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Abstract
The foundations of functional programming are built on the λ-calculus,
a powerful model of computation whose canonicity is affirmed by its
correspondence with intuitionistic logic. The foundations of concurrent
computation are built on less firm ground. There is a wide variety of
process calculi, but none enjoy the same canonicity as the λ-calculus,
nor an exact correspondence with logic. Since its inception by Girard
[1987], Classical Linear Logic has been believed to have some relation to
concurrent computation, whichhas spawned awealth of research in both
logic and programming language theory.
This thesis continues the work towards a foundation for concurrent
computation, starting from the propositions-as-sessions correspondence
proposed by Wadler [2012]. Drawing on the work of Abramsky
[1994], Bellin and Scott [1994], and Caires and Pfenning [2010], among
others, Wadler proposed the process calculus CP, which has an exact
correspondence with Classical Linear Logic. Drawing on the work of
Honda [1993], Honda et al. [1998], and Gay and Vasconcelos [2010],
among others, Wadler proposed the session-typed functional language
GV, which provides a practical foundation for session-typed concurrency
in functional languages. Finally, Wadler connects GV and CP by means
of an operational correspondence, and, thereby, connects practice of
session-typed concurrency to Classical Linear Logic.
This thesis provides an in-depth study of the propositions-as-sessions
correspondence proposed by Wadler, highlighting its strengths and
repairing a number of its shortcomings. Due to its adoption of commuting
conversions, Wadler’s CP is non-confluent, and its semantics are difficult
to realise using the abstractions of concurrent computation it purports
to model. I address this shortcoming by removing the commuting
conversions, and showing that the resulting process calculus is well-
behaved and retains its connection to linear logic. Due to its lack of
a parallel composition operator, Wadler’s CP is ill-suited to an analysis
using standard concurrency theory. Wadler’s GV lacks an operational
semantics and accounts of polymorphism and replication, which were
provided by Lindley and Morris [2014; 2015; 2016b]. Unfortunately,
Lindley and Morris’ GV suffers from similar problems as CP with
regard to its treatment of parallel composition, which complicates its
metatheory. I address this shortcoming in both systems by adding a
parallel composition operator and showing that the resulting calculus is
well-behaved and correspond to a hypersequential variant of Classical
Linear Logic. Finally, I study Priority CP, a variant of Wadler’s
propositions-as-sessions correspondence proposed by Dardha and Gay
[2018], which increases its expressivity at the cost of its compositionality
and correspondence to logic. As with CP, I remove the commuting
conversions from Priority CP, and complete the correspondence with
Priority GV, which is the analogous variant of GV.
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Lay Summary
In recent decades, programming languages have widely adopted data
type checking, which are amechanism that helps programmerswrite safe
and secure programs by ruling out data errors. An example of a data
error would be if the program that manages bank accounts handled the
account balance as text rather than as a number. If my balance is £50
and I deposit £20, I would expect my balance to become £70, not the text
‘5020’.

When a programming language is designed with care, it is possible to
automatically determine if a program is free fromdata errors by checking
the types of ways in which some data is handled (data types) against
each other (e.g. the account balance is handled as a number here but as
text there) or against the programmer’s stated intention (e.g. the account
balance is handled as text, but the programmer stated that it should
always be handled as a number).

With the rise of the internet and the end of Moore’s Law, concurrent
programs are becoming increasingly important. A concurrent program
consists of multiple processes that run at the same time and may share
resources or communicate by passing messages. Examples include your
browser communicating with a server, an ATM communicating with a
bank, and the thousands of graphics processors involved in rendering
your favourite game.

Concurrent programs are vulnerable to erroneous behaviours that
cannot be prevented by data types. For an example of such an error,
let us consider what would happen if the program that manages bank
accounts handled each deposit or withdrawal in three steps: (1) read
the current balance, (2) calculate the updated balance by adding the
amount deposited or subtracting the amount withdrawn, and (3) write
the updated account balance. If the account balance for the joint account
that I share with my partner is £100, I use one ATM to deposit £60, and
my partner uses another ATM to withdraw £50, then we would expect
our balance to become £110. If the two interactions happen in sequence,
this is what happens. However, each ATM reads and writes the account
balance separately, and these reads and writes may be interleaved in any
order:

• If my ATM reads the initial balance of £100, then my partner
withdraws £50, and then my ATM writes the updated balance of
£100 plus the deposited £60, the final balance becomes £160.

• If my partner’s ATM reads the initial balance of £100, then I deposit
£60, and then my partner’s ATMwrites the updated balance of £100
minus the withdrawn £50, the final balance becomes £50.

This kind of error is known as a race condition. Race conditions are
difficult to diagnose since, while the program is fundamentally incorrect,
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the erroneous behaviour might not happen most of the time. After all,
how often do my partner and I use our joint account at exactly the same
time? So if I, unaware of my partner’s simultaneous withdrawal, call my
bank to complain that “I deposited £60, but my balance went down!”, an
engineermight test the bank’s programby depositing £60, see the account
balance go up, and conclude that everything is working as intended.

Behavioural type checking is a mechanism which aims to rule out race
conditions and other such erroneous behaviours. Whereas data types
describe the way that a program must always handle some data (e.g. the
account balancemust always be handled as a number), behavioural types
describe the evolving way a programmust interact with its environment
over time (e.g. usually, the bank’s program should accept any request
for a transaction, but while a transaction is ongoing, it should not accept
requests for other transactions on the same account).

Most mainstream programming languages do not support behavioural
types and, as such, it is not generally possible to automatically determine
if a program is free from behavioural errors. In practice, writing
correct concurrent programs comes down to the programmer correctly
reasoning about how multiple processes might interact and correctly
diagnosing and repairing errors, both of which are incredibly difficult
tasks.

One reason that behavioural types have not yet seen widespread
mainstream adoption is that the mathematical foundation underlying
them is several decades younger and less well understood than the
mathematical foundation underlying data types.

In this thesis, I investigate several proposed theories that could become
the mathematical foundation underlying behavioural types for message-
passing communication in concurrent programs. I identify several
shortcomings in the proposed theories and, on the basis of my findings,
propose a new mathematical foundation for behavioural types. I
develop the theory necessary to integrate the proposed behavioural types
into existing programming languages and describe a proof of concept
implementation.
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Chapter 1

Introduction

The foundations of functional programming are built on the λ-calculus,
a powerful Model of Computation whose canonicity is affirmed by its
correspondence with intuitionistic logic. The foundations of concurrent
computation are built on less firm ground. There is a wide variety of
process calculi, but none enjoy the same canonicity as the λ-calculus, nor
an exact correspondence with logic.

Since its inception by Girard [1987], Classical Linear Logic (CLL) has been
believed to have some relation to concurrent computation, which has
spawned a wealth of research in both logic and programming language
theory.

This thesis continues the work towards a foundation for concurrent
computation, starting from the propositions-as-sessions correspondence
proposed by Wadler [2012].

• Drawing on the work of Abramsky [1994], Bellin and Scott [1994],
and Caires and Pfenning [2010], among others, Wadler proposed
the process calculus Classical Processes (CP), which has an exact
correspondence with Classical Linear Logic.

• Drawing on the work of Honda [1993], Honda et al. [1998], and Gay
andVasconcelos [2010], among others,Wadler proposed the session-
typed functional language Good Variation (GV), which provides a
practical foundation for session-typed concurrency in functional
languages.

• Finally, Wadler connects GV and CP by means of an operational
correspondence, and, thereby, connects practice of session-typed
concurrency to Classical Linear Logic.

The names CP and GV are unstated homages to the authors of the work
that inspired them: Classical Processeswas based on πDILL by Caires and
Pfenning [2010; later Caires et al., 2016]; andGoodVariationwas based on
LAST by Gay and Vasconcelos [2010; the name LASTwas given by Lindley
and Morris, 2015].

11



12 Chapter 1. Introduction

Let us start by discussing Wadler’s propositions-as-sessions
correspondence at a glance. The paper contains two separate
correspondences:

1. CP demonstrates that the original and most well-known sequent
calculus for full CLL, exactly as presented byGirard [1987, pp. 22 and
26-27], can be interpreted as something that syntactically resembles
a process calculus. I intentionally avoid calling CP a process
calculus—whether or not it is is debatable—but it can hardly be
denied that CP looks like a process calculus.

2. GV, together with the translations from GV to CP [Wadler, 2012, §
3.1; Lindley and Morris, 2015, § 3.2] and from CP to GV [Lindley and
Morris, 2015, § 3.1], demonstrates an operational correspondence
between CLL and a session-typed concurrent λ-calculus.

Only the first—the correspondence between CLL and CP—is one that I
would characterize as a Curry-Howard correspondence:

• It relates a logic and a typed Model of Computation.
• It is complete. Propositions correspond to types, proofs correspond
to processes, and cut elimination corresponds to computation.1

• It is exact. Going from the logic to the Model of Computation, and
vice versa, requires no hard work. It is simply a change of notation.

The correspondence is not a profound coincidence. CP was intentionally
constructed to correspond to CLL. Moreover, its inspiration, πDILL,
was intentionally constructed to correspond to DILL. A constructed
correspondence undermines what is arguably the most important role
of Curry-Howard correspondences. It does nothing to reassure us that
either system is profound, in the sense of a correspondence between two
systems that were independently devised.

One could argue that these correspondences relate the π-calculus to
linear logic—inwhich case theywould be profound—but I believe CP and
πDILL are too far removed from the π-calculus for this to be true.

Having rejected these correspondences as profound coincidences, let us
take a different view: CP anticipates a Curry-Howard correspondence.
The typed λ-calculus, the most popular typed Model of Computation,
corresponds exactly to intuitionistic logic. Linear logic has been said to
be relevant to concurrent computation since its inception. Sowhy not cut
out the middle-man of independent discovery and directly employ linear
logic as a typed Model of Concurrent Computation (MoCC)?

1The correspondence between CP andCLL is actually incomplete, in the sense that the
structural congruence of CPdoes not correspond to anything in CLL. The equations of the
structural congruence are merely valid rewrite rules for proofs. This is easily missed: λ-
calculus does not have a structural congruence, and as such the list of correspondences
for CP looks as complete as the list for the Curry-Howard correspondence.
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To evaluatewhether or not CP is successful under this particular view, we
must examine what we want from a typed MoCC:

• What is the intended purpose for our typed MoCC?
• Do we want our typed MoCC to be as expressive as the π-calculus?
• What properties do we want our typed MoCC to have?

To me, the purpose of a type system is to rule out erroneous programs.
The price of a type system is necessarily a reduction in expressivity—for
the silly reason that we can no longer express erroneous programs, and
for the serious reason that the exact boundary between erroneous and
non-erroneous is difficult to capture.

• I do not want to evaluate programs with data-type errors such as
"hello" + true. The price paid is more difficulty with code reuse
[see, e.g. McBride, 2010, Dagand and McBride, 2014, Stump, 2017]

• I do notwant to evaluate programs that loop indefinitely, such as x =
x. The price paid is more difficulty with recursive algorithms due to
the undecidability of the halting problem [Davis, 1952, Kleene, 1952,
Davis, 1958].

• I do not want to evaluate programs that deadlock. The price paid is
more difficulty with certain concurrent communication structures.

It seems unreasonable to expect our typed MoCC to be as expressive as,
say, the π-calculus, simply because the π-calculus includes all of the above
erroneous behaviors. However, this raises an important question: What
behaviors are erroneous?

