Auto in Agda

Wen Kokke

June 12, 2015

Programming proof search using reflection

Proofs and programs

- ► In a language with dependent types, "programs are proofs" and "types are propositions".
- ▶ Proof terms can be brittle and are often tedious to write.

Evenness

```
data Even: \mathbb{N} \to \operatorname{Set} where
base: Even 0
step: \forall \{n\} \to \operatorname{Even} n \to \operatorname{Even} (2+n)
even8: Even 8
even8 = step (step (step base)))
```

Evenness

```
data Even: \mathbb{N} \to \operatorname{Set} where
base: Even 0
step: \forall \{n\} \to \operatorname{Even} n \to \operatorname{Even} (2+n)
even8: Even 8
even8 = step (step (step base)))

There is a clear need for automation...
```

even1024 : Even 1024

even1024 = ...

Proof by reflection

```
data \top: Set where \mathtt{tt}: \top data \bot: Set where \mathsf{even}?: \mathbb{N} \to \mathsf{Set} \mathsf{even}: \mathbb{N} \to \mathsf{Set}
```

Proof by reflection

```
data T: Set where tt: T
data ⊥: Set where
even?: \mathbb{N} \to \mathsf{Set}
even? 0 = T
even? 1 = \bot
even? (suc (suc n)) = even? n
even1024 : even? 1024
even1024 = tt
```

Soundness

```
\begin{array}{lll} \text{soundness}: (n:\mathbb{N}) \to \text{even? } n \to \text{Even } n \\ \text{soundness} & 0 & e = \text{base} \\ \text{soundness} & 1 & () \\ \text{soundness (suc (suc } n)) & e = \text{step (soundness } n \, e) \end{array}
```

Soundness

```
soundness : (n : \mathbb{N}) \to \text{even}? n \to \text{Even } n
soundness 0 = e = \text{base}
soundness 1 = ()
soundness (suc (suc n)) e = \text{step} (soundness n = e)
even 1024 : \text{Even } 1024
even 1024 = \text{soundness } 1024 tt
```

Open terms

But what to do for open terms?

```
lemma : \forall \{n\} \rightarrow \text{Even } n \rightarrow \text{Even } (n+1024)
lemma = ...
```

Open terms

But what to do for open terms?

```
lemma : \forall \{n\} \rightarrow \text{Even } n \rightarrow \text{Even } (n+1024)
lemma = auto
```

Open terms

But what to do for open terms?

```
lemma : \forall \{n\} \rightarrow \text{Even } n \rightarrow \text{Even } (n + 1024)
lemma = tactic (auto 5 db)
```

How auto works

We

- quote the current goal;
- 2. translate the Agda AST to our own term data type;
- 3. run proof search;
- translate the resulting term data type to an Agda AST;
- 5. unquote the resulting AST.

How proof search works

We

- 1. start out with our goal;
- 2. fork and try to unify the goal with all of our rules' conclusions;
- 3. add premises as subgoals to the queue;
- 4. recurse.

If we ever run out of subgoals, we stop.

Terms and unification

```
data MyTerm : Set where  var : \mathbb{N} \longrightarrow \mathsf{MyTerm}   con : \mathsf{Name} \to \mathsf{List} \ \mathsf{MyTerm} \to \mathsf{MyTerm}   unify : (x\ y : \mathsf{MyTerm}) \to \mathsf{Maybe} \ \mathsf{Subst}   unify = ...
```

Terms and unification

```
data MyTerm (n : \mathbb{N}): Set where

var : Fin n \rightarrow \text{MyTerm } n

con : Name \rightarrow \text{List (MyTerm } n) \rightarrow \text{MyTerm } n

unify: \forall \{n\} (x \ y : \text{MyTerm } n) \rightarrow \text{Maybe } (\exists \text{ (Subst } n))

unify = ...
```

Inference rules

```
record Rule (n : \mathbb{N}): Set where constructor rule field

name : Name conclusion : MyTerm n premises : List (MyTerm n)

arity : \forall \{n\} \ (r : \text{Rule } n) \to \mathbb{N}

arity = length \circ premises
```

A 'hint database' is a list of rules.

