[-a-]F-b-— NLQ trace(z) - - b Ja -
gR z f= impLR (resPL (| z f))
where
iz NLQz[y]F z— NLQ trace(z) c y - 2z
| (HOLE) f= unitLl f
J (PROD1 zy) f= dnC (resLP (, z (resPL f)))
J(PROD2 zy) f= dnB (resRP ({ y (resPR f)))

What makes up a bunch?

(e]

Display NL

e}

(Parasitic scope, delimited continuations)

o

Focusing and efficient proof search

(e]

Scope islands

e}

Indefinite scope

Bonus Slides

What does focusing look like?

Pol(np) =+ Pol(A\B) = —
Pol(n) =+ Pol(B/A) = —
Pol(s) =-—

Pos(A) <= Pol(A) = + Neg(A) <= Pol(A) = —

What does focusing look like?

if Pos(«) a-F[a] AXR [a]F o Axt if Neg(a)
[- A
TEA Foc® | AR Foct
if Pos(A) if Neg(A)
CAFA TE-A R
A -

What does focusing look like?

r-[A] [B]Fa N r-[A] [B]Fa L
[AE]na 8/4] e

Continuation Semantics

*

st t, n* — et, np* — e,

[a]* . { a* if Pos(«)
((@*)F)F if Neg(a)

[A\ BT~ ([A]" x [B])F
[B/AI" ~ (IB]” x [A")F
[CA]T — [A]T+

[CATY = ([AITHR

(where AR .= A — t)

Continuation Semantics

s* > t,

n* — et, np* +— e,

[a]™ = (a)F
[A\B]~ = [A]" x [B]~
[B/Al~ ~[B]” x[Al*
[CAI” = ([AITH)F
[oA]~ — [A]T+

(where AR .= A — t)

Continuation Semantics

R n* — et, np* +— e,

[T A] — [T F[A]
[Al-A] — [A]F Al
[r=[A — [rFATY

(where AR .= A — t)

References

	Appendix
	References