Let us consider Mazza [2018], who paints a pessimistic picture of the
“proofs as processes” program. They argue that neither CLL nor DiLL2

[Differential Linear Logic, Ehrhard and Regnier, 2006, Ehrhard, 2018] can
satisfactorily encode even an elementary process calculus, as neither can
express confusion—a kind of non-local non-determinism in which two
communications mutually exclude each other. This raises an immediate
question: Dowewant confusion? The question alone elicits an immediate
and visceral “No!” from the audience, but once our gut reaction subsides,
we should evaluate the question formally.

Mazza [2018] demonstrates that confusion is present in even the most
elementary MoCCs, and that confusion is preserved by any encoding
that preserves the degree of distribution—i.e. any encoding that is a
homomorphism on parallel composition. Therefore, there exists a class
of processes for which we must choose (a) to allow confusion, or (b) to
accept a reduction in the degree of distribution. Networking algorithms
commonly allow for confusion—e.g. leader election only requires that

2Note that DiLL refers to Differentiable Linear Logic, whereas DILL refers to Dual
Intuitionist Linear Logic. The only difference in writing is the capitalization of the “i”.
Presumably, both are pronounced like the herb.
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some leader is elected. Therefore, I do not feel comfortable rejecting
confusion outright. However, accepting confusion means rejecting
strong normalization and the Church-Rosser property. To me, those
properties are synonymous with safety, and I cannot reject them outright
either.

We may want to allow our programming languages to write programs
with local non-determinism or confusion, but we should never allow the
programmer to write such a program by accident. This seems to require
that we capture programs with these properties using some modality.
CLL captures non-linearity using the exponentials. DiLL captures failure
and local non-determinism using the co-exponentials. I choose not to
commit to the wholesale acceptance or rejection of non-determinism and
confusion. Rather, my stance is that all is not lost if our typed MoCC does
not support confusion. Wehave simply taken the first step on our journey
of trying to claw back the steep price we paid for types.

Dependently-typed λ-calculus recovers a lot of the expressivity of the λ-
calculus by allowing output data to depend on input data. For instance,
it can express any recursive function whose termination can be proved
within the type system of the calculus itself. It stands to reason that a
typed process calculus could likewise recover expressivity by allowing
the present communication structure of a program to depend on the past
communication structure.

Iwould argue that to build a dependently-typed process calculus, weneed
the solid foundation of a simply-typed process calculus. I believe—and
intend to convince you in this thesis—that the simply-typed fragment of
CP is not yet the solid foundation we are looking for.

• The correspondence between CP and process calculus is lacking,
because CP does not easily admit a behavioural theory, e.g. a
labelled-transition system and a behavioural equivalence.

• The correspondence between CP and CLL is lacking, because the
sequent calculus for CLL is not the canonical proof theory. Proof
nets are the canonical representation of CLL proofs! This is an issue
with CP as a typed MoCC, because the sequent calculus has a lower
degree of distribution than the proof nets.

• CLL itself is lacking as a foundation for a typed MoCC. It does
not describe non-determinism, unlike DiLL [Ehrhard, 2018]. It
describes parallelism as independence, and its dual as dependence,
but cannot describe sequential dependence, unlike Pomset Logic
[Retoré, 1997] and BV [Guglielmi, 2007].

The first assignment Philip Wadler gave me as my Ph.D. supervisor
was to add support for non-determinism to CP. I did, albeit poorly
[Kokke, 2017]. However, while doing so, I discovered more ways in
which CP is lacking as a process calculus. Since CP does not have a
standalone process construct for parallel composition, the extension I
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introduced has three different process constructs that contain a parallel
composition (two inherited from CP, and a third that permits non-
determinism). Parallel composition is the most crucial connective in
a process calculus. Not having it as a standalone process construct
in CP is untenable. Consequently, I pivoted to restructuring CP to
include parallel composition as a standalone process construct and
tighten its correspondence with the π-calculus, while retaining its tight
correspondence with CLL. This work is the principal focus of this thesis
and is presented in Chapter 3 and Chapter 4. At times, I will allude to
the second and third points, and arguably some of the work on priorities
in Chapter 5 applies to the third point. However, I consider them out of
scope for this thesis, as I believe that each could correspond to several
theses in their own right.

The result should, at least at its core, be a conservative extension of CP.
There are three main reasons for wanting this.

1. It retains some correspondence with Classical Linear Logic, even if
the correspondence is no longer as obvious as in Wadler’s case.

2. It ensures that any previous work on CP, such as Wadler’s work
on polymorphism and unrestricted usage and Lindley and Morris’
work on fixed points, carries over without too much trouble.

3. It eases the future integration of the features offered by DiLL,
Pomset Logic, and BV, since these logics are all extensions of CLL.

As I mentioned, my first assignment was to add support for non-
determinism to CP, which I did, though in a manner I have always
found unsatisfactory [Kokke, 2017]. Later, Qian et al. [2021] found the
exact structure I was looking for. In hindsight, the answer was there all
along, in logic! DiLL extends CLL with co-exponentials, which make cut
elimination non-deterministic [Ehrhard, 2005, 2018]. Qian, Kavvos, and
Birkedal’s work, which extends CP with DiLL’s co-exponentials, uses the
work on hypersequents presented in Chapter 3.

What role does GV play in the propositions-as-sessions correspondence?
CP demonstrates a correspondence between a process calculus and
CLL—a correspondence so exact that it requires no proof—but CP is
unsatisfactory as a foundation for a programming language for one
simple reason: CP does not have functions. In CLL, everything is defined
in terms of duality. This matches well with session types and channel-
based communication, where two processes act in dual ways, but does
notmatchwell with functions. CLL’s implication is classical, and does not
lend itself to an interpretation as a function type. A significant portion of
programming language theory is built on the foundations of functions
and the λ-calculus. Hence, adopting CP as the foundation for concurrent
programming means parting ways with a significant body of work.

In essence, GV extends CP with functions. Extending CP with a function
type requires extending CLL with an intuitionistic implication, which is
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more complicated than simply adding a connective, as CLL’s sequents
are fundamentally classical. There are some approaches to mixing
classical and intuitionistic connectives in the literature on logic, such
as Display Logic [Belnap, 1982]. However, none of these approaches
have the widespread acceptance of CLL, nor are they easily amenable
to a term calculus. Instead, Wadler [2012] approaches GV from the
perspective of concurrent λ-calculus, and adapts Gay and Vasconcelos’
LAST [Gay and Vasconcelos, 2010] to fit a correspondence with CP.
From a theoretical viewpoint, GV embeds an axiomatisation of CP into
the linear λ-calculus using constants. From a practical viewpoint, GV
resembles the way in which concurrency is exposed to the user in real-
world programming languages, such as the POSIX Threads API for the
C programming language. GV offers the user an API—a collection of
constant functions which create threads and channels, send messages,
etc—but concrete threads, parallel composition, and name restriction are
not representable in the static language. The user cannotwrite a program
that is the parallel composition of two processes, only a program which
creates that configuration. Thismakes it very easy to implement GV’s safe
concurrency primitives as a library in existing programming languages,
on top of the language’s unsafe concurrency primitives, and doubly so
if the languages already supports some form of linear types [see, e.g.
Lindley and Morris, 2016a, Kokke, 2019, Kokke and Dardha, 2021b].

To put it plainly, CP is a theoretical tool for studying foundational well-
behaved concurrent systems, but GV is what you actually implement.

What role does the correspondence between CP and GV play? Wadler
[2014, p. 385] writes that the correspondence formalises, for the first
time, “a tight connection between a standard presentation of session
types and linear logic”, which formally confirms the previously assumed
connection. However, this leaves us with a question. Now that the
connection is formally confirmed, what is the purpose of continuing to
maintain the correspondence as we make changes to CP and GV? I am
motivated to do so for two reasons.

Firstly, an exact correspondence, especially one that preserves parallel
composition, reassures us that GV is correct, in that the communication
primitives of GV capture the same communication structures as CP.
Unfortunately, constructing an exact correspondence requires some
amount of tedium, as one must show that CP’s communication channels
can correctly emulate GV’s functions and data structures. This is
well-established and an area of GV significantly less likely to contain
mistakes—or, at least, mistakes that are easily caught by a translation into
process calculus. Consequently, any part of GV that does not interact with
concurrency should be omitted from the correspondence.3 To further

3Wadler’s GV only has the concurrency primitives, product types—which are used to
type the receive primitive—and the unit type—which is used to type the primitive that
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simplify the correspondence, the translation from GV to CP is commonly
factored into two translations: a translation from GV into fine-grain GV,
which removes higher-order control flow; and a translation from fine-
grain GV into CP.4

Secondly, the translations between CP and GV are helpful in guiding you
to the correct typing and implementation of new concurrency primitives.
For instance, Wadler [2014, p. 409] considers several alternative designs,
but remarks that “these designs are difficult to translate into CP,
which suggests they may suffer from deadlock.” Indeed, the suggested
alternatives do suffer from deadlock. Hence, by following the translation,
Wadler correctly chose to abandon alternative concurrency primitives,
even though they appear more principled.

1.1 Contributions

The contributions of this thesis are centred around Wadler’s
propositions-as-sessions correspondence, and are divided into four
parts. Part I is concerned with Wadler’s propositions-as-sessions
correspondence. It discusses CP and its metatheory. Part II is concerned
with the hypersequential variants. It discusses Hypersequent CP (HCP),
Hypersequent GV (HGV), their metatheory and operational
correspondence, as well as their relation to CP and GV. Part III is
concerned with the priority-based variants. It discusses Priority CP
(PCP), Priority GV (PGV), their metatheory and operational
correspondence, as well as their relation to CP and GV. Part IV is
concerned with implementations of Good Variation and Priority GV in
Linear Haskell.

The following visualisation gives an overview of the landscape of the
formal systems discussed in this thesis, and the level of my contributions.

closes a channel. Lindley and Morris [2014] add polymorphism and replicated sessions
to GV, which correspond to CP’s polymorphism and exponentials. Lindley and Morris
[2015] add sum types to GV, which are used to replace the concurrency primitives for
choice by simply sending and receiving a value of a sum type.

4The clearest presentation of this decomposed translation can be found in Fowler
et al. [2023], which will be presented in Chapter 4, but its origins can be traced back all
the way to Lindley andMorris [2014], where fine-grain GV is referred to as HGVπ. (Note
that the “H” in HGVπ stands for “Harmonious”, not “Hypersequent” as in Chapter 4.).
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Classical Linear Logic

Classical Processes

Good Variation

operational
correspondenceJ⋅K𝘹 L⋅M

Hypersequent CP

Hypersequent GV

operational
correspondenceJ⋅K𝘹 L⋅M

conservative
extension

conservative
extension

Priority CP

Priority GV

operational
correspondenceJ⋅K𝘹 L⋅M

non-extension

non-extension

Part I Part II

Part III

Legend

No Contribution
Partial Contribution
Full Contribution

The sole green box signifies that I do not claim to have made any serious
contribution to Classical Linear Logic. The pink boxes signify that, while
Classical Processes, Good Variation, and Priority CP were not originally
developed by me, I have since contributed to these theories in one
way or another. The periwinkle boxes signify that Hypersequent CP,
Hypersequent GV, and Priority GV were developed by me and colleagues.