Proof trees

```
\begin{array}{ll} \mathsf{data} \ \mathsf{SearchTree} \ (A : \mathsf{Set}) : \mathsf{Set} \ \mathsf{where} \\ \mathsf{leaf} \ : A & \to \mathsf{SearchTree} \ A \\ \mathsf{node} : \mathsf{List} \ (\infty \ (\mathsf{SearchTree} \ A)) \ \to \mathsf{SearchTree} \ A \\ \mathsf{fail} : \forall \ \{A\} \to \mathsf{SearchTree} \ A \\ \mathsf{fail} = \mathsf{node} \ [] \end{array}
```

Proofs

```
data Proof : Set where con : (name : Name) (args : List Proof) \rightarrow Proof
```

Proofs

```
data Proof: Set where
   con : (name : Name) (args : List Proof) \rightarrow Proof
PartialProof: \mathbb{N} \to \mathsf{Set}
PartialProof m =
   \exists (\lambda k \to \text{Vec }(\text{MyTerm } m) k \times (\text{Vec Proof } k \to \text{Proof}))
app: \forall \{n \ k\}
   \rightarrow (r: Rule n)
    \rightarrow Vec Proof (arity r + k)
    \rightarrow Vec Proof (suc k)
```

Building the search tree

We can build up a lazy SearchTree using backward-chaining search:

```
solve : \forall \; \{m\} \; (g: \mathsf{MyTerm} \; m) \to \mathsf{HintDB} \to \mathsf{SearchTree} \; \mathsf{Proof} \; \mathsf{solve} \; g \; db = \dots
```

Building the search tree

We can build up a lazy SearchTree using backward-chaining search:

```
\label{eq:solve} \begin{array}{l} \mathsf{solve} \\ : \forall \ \{m\} \ (g : \mathsf{MyTerm} \ m) \to \mathsf{HintDB} \to \mathsf{SearchTree} \ \mathsf{Proof} \\ \mathsf{solve} \ g \ db = \mathsf{solveAcc} \ (1 \ , g :: [] \ , \mathsf{head}) \ db \\ \\ \mathsf{solveAcc} \\ : \forall \ \{m\} \to \mathsf{PartialProof} \ m \to \mathsf{HintDB} \to \mathsf{SearchTree} \ \mathsf{Proof} \\ \mathsf{solveAcc} \ \{m\} \ ( \ 0 \ , \ [] \ , \ p) \ db \ = \mathsf{leaf} \ (p \ []) \end{array}
```

solveAcc $\{m\}$ (suc k, g :: gs, p) db = node (map next db)

Building the search tree (cont'd)

In next, we then:

- 1. see if the conclusion can be unified with the current goal;
- 2. raise the variables in the rule by m to avoid conflict;
- 3. prepend the premises to the list of current goals;
- 4. apply the rule to the partial proof;
- 5. call solveAcc with the new partial proof.

Traversing the search tree

We can traverse the lazy SeachTree using, e.g. depth-first search:

```
\begin{array}{ll} \mathsf{dfs} : \forall \ \{A\} \ (depth : \mathbb{N}) \to \mathsf{SearchTree} \ A \to \mathsf{List} \ A \\ \mathsf{dfs} \ \mathsf{zero} &= [] \\ \mathsf{dfs} \ (\mathsf{suc} \ k) \ (\mathsf{leaf} \ x) &= x :: [] \\ \mathsf{dfs} \ (\mathsf{suc} \ k) \ (\mathsf{node} \ xs) &= \mathsf{concatMap} \ (\lambda \ x \to \mathsf{dfs} \ k \ (\flat \ x)) \ xs \end{array}
```

Where b is Agda's notation for 'force'.

