Auto in Agda

Wen Kokke

June 12, 2015

Wen Kokke
Wen Kokke

Programming proof search using reflection

Proofs and programs

» In a language with dependent types, “programs are proofs” and
“types are propositions”.

» Proof terms can be brittle and are often tedious to write.

Evenness

data Even : N — Set where
base : Even 0
step : V {n} — Evenn — Even (2 + n)

even8 : Even 8
even8 = step (step (step (step base)))

Evenness

data Even : N — Set where
base : Even 0
step : V {n} — Evenn — Even (2 + n)

even8 : Even 8
even8 = step (step (step (step base)))

There is a clear need for automation...

evenl1024 : Even 1024
evenl024 = ...

Proof by reflection

data T :Set wherett: T
data L : Set where

even? : IN — Set

even? 0 =T
even? 1 =1
even? (suc (suc n)) =even? n

Proof by reflection

data T :Set wherett: T
data L : Set where

even? : IN — Set

even? 0 =T
even? 1 =1
even? (suc (suc n)) =even? n

evenl024 : even? 1024
evenl024 = tt

Soundness

soundness : (n : IN) — even? n — Evenn
soundness 0 e =base

soundness 1 0

soundness (suc (suc n)) e = step (soundness 7 ¢)

Soundness

soundness : (n : IN) — even? n — Evenn
soundness 0 e =base

soundness 1 0

soundness (suc (suc n)) e = step (soundness 7 ¢)

evenl1024 : Even 1024
evenl024 = soundness 1024 tt

Open terms

But what to do for open terms?

lemma : V {n} — Even n — Even (n + 1024)
lemma = ...

Open terms

But what to do for open terms?

lemma : V {n} — Even n — Even (n + 1024)
lemma = auto

Open terms

But what to do for open terms?

lemma : V {n} — Even n — Even (n + 1024)
lemma = tactic (auto 5 db)

How auto works

We

—_

. quote the current goal;
translate the Agda AST to our own term data type;
run proof search;

translate the resulting term data type to an Agda AST;

o >~ 0D

unquote the resulting AST.

How proof search works

—_

start out with our goal;
fork and try to unify the goal with all of our rules’ conclusions;
add premises as subgoals to the queue;

oD

recurse.

If we ever run out of subgoals, we stop.

Terms and unification

data MyTerm : Set where
var :IN — MyTerm
con : Name — List MyTerm — MyTerm

unify : (x y : MyTerm) — Maybe Subst
unify = ...

Terms and unification

data MyTerm (n : IN) : Set where

var :Finn — MyTerm n

con :Name — List (MyTermn) — MyTerm n
unify : V {n} (x y : MyTerm n) — Maybe (4 (Subst n))
unify = ...

Inference rules

record Rule (n : IN) : Set where
constructor rule
field
name :Name
conclusion : MyTerm n
premises : List (MyTerm n)

arity : V {n} (r : Rulen) > IN
arity = length o premises

A ‘hint database’ is a list of rules.

Proof trees

data SearchTree (A : Set) : Set where
leaf :A — SearchTree A
node : List (oo (SearchTree A)) — SearchTree A

fail : V {A} — SearchTree A
fail = node []

Proofs

data Proof : Set where
con : (name : Name) (args : List Proof) — Proof

Proofs

data Proof : Set where
con : (name : Name) (args : List Proof) — Proof

PartialProof : IN — Set
PartialProof m =
(A k — Vec (MyTerm m) k X (Vec Proof k — Proof))

app: VY {nk}
— (r: Rule n)
— Vec Proof (arity r + k)
— Vec Proof (suc k)

Building the search tree

We can build up a lazy SearchTree using backward-chaining search:

solve
VY {m} (g : MyTerm m) — HintDB — SearchTree Proof
solve gdb = ...

Building the search tree

We can build up a lazy SearchTree using backward-chaining search:

solve
YV {m} (g : MyTerm m) — HintDB — SearchTree Proof
solve g db = solveAcc (1, g :: [], head) db

solveAcc

.V {m} — PartialProof m — HintDB — SearchTree Proof
solveAcc {m} (0, [1, p)db =leaf (p[])
solveAcc {m} (suc k,g:: gs, p) db = node (map next db)

Building the search tree (cont'd)

In next, we then:

a0~

see if the conclusion can be unified with the current goal;
raise the variables in the rule by m to avoid conflict;
prepend the premises to the list of current goals;

apply the rule to the partial proof;

call solveAcc with the new partial proof.

Traversing the search tree

We can traverse the lazy SeachTree using, e.g. depth-first search:

dfs:V {A} (depth : N) — SearchTree A — List A

dfs zero _ =]

dfs (suck) (leaf x) =x::]

dfs (suck) (node xs) = concatMap (A x — dfsk (b x)) xs

Where p is Agda’s notation for ‘force’.

Missing pieces

We

—_

o >~ 0D

. quote the current goal;

translate the Agda AST to our own term data type;
run proof search;

translate the resulting term data type to an Agda AST;
unquote the resulting AST.