The arrows represent the translations and operational correspondences
between the various systems. The arrows are labelled by the
conventional names of these translations. By convention, any translation
from a variant of GV to a variant of CP is denoted by double square
brackets with an endpoint name as a subscript, i.e. J⋅K𝘹 , and any
translation from a variant of CP to a variant of GV is denoted by
double parentheses, i.e. L⋅M. The solid arrows—the translation from
Hypersequent GV to Hypersequent CP and the translation from Priority
CP to Priority GV—and were developed by me and colleagues. The
translations corresponding to the dashed and greyed-out arrows are not
discussed in this thesis.

The solid lines represent the extension and non-extension results for the
various systems with respect to CP and GV, and were developed by me
and colleagues.

The dashed boxes—labelled Part I, Part II, and Part III—roughly group
the systems by the part of this thesis in which they are discussed.

In the remainder of this section, I give a detailed account of the
contributions made in this thesis.
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Part I: Classical Processes Revisited

Part I consists of Chapter 2, which revisits Classical Processes. The
principal focus is to present, in detail, a variant of CP without commuting
conversions, which break confluence in Wadler’s CP, and show that this
variant has adequate canonical forms.

Chapter 2 contains the following contributions by me:

• I drop the commuting conversions from the reduction semantics,
which cause Wadler’s CP to be non-confluent, and prove that
progress (Proposition 2.32) continues to hold, albeit with a different
canonical form (Definition 2.30).

The reduction semantics without commuting conversions first
appeared in Kokke [2017].

• I formalise the relation between CP with and without the
commuting conversions. I prove that (1) any process in canonical
form can reduce to a process in Wadler’s canonical form using
only commuting conversions (Proposition 2.57); and (2) any
reduction with commuting conversions is equivalent to a reduction
without commuting conversions followed by a reduction using only
commuting conversions (Proposition 2.58).

To the best of my knowledge, this is the first publication in which
these properties are explicitly stated and proven for CP, though they
are hinted at by Lindley and Morris [2016b].

• I formalise the notion of dependency graph (Definition 2.35) and
deadlock (Definition 2.38) for CP, prove that CP processes are
deadlock-free (Proposition 2.39), and prove thatmy canonical forms
are adequate, by showing that processes in canonical form are
blocked on free endpoints (Corollary 2.47).

To the best of my knowledge, this is the first publication which
explicitly defines dependency and deadlock for CP, though it is
related to Lindley and Morris’ definitions of dependency and
deadlock for GV, and to PCP’s priority constraints [Dardha and Gay,
2018]. The proof of deadlock freedom is adapted from a similar
proof of deadlock freedom for GV by Lindley and Morris [2015].
My characterisation of “blocked on free endpoints” is stronger than
Lindley and Morris’ characterisation, which corresponds to my
Proposition 2.34.

• I formalise the notion of connection graph for CP (Definition 2.49),
prove that CP’s connection graphs are trees (Proposition 2.50),
prove that every CP process can be rewritten into right-branching
form (Proposition 2.51), and prove that connection graphs are
canonical representatives of processes up to a restricted structural
congruence (Proposition 2.53).
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I have informally referred to the connection graph as the process
structure or communication structure [Kokke and Dardha, 2021a,b].
The definition and corresponding theorems are adapted from
work by Simon Fowler for Hypersequent GV [Fowler et al., 2023,
Definition 3.9], who formulate the abstract process structure of the
free names in a process in terms of its typing environment and a set
of co-names.

Good Variation is introduced in Chapter 4, together with the proof that
HGV is a conservative extension of GV, and the variant of GV with cuts is
described in § 4.3.1 and § 4.3.2.

I believe that my changes to CP (in Chapter 2), are more important than
my changes to GV (in § 4.3.1). Unlike GV, CP has an exact correspondence
with CLL. Furthermore, my changes affect its reduction semantics in
a fundamental way, and these changes are used in HCP and PCP. My
changes to GV, on the other hand, are immediately superseded by the
introduction of hypersequents in HGV in Chapter 4.

If you require a detailed discussion of GV without hypersequents,
I recommend Fowler’s Ph.D. thesis, Typed Concurrent Functional
Programming with Channels, Actors, and Sessions [Fowler, 2019, Chapter
3].

Part II: Taking Linear Logic Apart

Part II consists of Chapter 3 and Chapter 4. Chapter 3 introduces
Hypersequent CP, which is a session-typed process calculus based on CP
with a tighter correspondence to the π-calculus. Chapter 4 introduces
Hypersequent GV, which is the corresponding session-typed concurrent
λ-calculus.

Chapter 3 contains the following contributions by me:

• I introduce Hypersequent CP with its typing rules and reduction
semantics, and prove preservation (Proposition 3.30) and progress
(Proposition 3.35).

The main innovation—HCP’s type system—was developed
independently by myself and by Fabrizio Montesi & Marco
Peressotti5. The reduction semantics were primarily developed by
me, and the label-transition semantics were primarily developed
by Fabrizio Montesi & Marco Peressotti.

5Our initial developments had minor errors. My initial development permitted
hyper-environments to occur in all logical rules, which breaks progress. Progress can be
repaired for the multiplicative rules, by using delayed actions [as in Kokke et al., 2019a],
but not for the additive rules. These errors made it into the first publication [Kokke
et al., 2019b]. Fabrizio Montesi & Marco Peressotti’s initial development [Montesi and
Peressotti, 2018] typed the terminated process using the empty environment, as opposed
to the empty hyper-environment, which admits MIX0.
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The similarities between my early work on Hypersequent CP
and Hypersequent Calculus [Avron, 1991] were noted by Simon
Castellan at an ABCD meeting.6

• I adapt the notions of dependency graph (Definition 3.36) and
deadlock (Definition 3.39) for HCP, prove that HCP processes are
deadlock-free (Corollary 3.42), and prove that my canonical forms
are adequate (Corollary 3.50).

• I adapt the notion of connection graph for HCP (Definition 3.51), and
prove that HCP’s connection graphs are forests (Proposition 3.52),
and that every HCP process can be rewritten into right-branching
forest form (Proposition 3.57).

• I formalise disentanglement from Hypersequent CP processes to
multisets of CPprocesses, andprove that disentanglement preserves
typing, structural congruence, and reduction.

Disentanglement was first described by Kokke et al. [2019b] as a
rewrite relation that preserves provability, but the presentation in
this thesis is novel. To the best of my knowledge, this is the first
publicationwhich shows that disentanglement preserves structural
congruence and reduction.

• I introduce a label-transition semantics for HCP and prove harmony
between the reduction and label-transition semantics (Proposition
3.93).

The label-transition semantics is a minor variation of the label-
transition semantics by Montesi and Peressotti [2018]. To the best
of my knowledge, this is the first publication that proves harmony
for a reduction and label-transition semantics for HCP.

• I introduce a variant of HCP which uses an alternative exceptional
semantics for the additive units, with both reduction and label-
transition semantics, and extend the proofs of preservation,
progress, and harmony.

• I introduce a variant of HCP which uses an alternative synchronous
semantics for link, based on identity expansion, which, I claim,
continues to work in the presence of polymorphism, and discuss the
consequent changes in canonical forms, progress, and adequacy.

• I introduce a variant of HCP which uses a combination of variant
types and focusing to further tighten the correspondence to the
π-calculus by permitting prefixing and (guarded) summation as

6My talk at the ABCDmeeting onMonday, December 18, 2017, was titled Taking Apart
Classical Processes. Oddly, it appears to refer to the calculus as Hypersequent CP, which
implies that I used the word “hypersequent” before I was aware of Avron’s work on
Hypersequent Calculus.
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syntactic constructs, extend the proof of preservation, and sketch a
proof of operational correspondence between HCP and the variant.

Chapter 4 consists primarily of the paper Separating Sessions Smoothly by
Fowler et al. [2023], written in collaboration with Simon Fowler, Ornela
Dardha, Sam Lindley, and J. Garrett Morris.

• We introduce Hypersequent GV with its typing rules and reduction
semantics, and prove preservation (Theorem I.3.3), the tree-
structure of connections in configurations (Theorem I.3.14), global
progress (Theorem I.3.20), the diamond property (Theorem I.3.21),
and termination (Theorem I.3.22).

• We define a translation from GV to HGV (Theorem I.4.3)

• We define a translation from HGV to GV (Corollary I.4.7).

• We prove an operational correspondence between HGV and HCP.
We define fine-grain call-by-value HGV (HGV∗), define translations
from HGV to HGV∗ and from HGV∗ to HCP, and prove that the
latter translation preserves types (Lemma I.5.9) and is a sound and
complete operational correspondence (Theorem I.5.11).

To the best of my knowledge, this is the first publication of a sound
and complete correspondence between any variant of CP and GV.

• We define a translation from HCP to HGV.

I co-developed Hypersequent GV and was primarily responsible for the
translations and operational correspondence between HGV and HCP.

The remainder of the chapter contains the following contributions byme:

• I introduce a variant of GV that uses cuts rather than lock typing.
Consequently, its structural congruence preserves types, which
significantly simplifies its metatheory, and I argue that under lock
types, the parallel composition construct is equivalent to a cut.

Part III: Prioritise the Best Variation

Part III consists of Chapter 5, which revisits Priority CP, a variant
of CP with priorities whose typing rules permit benign cyclic process
configurations, and introduces Priority GV, which is the corresponding
session-typed concurrent λ-calculus.

Chapter 5 consists primarily of the paper Prioritise The Best Variation by
Kokke and Dardha [2021a], written in collaboration with Ornela Dardha.

• We drop the commuting conversions from the reduction semantics
of Priority CP, which cause Dardha and Gay’s CP to be non-confluent,
and prove that progress (Theorem II.4.4) continues to hold, albeit
with a different canonical form.
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These changes are similar to the changes made to CP in Part I.

• We introduce Priority GV with its typing rules and reduction
semantics, and prove preservation (referred to as subject reduction,
Theorem II.3.5) and global progress (Theorem II.3.14).

• We define a translation from PCP to PGV, and prove that the
translation preserves types (Theorem II.4.6) and is a sound and
complete operational correspondence (Theorems II.4.7 and II.4.10).

I co-developed Priority GV and was primarily responsible for the initial
draft of its theory andmetatheory. I adapted the changes to the reduction
semantics of Priority CP from my previous work on CP.

The remainder of the chapter contains the following contributions byme:

• I prove that PCP is not an extension of CP (Counterexample 5.1).

• I define priority inference for PCP, and prove that priority inference
is sound and complete with respect to typing for PCP (Proposition
5.5 and Proposition 5.7).

Part IV: Deadlock-Free Session Types in Linear Haskell

Part IV consists of Chapter 6, which describes a library in Linear Haskell
which implements session-typed channels based on GV and Priority GV.

Chapter 6 consists primarily of the paper Deadlock-Free Session Types in
Linear Haskell by Kokke and Dardha [2021b], written in collaboration
with Ornela Dardha.

• We implement session-typed channels in Linear Haskell and argue
that a restricted interface to those channels corresponds to GV’s
channels and therefore enjoys GV’s safety guarantees.

• We define a refined variant of Priority GV’s type system, which gives
exact rather than approximate priority bounds.

• Wedefine themonadic reflection of Priority GV’s priority-based type
system into a graded linear monad, where the grading is pairs of
lower and upper priority bounds.

• We implement priority-based session-typed channels in Linear
Haskell and argue that those channels correspond to PGV’s channels
and therefore enjoys PGV’s safety guarantees.