Missing pieces

We

- quote the current goal;
- 2. translate the Agda AST to our own term data type;
- 3. run proof search;
- translate the resulting term data type to an Agda AST;
- 5. unquote the resulting AST.

```
 \begin{aligned} \mathsf{idTerm} : \mathsf{Term} \\ \mathsf{idTerm} &= \mathsf{quoteTerm} \; (\lambda \; \{A : \mathsf{Set}\} \; (x : A) \to x) \end{aligned}
```

```
\label{eq:definition} \begin{split} & \mathsf{idTerm} : \mathsf{Term} \\ & \mathsf{idTerm} = \mathsf{quoteTerm} \; (\lambda \; \{A : \mathsf{Set}\} \; (x : A) \to x) \\ & \mathsf{idTest} : \mathsf{idTerm} \equiv \mathsf{lam} \; \mathsf{hidden} \; (\mathsf{lam} \; \mathsf{visible} \; (\mathsf{var} \; 0 \; [])) \\ & \mathsf{idTest} = \mathsf{refl} \end{split}
```

```
 \begin{aligned} \mathsf{idTerm} : \mathsf{Term} \\ \mathsf{idTerm} &= \mathsf{quoteTerm} \; (\lambda \; \{A : \mathsf{Set}\} \; (x : A) \to x) \end{aligned}
```

```
\label{eq:definition} \begin{split} & \mathsf{idTerm} : \mathsf{Term} \\ & \mathsf{idTerm} = \mathsf{quoteTerm} \; (\lambda \; \{A : \mathsf{Set}\} \; (x : A) \to x) \\ & \mathsf{const} : \{A \; B : \mathsf{Set}\} \to A \to B \to A \\ & \mathsf{const} = \mathsf{unquote} \; (\mathsf{lam} \; \mathsf{visible} \; (\mathsf{lam} \; \mathsf{visible} \; (\mathsf{var} \; 1 \; []))) \end{split}
```

```
\label{eq:definition} \begin{split} \operatorname{idTerm} &: \operatorname{Term} \\ \operatorname{idTerm} &= \operatorname{quoteTerm} \; (\lambda \; \{A : \operatorname{Set}\} \; (x : A) \to x) \\ \\ \operatorname{const} &: \{A \; B : \operatorname{Set}\} \to A \to B \to A \\ \\ \operatorname{const} &= \operatorname{unquote} \; (\operatorname{lam} \; \operatorname{visible} \; (\operatorname{lam} \; \operatorname{visible} \; (\operatorname{var} \; 1 \; []))) \\ \\ \operatorname{lemma} &: \; \forall \; \{n\} \to \operatorname{Even} \; n \to \operatorname{Even} \; (n+1024) \\ \\ \operatorname{lemma} &= \operatorname{quoteGoal} \; g \; \operatorname{in} \; \dots \end{split}
```

Why we won't talk about the translations...

data Term: Set where

```
\rightarrow List (Arg Term) \rightarrow Term
                   : \mathbb{N}
var
                   : Name
                                  \rightarrow List (Arg Term) \rightarrow Term
con
def
                   : Name \rightarrow List (Arg Term) \rightarrow Term
                   : Visibility \rightarrow Term \rightarrow Term
lam
pat-lam
                  : List Clause \rightarrow List (Arg Term) \rightarrow Term
pi
                  : Arg Type \rightarrow Type
                                                          \rightarrow Term
                  : Sort
                                                          \rightarrow Term
sort
                  : Literal
                                                          \rightarrow Term
lit
quote-goal : Term
                                                          \rightarrow Term
quote-term : Term
                                                          \rightarrow Term
                                                               Term
quote-context:
unquote-term: Term
                                  \rightarrow List (Arg Term) \rightarrow Term
unknown
                                                               Term
```

Overview

Assuming we have some conversions from and to Agda...

```
postulate
```

```
\mathsf{fromAgda} : \mathsf{Term} \ \to \mathsf{Maybe} \ (\exists \ \mathsf{MyTerm})
```

 $\mathsf{toAgda} \quad : \mathsf{Proof} \ \to \mathsf{Term}$

Overview

postulate

Assuming we have some conversions from and to Agda...

toAgda : Proof \rightarrow Term

fromAgda: Term \rightarrow Maybe (\exists MyTerm)

```
...the auto tactic works as follows:
      auto : (depth : \mathbb{N}) \to \mathsf{HintDB} \to \mathsf{Term} \to \mathsf{Term}
      auto depth db goal with from Agda goal
      ... | nothing = isNotFirstOrder
      ... | just (m, g) with solve g db
      ... | searchTree with dfs depth searchTree
      \dots \mid [] = noProofFound
      ... |(p :: \_)| = toAgda p
```

Overview (cont'd)

Proof automation can be just like regular programming!