Connecting to Agda’s reflection

idTerm : Term
idTerm = quoteTerm (A {A: Set} (x: A) — x)

Connecting to Agda’s reflection

idTerm : Term
idTerm = quoteTerm (A {A: Set} (x: A) — x)

idTest : idTerm = lam hidden (lam visible (var 0 []))
idTest = refl

Connecting to Agda’s reflection

idTerm : Term
idTerm = quoteTerm (A {A: Set} (x: A) — x)

Connecting to Agda’s reflection

idTerm : Term
idTerm = quoteTerm (A {A: Set} (x: A) — x)

const: {AB:Setf > A—>B— A
const = unquote (lam visible (lam visible (var 1 [])))

Connecting to Agda’s reflection

idTerm : Term
idTerm = quoteTerm (A {A: Set} (x: A) — x)

const: {AB:Setf > A—>B— A
const = unquote (lam visible (lam visible (var 1 [])))

lemma : V¥ {n} — Even n — Even (n + 1024)
lemma = quoteGoal gin ...

Why we won't talk about the translations...

data Term : Set where

var :IN — List (Arg Term) —
con :Name — List (Arg Term) —
def :Name — List (Arg Term) —
lam :Visibility — Term -
pat—lam : List Clause — List (Arg Term) —
pi :Arg Type — Type -
sort : Sort -
lit . Literal -
quote—goal : Term -
quote—term :Term -

quote—context :
unquote—term : Term — List (Arg Term) —
unknown

Term
Term
Term
Term
Term
Term
Term
Term
Term
Term
Term
Term
Term

Overview

Assuming we have some conversions from and to Agda...

postulate
fromAgda : Term — Maybe (4 MyTerm)
toAgda : Proof — Term

20

Overview

Assuming we have some conversions from and to Agda...

postulate
fromAgda : Term — Maybe (4 MyTerm)
toAgda : Proof — Term

...the auto tactic works as follows:

auto : (depth : N) — HintDB — Term — Term
auto depth db goal with fromAgda goal
.. | nothing = isNotFirstOrder
. |just(m,g) with solve g db
... | searchTree with dfs depth searchTree
] = noProof Found

() =toAgdap

20

Overview (cont'd)

Proof automation can be just like regular programming!

There are some limitations to auto:

» it only handles terms with first-order types;

» it's not blazingly fast.

An auto tactic, in general, is not very intelligent.

21

Tactics for natural numbers

data Exp (Atom : Set) : Set where
var :(x:Atom) — Exp Atom
lit :(n:IN) — Exp Atom
(+) :(eey: Exp Atom) — Exp Atom
(#) :(eeq: Exp Atom) — Exp Atom

22

Tactics for natural numbers

data Exp (Atom : Set) : Set where
var :(x:Atom) — Exp Atom
lit :(n:IN) — Exp Atom
(+) :(eey: Exp Atom) — Exp Atom
(#) :(eeq: Exp Atom) — Exp Atom

auto—proof : V e; e, p — Maybe ([e; Jlep =1 e, le p)
auto—proof e; e, p with norm e; == norm e,
auto—proof e; e, p [no _ = nothing

auto—proof e; e, p |yesnfeq = ...

22

Tactics for natural numbers

data Exp (Atom : Set) : Set where
var :(x:Atom) — Exp Atom
lit :(n:IN) — Exp Atom
(+) :(eey: Exp Atom) — Exp Atom
(#) :(eeq: Exp Atom) — Exp Atom

auto—proof : V e; e, p — Maybe ([e; Jlep =1 e, le p)
auto—proof e; e, p with norm e; == norm e,
auto—proof e; e, p [no _ = nothing

auto—proof e; e, p |yesnfeq = ...

auto—tactic: Term — Term
auto—tactict = ...

22

Tactics for natural numbers

on—goal : Name — Term
on—goal tac =
quote—goal
1’

$abs g
$ unquote—term (def tac (vArg (var 0 [])

S

23

Tactics for natural numbers

on—goal : Name — Term
on—goal tac =
quote—goal

1’

$abs g

$ unquote—term (def tac (vArg (var 0 []) ::

macro
auto : Term
auto = on—goal (quote auto—tactic)

23

Tactics for natural numbers

auto—example; : (@b:IN) - (a~b)*(a+b)=a2=-b"N?2
auto—example; a b = auto

auto—example, : (ab:IN) - (a+b)"2>a”r2+bN?2
auto—example, a b = auto

24

Future Work

» macro functions can only take quoted arguments

25

Future Work

» macro functions can only take quoted arguments

data Q {a} (A : Seta) : Set where
q: Term—- QA

macro

plus—to—times : QIN — > Q IN
plus—to—times = ...

macro

auto : (depth : N) — HintDB — Term
auto = ...

25

Conclusion

» Proof automation can be just like regular programming!

» In bleeding-edge Agda, one can implement tactics without much
syntactic noise.

» An auto tactic can be useful for putting programs together in a
robust manner; not for proof search.

» Understanding the problem space and writing a fast decision

procedure is much more useful, but also takes much more effort.

26

	Programming proof search using reflection