• We compare our Haskell library to existing Haskell libraries for
session-typed channels, extending the comparison by Orchard and
Yoshida [2017].

I implemented the Haskell library, developed the refined version of
Priority GV’s type system and its monadic reflection, wrote the initial
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draft of the paper, and co-authored the comparison with existing Haskell
libraries for session-typed channels.

1.2 Conventions
In this section, I introduce several conventions that I intend use
throughout this thesis.

Barendregt’s Convention

Myproofs use Barendregt’s Convention [1985]. If a term occurs in a proof,
then all bound variables in that term are chosen to be different from each
other and all the free variables. This applies equally to variables in λ-
calculus terms and endpoint names in process calculus processes. In each
case, the proofs can be made more formal by permitting and applying α-
conversion where necessary, or by using a nameless term syntax such as
deBruijn indices.

Pattern Matching

I use the phrase “is of the form” to imply pattern matching, where
any unbound meta variable on the right hand side of that phrase is
implicitly existentially quantified, and the entire phrase is converted into
an equality, e.g. the phrase “P is of the form Q ∥ R” should be interpreted
as “there exist some Q and R such that P = Q ∥ R”.

Syntax Highlighting

Except where noted, each chapter is focused primarily on one system.

The terms of that system are printed in red, its types are printed in
blue, and its annotation—where applicable—are printed in yellow, and
all three are rendered in a sans-serif font.

To save on accessible colour combinations, the terms, types, and
annotations of any other system are printed in pink, green, and periwinkle,
respectively, and all three are rendered in an italicised font with serif.
The relations of other system, such as typing and reduction, are marked
by a subscript.

Let us discuss CP’s syntax highlighting as an example. In Chapter 2, which
focuses on CP, its processes and types of are printed in red and blue,
respectively, and are rendered in a sans-serif font. However, in Chapter
3, which focuses on HCP, CP’s processes and types are rendered in pink
and green, respectively, and both are rendered in an italicised font with
serif. Furthermore, its relations, such as its typing relation, are marked
by a subscript C, even when it was unmarked in Chapter 2.
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As a matter of personal preference, the metavariables for those syntactic
categories that are collections of terms, types, and annotations, such as
sets of names or typing environments, are typeset in the same color as the
terms, types, and annotations of that system, respectively. However, the
constructors of these collections are not typeset in that color, e.g. Γ, x ∶ A ⊢
P and not Γ, x ∶ A ⊢ P. (The comma and colon are printed in blue in the
second statement.) Likewise, functions that act on syntactic categories
are not typeset in the corresponding colours, e.g. A and not A.

Omitted Proof Sections

Some chapters end with a section titled “Omitted Proofs”. These sections
contain proofs that were omitted from the main text of the chapter. Any
proposition whose proof is omitted should provide a summary of the
proof that references the relevant omitted proofs section. For lemmas,
the proof is simply omitted, and only appears in the relevant omitted
proofs section.

Embedded Papers and Pink Pages

This thesis contains three embedded papers. The text in these papers
was not composed exclusively bymyself, and does not always respect the
conventions set out in this section. In an effort to signpost the beginning
and endof these papers, they are preceded and followedby onepinkpage,
in the following colour:

The pink page preceding each paper summarises its publication history
and my contributions, and the pink page following each paper is empty.

To ensure an easy transition into the text of these papers, the section
prior to each paper provide a legend—which summarises the differences
in its conventions, notations, and definitions—and an erratum—which
clarifies any errors in the paper.

1.3 Thesis Structure
This thesis proceeds as follows.

• In Part I, I present a variant of Classical Processes without
commuting conversions, which break confluence in Wadler’s CP,
and show that this variant is free from deadlock and has adequate
canonical forms.
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• In Part II, I present Hypersequent CP, which is a session-typed
process calculus based on CPwith a tighter correspondence to the π-
calculus, and Hypersequent GV, which is the corresponding session-
typed concurrent λ-calculus.

• In Part III, I present a variant of Priority CP without commuting
conversions and introduce Priority GV which is the corresponding
session-typed concurrent λ-calculus.

• In Part IV, I describe an implementation of session-typed channels
based on GV and Priority GV in Linear Haskell.
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Chapter 2

Classical Processes Revisited

This chapter presents Classical Processes (CP), a session-typed process
calculus introduced by Wadler [2012] based on Classical Linear Logic
[Girard, 1987, CLL].

Wadler went to great lengths to ensure an exact correspondence between
CP and CLL:

1. If you erase all that’s written in red from the typing rules of CP, you
get exactly the inference rules of CLL, as given by Girard [1987].

2. The operational semantics of CP resembles that of a process calculus
(§ 2.1), but if you examine the proof of progress [Wadler, 2012,
Proposition 2], which implements the concrete reduction strategy
for CP, the manner in which the reduction rules are used resembles
a proof of cut elimination for CLL in the style of Gentzen, as
described for classical logic by Girard et al. [1989, § 13.2].1

Wadler chose to make serious concessions to CP as a process calculus in
order to achieve its exact correspondence with CLL:

1. He combines name restriction and parallel composition into a single
term constructor, corresponding to the logical Cut rule.

As a consequence, the structural congruence for CP looks quite
unlike that of any process calculus, and many of the concepts
used in concurrency theory, such as labelled transition systems,
bisimilarity, and observational equivalents, cannot easily be
applied to CP. For example, Atkey [2017] defines an observational
equivalence for CP but, in order to do so, must introduce a second,

1It is easy tomistakeWadler’s claim for a correspondence betweenCP’s reduction and
the proof of cut elimination for the sequent calculus for CLL, as given by Girard [1987].
The citations “Girard [1987]” and “Girard et al. [1989]” are similar, and, given the context,
it is reasonable to assume that Wadler is referencing a proof by Girard [1987]—except
that Girard [1987] gives no such proof! He proves cut elimination for the proof nets of
CLL, proves that the sequent calculus is sound and complete with respect to the proof
nets, and (implicitly) obtains cut elimination for the sequent calculus as a corollary.

29
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separate term language that once again separates name restriction
and parallel composition.

2. He introduces additional reduction rules, named commuting
conversions, into CP’s operational semantics.

The commuting conversions are not canonical for process calculi,
and they are difficult to justify if we want CP to model parallel or
distributed computation, since they require that if some process is
blocked, waiting for input on some channel, then any other process
can also become blocked, waiting for input on that same channel,
whether they have access to that channel or not, and without any
communication. (I discuss the commuting conversions in detail in §
2.3.)

The version of CP presented in this section retains the first part of
the correspondence, which requires that we keep name restriction and
parallel composition combined in a single term construct. There are
several approaches to separating the two, which I present in Chapter 3,
Chapter 4, and Chapter 5, but each weakens the strict correspondence
between the typing rules and the inference rules of CLL. Therefore, I
believe that adopting any of these for CP would compromise its status
as a canonical reference point.

The version of CP presented in this section weakens the second part of
the correspondence by dropping the commuting conversions from the
operational semantics. This results in a reduction strategy much closer
to that of a process calculus and repairs several defects in Wadler’s CP.
I believe that adopting this change does not compromise the status of
CP as canonical reference point, which I discuss in detail in § 2.3 (see
Proposition 2.57 and Proposition 2.58). The reduction strategy presented
in this section still resembles a proof of cut elimination, just not in
Gentzen’s style.

In this chapter, CP’s processes are printed in red, its types are printed in
blue, and both are rendered in a sans-serif font. To save on accessible
colour combinations, the terms and types of any other system are printed
in pink and green, respectively, both are rendered in an italicised font
with serif, and any relations, such as typing and reduction, are marked
by a subscript.

This chapter proceeds as follows:

• In § 2.1, I introduce CP.

• In § 2.2, I introduce the metatheory for CP.

Notably, I prove preservation (Proposition 2.27) and progress
(Proposition 2.32), that its processes are deadlock-free (Proposition
2.39), that its canonical forms are adequate (Corollary 2.47), and that
its connection graphs are trees (Proposition 2.50).
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• In § 2.3, I discuss the relation between CP with and CP without
commuting conversions.

• Finally, § 2.5 contains all omitted proofs.

2.1 Classical Processes
In this section, I introduce Classical Processes (CP), a session-typed
process calculus that was introduced by Wadler [2012] and based on
πDILL by Caires and Pfenning [2010]. CP’s process calculus resembles
the π-calculus [Milner et al., 1992b], and its type system is Classical Linear
Logic [Girard, 1987, CLL].

The fundamental notions of programs and computation in CP—as inmost
process calculi—are processes and message-passing communication.
Processes communicate by passing messages over channels. Unlike the
π-calculus, CP’s channels are binary, which means that communication
always takes place between two processes. Each channel has exactly two
endpoints. Each endpoint is held by exactly one process. Names refer to
channel endpoints rather than the channels themselves. CP has no notion
of multiparty communication, though there are extensions that address
this [e.g. Carbone et al., 2016].

In the π-calculus, channel names fulfil two roles. Channel names are used
as communication channels and as labels, comparedwith the conditional
operator. In CP, the two roles are separate. Channel endpoints and labels
are in different syntactic sorts, and are communicated by different send
and receive operators. To simplify the presentation, CP is commonly
restricted to the labels ‘left’ and ‘right’, written as inl and inr. This is
no less general, as any finite set of labels can be encoded as a sequence
of binary choices. For any practical implementation, this restriction is
easily lifted.

Processes (ranged over by P, Q, R) are defined by the following grammar:

P,Q,R ⩴ x↔y link
∣ (νxx̄)(P ∥ Q) cut
∣ x[y]. (P ∥ Q) send
∣ x(y).P receive
∣ x[].0 close
∣ x().P wait
∣ x◁ inl.P select left
∣ x◁ inr.P select right
∣ x ▷ {inl∶ P; inr∶Q} choice
∣ x N absurd offer

The names x, y, z, and w range over the endpoints of communication
channels—‘channel endpoints’ or ‘endpoints’ for short. The names x̄, ȳ,
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z̄, and w̄ as well as a, b, and c also range over endpoints, though they are
only used in specific circumstances, which I discuss shortly. The names
N andM range over sets of endpoints.

An endpoint is bound in the following cases:

• In (νxx̄)(P ∥ Q), x and x̄ are bound in P and Q, respectively.
• In x[y]. (P ∥ Q), y is bound in P, but not in Q.
• In x(y).P, y is bound in P.

An endpoint is free if it is not bound. Notably, for x N, x and all names
in N are free. I write fn(P) to denote the set of free endpoints in P. By
convention, the names a, b, and c are used as a shorthand to imply to the
reader that the endpoint is free.

Two endpoints are dual if they are bound by the same name restriction,
e.g. in (νxx̄)(P ∥ Q), x is bound in P, x̄ is bound in Q, and x and x̄ are dual.
By convention, the names x̄, ȳ, z̄, and w̄ are used as a shorthand to imply
duality to the reader, e.g. I use x and x̄ when they are dual endpoints of
the same channel.

In CP, actions are not awell-defined syntactic sort, unlike in the π-calculus.
Nonetheless, I informally write “action” in reference to the bit before the
dot, e.g. the action for x[y]. (P ∥ Q) is x[y]. For the troublemakers without a
dot, x ▷ {inl∶ P; inr∶Q} and x N, I write x ▷ inl, x ▷ inr, and x , respectively.
(The syntax x▷ {inl∶P; inr∶Q} is the primary obstacle to separating actions
out into their own syntactic sort. I discuss a variant that decomposes the
offer construct in this manner in § 3.3.3.)