There are some limitations to auto:

- ▶ it only handles terms with first-order types;
- it's not blazingly fast.

An auto tactic, in general, is not very intelligent.

```
data Exp (Atom: Set): Set where

var : (x: Atom) → Exp Atom

lit : (n: \mathbb{N}) → Exp Atom

\_\langle + \rangle\_ : (e e_1: Exp Atom) → Exp Atom

\_\langle * \rangle\_ : (e e_1: Exp Atom) → Exp Atom
```

```
data Exp (Atom: Set): Set where
   var : (x : Atom) \rightarrow Exp Atom
   lit : (n:\mathbb{N}) \rightarrow \mathsf{Exp}\ Atom
   \langle + \rangle : (e \ e_1 : \mathsf{Exp} \ Atom) \to \mathsf{Exp} \ Atom
   \langle * \rangle : (e e_1 : \mathsf{Exp} \ Atom) \to \mathsf{Exp} \ Atom
auto-proof : \forall e_1 e_2 \rho \rightarrow \mathsf{Maybe} (\llbracket e_1 \rrbracket e \rho \equiv \llbracket e_2 \rrbracket e \rho)
auto-proof e_1 e_2 \rho with norm e_1 == norm e_2
auto-proof e_1 e_2 \rho | no = nothing
auto-proof e_1 e_2 \rho | yes nfeq = ...
```

```
data Exp (Atom: Set): Set where
   var : (x : Atom) \rightarrow Exp Atom
   lit : (n:\mathbb{N}) \rightarrow \mathsf{Exp}\ Atom
   \langle + \rangle : (e \ e_1 : \mathsf{Exp} \ Atom) \to \mathsf{Exp} \ Atom
   \langle * \rangle : (e e_1 : \mathsf{Exp} \ Atom) \to \mathsf{Exp} \ Atom
auto-proof : \forall e_1 e_2 \rho \rightarrow \mathsf{Maybe} (\llbracket e_1 \rrbracket e_2 \llbracket e_2 \rrbracket e_\rho)
auto-proof e_1 e_2 \rho with norm e_1 == norm e_2
auto-proof e_1 e_2 \rho | no = nothing
auto-proof e_1 e_2 \rho | yes nfeq = ...
auto-tactic: Term → Term
auto-tactic t = ...
```

```
on-goal : Name \rightarrow Term
on-goal tac =
quote-goal
$ abs "g"
$ unquote-term (def tac (vArg (var 0 []) :: [])) []
```

```
on-goal : Name → Term
on-goal tac =
  quote-goal
    $ abs "g"
    $ unquote-term (def tac (vArg (var 0 []) :: [])) []

macro
  auto : Term
  auto = on-goal (quote auto-tactic)
```

```
\mathsf{auto-example}_1 : (a\ b : \mathbb{N}) \to (a \div b) * (a + b) \equiv a \land 2 \div b \land 2 \mathsf{auto-example}_1\ a\ b = \mathsf{auto}
```

auto-example₂ :
$$(a \ b : \mathbb{N}) \to (a + b) \land 2 \ge a \land 2 + b \land 2$$

auto-example₂ $a \ b =$ auto

Future Work

▶ macro functions can *only* take quoted arguments

Future Work

macro functions can only take quoted arguments

```
data Q \{a\} (A : Set a) : Set where
   a: \mathsf{Term} \to \mathsf{Q} A
macro
   plus-to-times : Q \mathbb{N} -> Q \mathbb{N}
   plus-to-times = ...
macro
   auto : (depth : \mathbb{N}) \rightarrow \mathsf{HintDB} \rightarrow \mathsf{Term}
   auto = ...
```

Conclusion

- Proof automation can be just like regular programming!
- In bleeding-edge Agda, one can implement tactics without much syntactic noise.
- ► An auto tactic can be useful for putting programs together in a robust manner; not for proof search.
- Understanding the problem space and writing a fast decision procedure is much more useful, but also takes much more effort.