Types (ranged over by A, B) are the formula of CLL, as defined by the
following grammar:

A,B ⩴ A⊗ B ∣ 1 ∣ A⊕ B ∣ 0
∣ A &B ∣ ⊥ ∣ A & B ∣ ⊤

Duality plays an important role in CP as in CLL. Viewed from the
perspective of a logic, it corresponds to negation. Viewed from the
perspective of a process calculus, it guarantees that processes act on dual
endpoints of the same channel in dual ways, e.g. one process sends when
the other receives. As in CLL, duality is not defined as a type constructor,
but as a function on types:

A⊗ B ≜ A &B 1 ≜ ⊥
A &B ≜ A⊗ B ⊥ ≜ 1
A⊕ B ≜ A & B 0 ≜ ⊤
A & B ≜ A⊕ B ⊤ ≜ 0

As we will see, dual endpoints have dual types. The notation for duality
(A, A) and the naming convention for dual endpoints (x, x̄) were chosen
to emphasize this. Duality is involutive.
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T-LINK
x↔y ⊢ x ∶ A, y ∶ A P ⊢ Γ, x ∶ A Q ⊢ Δ, x̄ ∶ A T-CUT(νxx̄)(P ∥ Q) ⊢ Γ,Δ

P ⊢ Γ, y ∶ A Q ⊢ Δ, x ∶ B
T-SENDx[y]. (P ∥ Q) ⊢ Γ,Δ, x ∶ A⊗ B

P ⊢ Γ, y ∶ A, x ∶ B
T-RECVx(y).P ⊢ Γ, x ∶ A &B

T-CLOSEx[].0 ⊢ x ∶ 1 P ⊢ Γ T-WAITx().P ⊢ Γ, x ∶ ⊥
P ⊢ Γ, x ∶ A T-SELECT1x◁ inl.P ⊢ Γ, x ∶ A⊕ B

P ⊢ Γ, x ∶ B T-SELECT2x◁ inl.P ⊢ Γ, x ∶ A⊕ B

P ⊢ Γ, x ∶ A Q ⊢ Γ, x ∶ B T-OFFERx ▷ {inl∶ P; inr∶Q} ⊢ Γ, x ∶ A & B
N = fn(Γ) T-ABSURDx N ⊢ Γ, x ∶ ⊤

Figure 2.1: Typing Rules for Classical Processes

Lemma 2.1. A = A

Typing environments (ranged over by Γ, Δ) are sets of type assignments,
as defined by the following grammar:

Γ,Δ ⩴ ⋅ ∣ Γ, x ∶ A
The set of free endpoint names in a typing environment, written fn(Γ), is
defined by recursion on the typing environment, i.e. fn(⋅) ≜ ∅ and fn(Γ, x ∶
A) ≜ fn(Γ) ∪ {x}. The extension Γ, x ∶ A is only defined when x is not free in
Γ, i.e. x ∉ fn(Γ).
I write Γ,Δ for the concatenation of typing environments Γ and Δ. The
concatenation Γ,Δ is only defined when the names in Γ and Δ are unique,
i.e. fn(Γ) ∩ fn(Δ) = ∅.
The typing judgment P ⊢ Γ means that P is well-typed if, for each type
assignment x ∶ A in Γ, exactly one process in P uses the endpoint x
according to the session type A.

Definition 2.2 (Typing). A process P is well-typed under typing
environment Γ if there exists a derivation with conclusion P ⊢ Γ that uses
the typing rules in Figure 2.1.

The names ℰ and ℱ range over evaluation contexts. Evaluation contexts
are one-hole process contexts that consist only of cuts.

Definition 2.3 (Evaluation Context). Evaluation contexts are one-hole
process contexts, as defined by the following grammar:

ℰ,ℱ ⩴ □ ∣ (νxx̄)(ℰ ∥ Q) ∣ (νxx̄)(Q ∥ ℰ)
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x↔y ≡ y↔x SC-LINKCOMM
(νxx̄)(P ∥ Q) ≡ (νx̄x)(Q ∥ P) SC-CUTCOMM
(νxx̄)((νyȳ)(P ∥ Q) ∥ R) ≡ (νyȳ)((νxx̄)(P ∥ R) ∥ Q) SC-CUTASSOC

where x ∉ Q and y ∉ R

Figure 2.2: Structural Congruence for Classical Processes

Plugging is defined by replacing the one hole with a process:

□ [P] ≜P
(νxx̄)(ℰ ∥ Q)[P] ≜(νxx̄)(ℰ[P] ∥ Q)
(νxx̄)(Q ∥ ℰ)[P] ≜(νxx̄)(Q ∥ ℰ[P])

I write fn(ℰ) for the free endpoints in ℰ.
I write bn(ℰ) for the endpoints bound by ℰ.
I write ℰ ⊢ Γ′ → Γ to mean that the evaluation context ℰ is well-typed under
input typing context Γ′ and output typing context Γ.

□ ⊢ Γ→ Γ
ℰ ⊢ Γ′ → Γ, x ∶ A Q ⊢ Δ, x̄ ∶ A
(νxx̄)(ℰ ∥ Q) ⊢ Γ′ → Γ,Δ

Q ⊢ Γ, x ∶ A ℰ ⊢ Δ′ → Δ, x̄ ∶ A
(νxx̄)(Q ∥ ℰ) ⊢ Δ′ → Γ,Δ

Processes are considered equivalent up to structural congruence.

Definition 2.4 (Structural Congruence). Structural congruence, written
P ≡ Q, is the congruence closure over processes which satisfies the rules in
Figure 2.2.

The semantics of CP processes is given by reduction. Reduction is closed
over evaluation contexts, and structural congruence is embedded in
reduction by allowing pre- and post-composition using E-CONG, written
as ≡⟶,⟶≡, or ≡⟶≡.
Definition 2.5 (Reduction). Reduction, written P ⟶ Q, is the smallest
relation on processes defined by the rules in Figure 2.3.

In the remainder of the section, I discuss each process construct together
with its typing rule and operational semantics, either by itself—e.g. link—
or together with its dual—e.g. send and receive.

2.1.1 Process Structure
The process (νxx̄)(P ∥ Q) denotes a cut, which creates a communication
channel with two endpoints, x and x̄. For communication safety, the two
endpoints must have dual types. Hence, x ∶ A and x̄ ∶ A. For deadlock
freedom, the two endpoints must be used in different processes, and
those processes cannot share any other channels. Hence, x is bound in



2.1. Classical Processes 35

(νxx̄)(x↔w ∥ P) ⟶ P{w/x̄} E-LINK
(νxx̄)(x[y]. (P ∥ Q) ∥ x̄(ȳ).R) ⟶ (νyȳ)(P ∥ (νxx̄)(Q ∥ R)) E-SEND
(νxx̄)(x[].0 ∥ x̄().Q) ⟶ Q E-CLOSE
(νxx̄)(x◁ inl.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⟶ (νxx̄)(P ∥ Q) E-SELECT1(νxx̄)(x◁ inr.P ∥ x̄ ▷ {inl∶Q; inr∶ R})⟶ (νxx̄)(P ∥ R) E-SELECT2

E-EQUIV
P ≡ P′ P′ ⟶ Q′ Q′ ≡ Q

P⟶ Q

E-CONG
P⟶ P′

ℰ[P]⟶ ℰ[P′]

Figure 2.3: Reduction for Classical Processes

P and x̄ is bound in Q, and the typing environment is split between P and
Q.

P ⊢ Γ, x ∶ A Q ⊢ Δ, x̄ ∶ A T-CUT(νxx̄)(P ∥ Q) ⊢ Γ,Δ
The cut combines two process constructs from the π-calculus: name
restriction (νxx̄) and parallel composition P ∥ Q. The two do not detach.
In CP, (νxx̄)P and P ∥ Q are not syntactically well-formed processes.

Cuts are commutative and quasi-associative:
(νxx̄)(P ∥ Q) ≡ (νx̄x)(Q ∥ P) SC-CUTCOMM
(νxx̄)((νyȳ)(P ∥ Q) ∥ R) ≡ (νyȳ)((νxx̄)(P ∥ R) ∥ Q) SC-CUTASSOC

where x ∉ Q and y ∉ R
The SC-CUTASSOC rule is not quite an associativity rule. Hence, quasi-
associative. Wadler [2012] refers to the rule as “(Assoc)” in reference
to the change of bracketing. In fact, the rule combines the associativity
rule of parallel composition with scope extrusion, which commutes
parallel composition and name restriction, as we will see in § 3.2.7 (see
Proposition 3.76).

There is no specific reduction rule for cut. Rather, all other reduction
rules resolve dual communication actions under a cut, i.e. over an existing
channel. E-CONG allows reduction under cuts.

E-CONG
P⟶ P′

ℰ[P]⟶ ℰ[P′]

2.1.2 Link
The process x↔y denotes a link. It forwards any messages received on x
to y, and vice versa. For communication safety, the two endpoints must
have dual types. Hence, x ∶ A and y ∶ A.

T-LINK
x↔y ⊢ x ∶ A, y ∶ A



36 Chapter 2. Classical Processes Revisited

Links are commutative. If two channels are connected by a link, the order
in which they are connected is irrelevant. This property is captured by
the following equivalence:

x↔y ≡ y↔x SC-LINKCOMM

CP’s semantics for link does not explicitly forward messages, but treats
links as suspended α-renaming. When a link x↔y reduces, it renames all
occurrences of the dual of x to y, or all occurrences of the dual of y to x.
In essence, this updates all the processes connected to the one side of the
link to point directly at the other side, circumventing the link.

(νxx̄)(x↔y ∥ P) ⟶ P{y/x̄} E-LINK

The renaming targets a bound name. Hence, there cannot be any other
occurrences of that name, and the link can be removed. The rule E-LINK
gives link an asynchronous semantics, as P is not required to be ready
on x̄, whereas all other actions are synchronous. (I discuss synchronous
semantics for link in § 3.3.2.)

2.1.3 Send and Receive
The send and receive actions are dual:

• The process x[y]. (P ∥ Q) denotes a send action.
It creates a fresh channel, names one endpoint of that channel
y, sends the other endpoint over x, then continues as P and Q in
parallel, where y is bound in P and x is bound in Q.

• The process x(y).P denotes a receive action.
It receives an endpoint over x, names it y, then continues as P.

The typing rules for send and receive are as follows:

P ⊢ Γ, y ∶ A Q ⊢ Δ, x ∶ B
T-SENDx[y]. (P ∥ Q) ⊢ Γ,Δ, x ∶ A⊗ B

P ⊢ Γ, y ∶ A, x ∶ B
T-RECVx(y).P ⊢ Γ, x ∶ A &B

The behaviour of send and receive is given by the following rule:

(νxx̄)(x[y]. (P ∥ Q) ∥ x̄(ȳ).R) ⟶ (νyȳ)(P ∥ (νxx̄)(Q ∥ R)) E-SEND

After a send action, the endpoints y and x are passed to different parallel
processes, which ensures that they are handled independently. After a
receive action, the two endpoints are kept by the same process. This may
seem restrictive—and it is—but it is paramount to type preservation and
deadlock freedom.

The send action is a bound send. It cannot send just any old endpoint that
the process happens to have laying around. It only sends fresh endpoints.
As part of the reduction, the send action creates a fresh channel with two
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fresh endpoints. It sends one of those endpoints, and keeps the other. You
can see this in E-SEND. The left-hand side has one name restriction, (νxx̄),
but the right-hand side has two, creating a fresh channel with (νyȳ).
You can think of the bound send action as a suspended cut. For deadlock
freedom, the two processes connected by a cut cannot share any other
channel. (The relation between ⊗ and cut is widely known in logic, e.g.
Girard [1987] treats cut as a special case of ⊗.)
I could extend CPwith an unbound send action. Lindley andMorris [2015]
discuss such an extension [section 3.1, under “A Simpler Send”]. They
propose the following syntax, typing, and reduction rules:

P,Q,R ⩴ ⋯ ∣ x⟨y⟩.P

T-USEND
P ⊢ Γ, y ∶ A, x ∶ B

x⟨y⟩.P ⊢ Γ, x ∶ A⊗ B, y ∶ A
E-USEND
(νxx̄)(x⟨y⟩.P ∥ x̄(z).Q)⟶ (νxx̄)(P ∥ Q{y/z})

The unbound send x⟨y⟩.P sends the free endpoint y over x, then continues
as P. In the π-calculus, unbound send is strictly more expressive than
bound send [see Boreale, 1996, Sangiorgi, 1996]. In CP, unbound send
can be defined in terms of bound send, but the converse does not hold.
Unbound send can be defined as follows:

x⟨y⟩.P ≜ x[z]. (z↔y ∥ P)
The definition has the same reduction behavior as E-USEND, albeit with
an extra step for the link reduction.

(νxx̄)(x⟨y⟩.P ∥ x̄(z).Q) (νxx̄)(x⟨y⟩.P ∥ x̄(z).Q)
⟶ (νxx̄)(P ∥ Q{y/z}) ≜ (νxx̄)(x[w]. (w↔y ∥ P) ∥ x̄(z).Q)

⟶ (νxx̄)(P ∥ (νww̄)(w↔y ∥ Q{w̄/z}))
⟶ (νxx̄)(P ∥ Q{y/z})

The converse does not hold. One might try and define bound send in
terms of unbound send as follows:

x[y]. (P ∥ Q) ≜ (νyȳ)(P ∥ x⟨ȳ⟩.Q)
However, the two do not behave quite the same. In the former, reductions
in both P and Q are blocked on the send action. In the latter, only
reductions in Q are blocked on the send action, while reductions in P can
happen before the send action.

In Wadler’s CP, the adoption of unbound send breaks the proof of
progress, as it introduces cuts that cannot easily be eliminated by means
of a commuting conversion. The cut in (νxx̄)(a⟨x⟩.P ∥ x().Q) cannot be
eliminated by a commuting conversion, as the unbound send action a⟨x⟩
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cannot commute past it, which breaks the simple left-to-right evaluation
strategy proposed by Wadler [2012]. In CP, as presented in this chapter,
the adoption of unbound send would not pose any problem, as my
canonical form accounts for and justifies ineliminable top-level cuts.

By its very nature, bound send can only send endpoints, which means it
does not easily generalise to sending other data. Hence, unbound send is
important in the context of GV, where programs can send arbitrary data.

In the interest of an exact correspondence with CLL, and a close
correspondence to Wadler’s CP, the version of CP presented in this
chapter uses bound send.

2.1.4 Close and Wait
The close and wait actions are dual:

• The process x[].0 denotes a close action.
It sends a ping over x, then terminates.

• The process x().P denotes a wait action.
It receives a ping over x, then continues as P.

(I say ‘ping’ to imply the interaction between close and wait is merely a
synchronisation and does not transmit any information.)

The typing rules for close and wait are as follows:

T-CLOSEx[].0 ⊢ x ∶ 1 P ⊢ Γ T-WAITx().P ⊢ Γ, x ∶ ⊥
The behaviour of these two actions is given by the following rule:

(νxx̄)(x[].0 ∥ x̄().Q) ⟶ Q E-CLOSE

After a close action, the process must terminate, but after a wait action,
the process continues. As with send and receive, this seems restrictive—
because it is restrictive—but is paramount to type preservation.

The close and wait actions close the channel, which removes the cut. Any
two processes connected by a cut cannot share any other channel. If both
processes were allowed to continue, that would leave them unconnected.
This would break an important property of CP—that all processes are
connected—and relaxing it would be logically equivalent to admitting the
MIX rule (see § 3.3.7) andwould break the exact correspondencewith CLL.
(Such a variant of CP is explored by Atkey et al. [2016].)

2.1.5 Select and Offer
The select and offer actions are dual:
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• The process x◁ inl.P denotes a left selection action.
It sends the label inl over x, then continues as P.

• The process x◁ inr.P denotes a right selection action.
It sends the label inr over x, then continues as P.

• The process x ▷ {inl∶ P; inr∶Q} denotes a choice action.
It receives a label over x, and then continues as either P or Q,
depending on which label was received.

The typing rules for select and offer are as follows:

P ⊢ Γ, x ∶ A T-SELECT1x◁ inl.P ⊢ Γ, x ∶ A⊕ B
P ⊢ Γ, x ∶ B T-SELECT2x◁ inl.P ⊢ Γ, x ∶ A⊕ B

P ⊢ Γ, x ∶ A Q ⊢ Γ, x ∶ B T-OFFERx ▷ {inl∶ P; inr∶Q} ⊢ Γ, x ∶ A & B

The behaviour of these actions is given by the following rules:

(νxx̄)(x◁ inl.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⟶ (νxx̄)(P ∥ Q) E-SELECT1(νxx̄)(x◁ inr.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⟶ (νxx̄)(P ∥ R) E-SELECT2

The syntax for the select and offer actions was adapted from Dardha and
Gay [2018], rather than fromWadler [2012]. It is easily generalized from
binary choice to variant types by removing the restriction that labels
must always be drawn from {inl, inr}. (I discuss variant types in § 3.3.3.)

2.1.6 The Absurd Offer
The process x N denotes the absurd offer. It waits to receive a choice
between zero alternatives. Such a choice cannot be made, which means
that there is no corresponding select action, and no corresponding
reduction rule. In essence, an absurd offer is inert. The absurd offer is
the sole process that is allowed to leave endpoints unused, and the set of
those unused endpoints is denoted by N.

N = fn(Γ) T-ABSURDx N ⊢ Γ, x ∶ ⊤
The ‘inert semantics’ for absurd is unsatisfying—something has clearly
gone wrong, and instead of cleaning up, we leave the garbage strewn
around. However, it is not incorrect. By accident, it satisfies all the
expected properties of normalisation for CP. (The accident is the fact
that CP processes are fully connected. Hence, even if x ▷ {} did not
have immediate license to kill some process P, it would have obtained it
eventually.) In variants where processes are not always fully connected,
the inert semantics break progress (see, e.g. Chapter 3). (I present an
exceptional semantics for the absurd offer in § 3.3.12.)

2I use ‘exceptional’ to mean ‘reminiscent of exceptions’, but I also happen to believe
they are very good semantics.
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The syntax for the absurd offer deviates from the naming scheme for the
binary select and offer actions. If I were to follow the naming scheme, I
wouldwrite ‘x▷ {}’. However, it is important for the absurd offer to record
which endpoints it discards. For one, recording those names allows us to
define linearity by counting names (as in § 2.2.1). More importantly, to
give an exceptional semantics to the absurd offer, those names are needed
to be able to erase types. For an intuition, let us look at the absurd offer
in Wadler’s CP. It does not record the discarded endpoints and it has the
following reduction rule:

a ▷ {} ⊢ Γ,a ∶ ⊤, x ∶ A P ⊢ Δ, x̄ ∶ A
(νxx̄)(a ▷ {} ∥ P) ⊢ Γ,Δ,a ∶ ⊤ ⟶

a ▷ {} ⊢ Γ,Δ,a ∶ ⊤
If the absurd offer discarded an endpoint x, it may kill the process P that
owns the dual endpoint x̄. The reduction rule appears innocuous, but
a problem surfaces when we erase types and consider the equivalent
reduction rule on processes:

(νxx̄)(a ▷ {} ∥ P)⟶ a ▷ {}
It is no longer possible to see whether P owns any of the endpoints dual
to those discarded, which means that a▷ {} has license to kill any process3.
Surprisingly, by itself this does not pose a huge problem for CP. Ultimately,
all processes in CP are connected, so even if a ▷ {}were to kill a process it
was not immediately connected to, it would have gotten there eventually.
However, if the language were extended with parallel but unconnected
processes—as in, e.g. HCP—this leads to immediate problems, where
some a ▷ {} kills a process it was in no way connected to. It also leads
to issues with scope extrusion in SC-CUTASSOC:

(νxx̄)((νyȳ)(P ∥ a ▷ {}) ∥ b ▷ {}) ≡ (νyȳ)((νxx̄)(P ∥ b ▷ {}) ∥ a ▷ {})
If a ▷ {} is responsible for killing x on the left-hand side of the structural
congruence, then on the right-hand side it moves out of the scope of (νxx̄).
My syntax, a N, is an effort to avoid clutter: I omit the absurd
continuation and add a lightning bolt, which, to me, implies that
something has gone wrong4.

2.2 Metatheory
In this section, I introduce the metatheory for Classical Processes. This
section proceeds as follows:

3Wadler was unaware of the issue with the absurd offer and type erasure.
4The lightning bolt is an homage to Simon Fowler’s Exceptional GV, where it marks

“zapper threads” [Fowler, 2019, Figure 9.4], and to a poster titled “zap is why we can’t
have nice things” that I presented at my CDT’s 2016 Industrial Engagement Event.
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• In § 2.2.1, I give several preliminary definitions that are used
throughout the discussion of the metatheory.

• In § 2.2.2, I prove preservation (Proposition 2.27). In essence,
the proof is a reproduction of Wadler’s proof of preservation, but
without the commuting conversions and with small changes to
account for the my changes to CP’s syntax.

• In § 2.2.3, I define canonical form (Definition 2.30) and prove
progress (Proposition 2.32). The proof cannot be reproduced from
Wadler [2012], as the reduction rules I give in § 2.1 are a proper
subset of those given by Wadler [2012]. I could adapt the proof
by Lindley and Morris [2015], but it relies on the property that CP
processes can be rewritten to right-branching form (see Proposition
2.51), which does not hold for the variants of CP that I discuss in later
chapters. The proof for progress I give in this section generalises
Lindley and Morris’ appeal to right-branching form using process
contexts, which allowsme to reuse the same proof structure in later
chapters. This proof of progress first appeared in my M.Sc. thesis
[Kokke, 2017].

• In § 2.2.4, I define dependency graphs for CP processes (Definition
2.35). I prove that CP is deadlock-free, as its dependency graphs
are always acyclic (Proposition 2.39), and I prove that my definition
of canonical form is adequate (Corollary 2.47) and stronger than
Wadler’s definition.

• In § 2.2.5, I define connection graphs for CP processes (Definition
2.49) and prove that CP’s connection graphs are always trees
(Proposition 2.50). The validity of right-branching form for CP
follows as a corollary.

• In § 2.2.6, I sketch the basis of a behavioural theory for CP.

2.2.1 Preliminaries
Configuration Contexts

Processes in CP can be rewritten to right-branching form:

(νx1x̄1)(P1 ∥ ⋯(νxnx̄n)(Pn ∥ Pn+1)⋯)
Right-branching form is a convenient form to work with. It neatly
captures the prefix of top-level cuts and the connected processes, and it
relates the endpoints and processes in a predictable manner—each xi is
free in Pi, and each x̄i is free in some Pj where 𝘫 > 𝘪.
Right-branching form has its downsides. Proving that processes can be
rewritten to right-branching form is far from trivial (Proposition 2.51).
More importantly, right-branching form is a quirk of CP’s rigid process
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structure. In variants of CP with more expressive process structure,
processes cannot be rewritten to right-branching form.

I generalise right-branching form using configuration contexts.
Configuration contexts are multi-hole process contexts that consist only
of cuts. For instance, for the process above, an example configuration
context is

(νx1x̄1)(□1 ∥ ⋯(νxnx̄n)(□n ∥ □n+1)⋯)
The expressions□1, …,□n+1 are the 𝘯+𝟣 holes, numbered from left to right
for convenience. The name𝒞k ranges over configuration contexts, where
𝘬 denotes thenumber of holes. Plugging, written𝒞k[P1, …,Pk], replaces the
holes, from left to right, with the processes P1, …, Pk, such that each □i is
replaced with the process Pi (for 𝟣 < 𝘪 ≤ 𝘬). If 𝒞n+1 refers to the example
configuration context shown above and P1, …, Pn+1 to the processes of the
example process shown above, then𝒞n+1[P1, …,Pn+1] is exactly equal to the
example process. The use of right-branching form requires that the prefix
of cuts is a right-branching tree, i.e. a list. Configuration contexts permit
arbitrary trees.

Definition 2.6 (Configuration Context). Configuration contexts are 𝘯-hole
process contexts, as defined by the following grammar:

𝒞,𝒟 ⩴ □ ∣ (νxx̄)(𝒞 ∥ 𝒟)
If there is risk of ambiguity, we explicitly write the number of holes in a
configuration context with a superscript, e.g. as 𝒞n.

Plugging is defined by replacing the 𝘯 holes with 𝘯 processes, left to right:

□ [P ] ≜P
(νxx̄)(𝒞n ∥ 𝒟k) [P1, …,Pn,Pn+1, …,Pn+k] ≜(νxx̄)(𝒞n[P1, …,Pn] ∥ 𝒟k[Pn+1, …,Pn+k])
I write𝒞[P1,…,□i,…,Pn] for the evaluation context focused on the 𝘪’th hole in𝒞 such that 𝒞[P1,…,□i,…,Pn][Pi] = 𝒞[P1,…,Pi,…,Pn].
I write dn(𝒞) for the unordered pairs of dual endpoints bound by 𝒞.

dn(□) ≜ ∅
dn((νxx̄)(𝒞 ∥ 𝒟)) ≜ {{x, x̄}} ∪ dn(𝒞) ∪ dn(𝒟)

I write bn(𝒞) for the endpoints bound by 𝒞, i.e. bn(𝒞) ≜ ⋃dn(𝒞).
I write 𝒞n ⊢ Γ1 ∣ ⋯ ∣ Γn → Γ to mean that the configuration context 𝒞n is
well-typed under input typing contexts Γ1, … , Γn and output typing context
Γ.

□ ⊢ Γ→ Γ
𝒞n ⊢ Γ1 ∣ ⋯ ∣ Γn → Γ, x ∶ A 𝒟k ⊢ Δ1 ∣ ⋯ ∣ Δk → Δ, x̄ ∶ A

(νxx̄)(𝒞n ∥ 𝒟k) ⊢ Γ1 ∣ ⋯ ∣ Γn ∣ Δ1 ∣ ⋯ ∣ Δk → Γ,Δ
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Shallow Structural Congruence

Reduction is closed under evaluation contexts, not under arbitrary
process contexts, and only acts on the topmost actions. As such,
reduction only needs a structural congruence that is similarly closed
under evaluation contexts—a shallow structural congruence. Therefore,
it is useful to distinguish different kinds of structural congruence, based
on which portions of the process they are permitted to rewrite.

Definition 2.7 (Shallow Structural Congruence). Shallow structural
congruence, written ≡S , is the smallest symmetric relation over processes
that satisfies the rules in Figure 2.2 (p. 34) and is closed under evaluation
contexts, as per the following rule:

SC-CONG
P ≡S P′

ℰ[P] ≡S ℰ[P′]

Most rules of the structural congruence target name restriction and
parallel composition. The odd one out is SC-LINKCOMM, which rewrites
a link action. It will be useful to single out the portions of a structural
congruence that rewrite links.

Definition 2.8 (Link-Preserving Structural Congruence).
Link-preserving structural congruence, written ≡L , is the congruence
closure over processes that satisfies the rules in Figure 2.2 except for
SC-LINKCOMM.

Finally, it will be useful to have variantswhich combine these restrictions.
In practice, I only need link-preserving shallow structural congruence
and deep structural congruence.

Definition 2.9 (Link-Preserving Shallow Structural Congruence). Link-
preserving shallow structural congruence, written ≡LS, is the intersection of
link-preserving and shallow structural congruence.

Definition 2.10 (Deep Structural Congruence). Deep structural
congruence, written ≡D , is the equivalence closure of the complement of ≡LS
with respect to ≡.
Any structural congruence can be decomposed into its link-preserving
shallow and deep structural components.

Lemma 2.11. If P ≡ Q, then there exists some R such that P ≡LS R and R ≡D Q.

Ready Processes and Threads

A process is ready if it is ready to perform some communication action,
i.e. if it is a link or it is prefixed by an action. The formal definition of
ready processes is a bit verbose, since actions are not a syntactic sort in
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CP, so “prefixed by an action” is not well-defined. To work around this, I
enumerate the process constructors that contain an action.

Definition 2.12 (Ready). A process P is ready to act on x, written
ready(P, x), if it is of one of the forms:

x↔y x[y]. (P ∥ Q) x[].0 x◁ inl.P x ▷ {inl∶ P; inr∶Q}
y↔x x(y).P x().P x◁ inr.P x N

A process is ready if it is ready to act on some endpoint.

In particular, links x↔y are considered ready to act on both x and y, and
absurd x N is not considered ready to act on the channels y ∈ N.
A process can be decomposed into a prefix of its cuts, and a series
of threads connected by those cuts. Such a prefix is the maximum
configuration context, in the sense that no further cuts can be added.

Definition 2.13 (Maximum Configuration Context). The maximum
configuration context 𝒞n of a process P is the configuration context such
that P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟣) and (for 𝟣 ≤ 𝘪 ≤ 𝘯) each Pi is ready.
The processes Pi are the threads of P. Every process has a uniquemaximum
configuration context.

Likewise, evaluation contexts are maximal if no further cuts can be
added. Informally, maximal evaluation contexts are paths to the threads
contained within some process, so each maximum configuration context
𝒞n gives us 𝘯 distinct maximal evaluation contexts.

Definition 2.14 (Maximal Evaluation Context). A maximal evaluation
context ℰ of a process P is an evaluation context such that P = ℰ[Q]
and Q is ready. If 𝒞 is the maximum configuration context of P, then
𝒞[P1, …,□i, …,Pn] is a maximal evaluation context of P.
Finally, I refer to top-level ready processes as threads. A significant
portion of CP’s metatheory deals with threads. Let the metavariable T
range over threads.

Definition 2.15 (Thread). A process P is a thread of Q if there exists some
evaluation context ℰ of Q such that Q = ℰ[P] and P is ready. I say that Q
contains the thread P to mean that P is a thread of Q. I say P is a thread
when the processQ of which P is a thread can be inferred from context. Let
T range over threads.
The use of the thread metavariable allows us to succinctly decompose
any process P into its maximum configuration context and its threads,
by stating “P is of the form 𝒞[T1, …,Tn]”, as the notation implies that each
thread Ti is a ready process and therefore that 𝒞 is the maximum
configuration context.

In CP, every thread is ready. Therefore, it is tempting to do away with
the separate definition of threads and let T range over ready processes.
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However, the two definitions diverge for GV, since GV’s threads have
internal reduction behaviour and therefore not all threads are ready. To
keepmy terminology consistent, I keep the definitions of ready processes
and threads separate.

Process Contexts

For the occasional convenience, I define full 𝘯-hole process contexts,
which are arbitrary processeswith anynumber of holes. Process contexts
may contain anyprocess construct, andmay contain holes in any position,
including nested under actions. As such, process contexts generalise
evaluation and configuration contexts.

Definition 2.16 (Process Context). Process contexts are defined by the
grammar for processes, extended with the hole constructor, written □. A
process context may have any number of holes.

The names P[⋅],Q[⋅], and R[⋅] range over process contexts, where the trailing
[⋅] is intended to help distinguish between processes and process contexts,
and denotes the position of the arguments for plugging. I write Pn[⋅] to
denote that the process context P[⋅] has 𝘯 holes.
Plugging, written P[P1, …,Pn], is defined by replacing the 𝘯 holes in the
process context P[⋅] with the processes P1, … ,Pn in order from left to right.

Linearity

CP has a linear type system. It ensures that resources are always used
exactly once, and never copied or dropped. Given the correspondence
between CP and linear logic, that seems almost painfully obvious.
However, due to CP’s reuse of endpoint names, it may appear that
resources are used multiple times. (For instance, the process x(). x[].0
appears to use the endpoint x twice.)

The true measure of a linear calculus lies in its execution. Any execution
should use all linear resources exactly once. Unfortunately, such a
formulation of linearity is a bit tedious.

Formy purposes, it suffices to define linearity by counting the uses of free
endpoint names—taking the sum across any parallel composition, and
the union across an offer. This formulation reveals the implicit rebinding
of names in CP’s actions. For instance, the action x(y).P uses the name x,
but then binds a fresh x for the remainder of the session.

Definition 2.17 (Free Name Count). The multiset of free endpoints in P,
written fn(P), is a multiset (see Definition A.3) with support set fn(P) and
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multiplicity function 𝜇fn(P).

fn(x↔y) ≜ *x, y+
fn((νxx̄)(P ∥ Q)) ≜ (fn(P) ∖ {x}) + (fn(Q) ∖ {x̄})
fn(x[y]. (P ∥ Q)) ≜ *x+ + (fn(P) ∖ {y}) + (fn(Q) ∖ {x})
fn(x[].0) ≜ *x+
fn(x(y).P) ≜ *x+ + (fn(P) ∖ {x, y})
fn(x().P) ≜ *x+ + fn(P)
fn(x◁ inl.P) ≜ *x+ + (fn(P) ∖ {x})
fn(x◁ inr.P) ≜ *x+ + (fn(P) ∖ {x})
fn(x ▷ {inl∶ P; inr∶Q}) ≜ *x+ + ((fn(P) ∖ {x}) ∪ (fn(Q) ∖ {x}))
fn(x N) ≜ *x+ + *w ∣ w ∈ N+

Note that the operation 𝒳 ∖ 𝘟 removes all occurrences of the elements in
the set 𝘟 from the multiset𝒳 (see Definition A.3).

The only unusual case is the case for the absurd offer x N, which counts
all names in N as used. This seems wrong, since the absurd offer never
uses the names in N. However, it is correct in the tedious sense. All
executions of x N use all the names in N, trivially, since x N is never
executed.

For actions, fn removes all previous occurrences of the relevant name,
which hides any potential non-linear usage of that name, e.g. fn(x().P) ≜*x++(fn(P) ∖ {x}) hides the count of x in P. Hence, fn is shallow, in the sense
that it only accurately counts the top-most parallel usages of the name.
This suffices for my purposes.

Linearity states that, forwell-typed processes, each endpoint in the typing
environment is used exactly once in the process, and vice versa.

Proposition 2.18 (Linearity). If P ⊢ Γ, then:

• x ∈𝘬 fn(P) ⟹ 𝘬 = 𝟣
• x ∈𝟣 fn(P) ⟺ x ∈ fn(Γ)

Proof. By induction on the derivation of P ⊢ Γ.

For anywell-typed process ℰ[P], each endpoint bound by ℰ is used exactly
once in the process P, and vice versa.

Corollary 2.19. If ℰ[P] ⊢ Γ, then:

• x ∈𝘬 fn(P) ⟹ 𝘬 = 𝟣
• x ∈𝟣 fn(P) ⟺ x ∈ bn(ℰ)
• bn(ℰ) ⊆ fn(P)

For any well-typed configuration𝒞n[P1,…,Pn], the processes P1, …, Pn must
collectively use all the endpoints bound by 𝒞n exactly once.
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Corollary 2.20. If 𝒞n[P1,…,Pn] ⊢ Γ, then:

• x ∈𝘬 ⋃𝟣≤𝘪≤𝘯 fn(Pi) ⟹ 𝘬 = 𝟣
• x ∈𝟣 ⋃𝟣≤𝘪≤𝘯 fn(Pi) ⟺ x ∈ bn(𝒞)
• bn(𝒞) ⊆ ⋃𝟣≤𝘪≤𝘯 fn(Pi)

Separation

Separation relates configuration contexts and evaluation contexts—it
‘zooms in’, from viewing a process as a series of connected processes, to
viewing two specific processes and the cut connecting them. Separation
also captures an essential property of CP’s type system: dual endpoints
must be in distinct processes, separated by a cut.

Lemma 2.21 (Separation). If P ⊢ Γ,𝒞n is a configuration context such that
P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟤), and there exists some {x, x̄} ∈ dn(𝒞) such
that x ∈ fn(Pi) and x̄ ∈ fn(Pj) (for some 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯), there exist ℰ, ℱi, and ℱj
such that either

1. P = ℰ[(νxx̄)(ℱi[Pi] ∥ ℱj[Pj])], or
2. P = ℰ[(νx̄x)(ℱj[Pj] ∥ ℱi[Pi])].

Proof. By induction on the structure of the configuration context 𝒞.
There are two cases:

• Pi and Pj are on different sides of the cut.

There are two cases, corresponding to the two equations:

– Pi is to the left and Pj is to the right.

P = (νxx̄)(𝒞i[P1,…,Pi,…,Pk] ∥ 𝒞j[Pk+1,…,Pj,…,Pn]).
By P ⊢ Γ and T-CUT, the bound endpoints must be {x, x̄}.

Let
ℰ = □
ℱi = 𝒞i[P1,…,□i,…,Pk]ℱj = 𝒞j[Pk+1,…,□j,…,Pn]

The result follows.

– Pi is to the right and Pj is to the left.

As above.

• Pi and Pj are on the same side of the cut.

There are two cases:

– Pi and Pj are both to the left.

P = (νzz̄)(𝒟[P1, …,Pk] ∥ R) and 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘬.
By P ⊢ Γ and T-CUT, the bound endpoints {z, z̄} cannot be {x, x̄}.
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By induction, one of the following holds:

* 𝒟[P1, …,Pk] = ℰ′[(νxx̄)(ℱi[Pi] ∥ ℱj[Pj])]; or
* 𝒟[P1, …,Pk] = ℰ′[(νx̄x)(ℱj[Pj] ∥ ℱi[Pi])].

Let ℰ = (νzz̄)(ℰ′ ∥ R).
The result follows.

– Pi and Pj are both to the right.

As above.

The separation lemma is rather precise, and gives us one of two equalities.
However, both cases are equivalent up to structural congruence.

Corollary 2.22 (Separation). If P ⊢ Γ, 𝒞n is a configuration context such
that P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟤), and there exists some {x, x̄} ∈ dn(𝒞)
such that x ∈ fn(Pi) and x̄ ∈ fn(Pj) (for some 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯), there exist ℰ, ℱi,
andℱj such that P ≡LS ℰ[(νxx̄)(ℱi[Pi] ∥ ℱj[Pj])].

Proof. By Lemma 2.21 and SC-CUTCOMM.

Evaluation contexts commute with cuts.

Lemma 2.23. If fn(P) ∩ bn(ℰ) = ∅, then ℰ[(νxx̄)(P ∥ Q)] ≡LS (νxx̄)(P ∥ ℰ[Q]).

Proof. By induction on the structure of the evaluation context ℰ.

2.2.2 Preservation
Structural congruences preserve typing. If some process P is well-typed
and is equivalent to some processQ under structural congruence, thenQ
is well-typed under the same typing environment.

Lemma 2.24. If P ≡ Q, then P ⊢ Γ if and only if Q ⊢ Γ.

Proof. By induction on the derivation of the equivalence P ≡ Q.

The case for reflexivity follows immediately. The cases for symmetry and
transitivity follow immediately by induction. The case for congruence
closure follows by induction and the injectivity of the type derivation
rules. The cases for applications of SC-LINKCOMM, SC-CUTCOMM, and SC-
CUTASSOC are as follows, presented as equivalences on type derivations:
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• Case SC-LINKCOMM:

x↔y ⊢ x ∶ A, y ∶ A ≡ y↔x ⊢ y ∶ A, x ∶ A
Lemma 2.1

y↔x ⊢ y ∶ A, x ∶ A

• Case SC-CUTCOMM:

P ⊢ Γ1, x ∶ A Q ⊢ Γ2, x̄ ∶ A
(νxx̄)(P ∥ Q) ⊢ Γ1, Γ2≡

Q ⊢ Γ2, x̄ ∶ A
P ⊢ Γ1, x ∶ A Lemma 2.1P ⊢ Γ1, x ∶ A

(νx̄x)(Q ∥ P) ⊢ Γ1, Γ2
• Case SC-CUTASSOC:

P ⊢ Γ1, x ∶ A, y ∶ B Q ⊢ Γ2, ȳ ∶ B
(νyȳ)(P ∥ Q) ⊢ Γ1, Γ2, x ∶ A R ⊢ Γ3, x̄ ∶ A

(νxx̄)((νyȳ)(P ∥ Q) ∥ R) ⊢ Γ1, Γ2, Γ3≡

P ⊢ Γ1, x ∶ A, y ∶ B R ⊢ Γ3, x̄ ∶ A
(νxx̄)(P ∥ R) ⊢ Γ1, Γ3, y ∶ B Q ⊢ Γ2, ȳ ∶ B

(νyȳ)((νxx̄)(P ∥ R) ∥ Q) ⊢ Γ1, Γ2, Γ3
The above derivation for the left-hand side (symmetrically, right-
hand side) is the only derivation, as x ∉ Q (symmetrically, y ∉ R).

Renaming preserves typing. If a process is well-typed, then renaming any
free endpoint does not affect its typing.

Lemma 2.25. If P ⊢ Γ, x ∶ A, then P{w/x} ⊢ Γ,w ∶ A.
Proof. The result follows by induction.

Plugging with any form of process context preserves typing.

Lemma 2.26. If Pn[⋅] ⊢ Γ1 ∣ ⋯ ∣ Γn → Γ and Qi ⊢ Γi (for 𝟣 ≤ 𝘪 ≤ 𝘯), then
Pn[Q1, …,Qn] ⊢ Γ.

Proof. By induction on the derivation of Pn[⋅] ⊢ Γ1 ∣ ⋯ ∣ Γn → Γ.
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Reduction preserves typing. If a process P is well-typed and reduces
to some other process Q, then Q is well-typed under the same typing
environment.

Proposition 2.27 (Preservation). If P ⊢ Γ and P⟶ Q, then Q ⊢ Γ.

Proof. By induction on the derivation of the reduction P⟶ Q.
The cases for E-CONG follow by induction and Lemma 2.26. The case for
E-EQUIV follows by induction and Lemma 2.24. The cases for the rules E-
LINK, E-SEND, E-CLOSE, E-SELECT1, and E-SELECT2 are as follows, presented
as reductions on type derivations:

• Case E-LINK:

x↔w ⊢ x ∶ A,w ∶ A P ⊢ Γ, x̄ ∶ A
(νxx̄)(x↔w ∥ P) ⊢ Γ,w ∶ A⟶
P ⊢ Γ, x̄ ∶ A Lemma 2.25

P{w/x̄} ⊢ Γ,w ∶ A
• Case E-SEND:

P ⊢ Γ1, y ∶ A Q ⊢ Γ2, x ∶ B
x[y]. (P ∥ Q) ⊢ Γ1, Γ2, x ∶ A⊗ B

R ⊢ Γ3, ȳ ∶ A, x̄ ∶ B
x̄(ȳ).R ⊢ Γ3, x̄ ∶ A &B

(νxx̄)(x[y]. (P ∥ Q) ∥ x̄(ȳ).R) ⊢ Γ1, Γ2, Γ3⟶

P ⊢ Γ1, y ∶ A
Q ⊢ Γ2, x ∶ B R ⊢ Γ3, ȳ ∶ A, x̄ ∶ B

(νxx̄)(Q ∥ R) ⊢ Γ2, Γ3, ȳ ∶ A
(νyȳ)(P ∥ (νxx̄)(Q ∥ R)) ⊢ Γ1, Γ2, Γ3

• Case E-CLOSE:

x[].0 ⊢ x ∶ 1
Q ⊢ Γ2

x̄().Q ⊢ Γ2, x̄ ∶ ⊥
(νxx̄)(x[].0 ∥ x̄().Q) ⊢ Γ2

⟶ Q ⊢ Γ2

• Case E-SELECT1:

P ⊢ Γ1, x ∶ A
x◁ inl.P ⊢ Γ1, x ∶ A⊕ B

Q ⊢ Γ2, x̄ ∶ A R ⊢ Γ2, x̄ ∶ B
x̄ ▷ {inl∶Q; inr∶ R} ⊢ Γ2, x̄ ∶ A & B

(νxx̄)(x◁ inl.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⊢ Γ1, Γ2⟶

P ⊢ Γ1, x ∶ A Q ⊢ Γ2, x̄ ∶ A
(νxx̄)(P ∥ Q) ⊢ Γ1, Γ2
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• Case E-SELECT2:

P ⊢ Γ1, x ∶ B
x◁ inr.P ⊢ Γ1, x ∶ A⊕ B

Q ⊢ Γ2, x̄ ∶ A R ⊢ Γ2, x̄ ∶ B
x̄ ▷ {inl∶Q; inr∶ R} ⊢ Γ2, x̄ ∶ A & B

(νxx̄)(x◁ inr.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⊢ Γ1, Γ2⟶

P ⊢ Γ1, x ∶ B R ⊢ Γ2, x̄ ∶ B
(νxx̄)(P ∥ R) ⊢ Γ1, Γ2

2.2.3 Progress
What should the canonical forms be for processes in CP? The usual
starting point would be to ask what the canonical forms are for closed
processes. For instance, in the λ-calculus, a closed process of the
function type must be a lambda, and in the π-calculus, a closed process
must be equivalent to the terminated process. Alas, that question is
meaningless for CP, which has no closed processes. Any closed process
would correspond to a proof of the empty sequent, which is not provable
in CLL. A CP process is never done. There is no terminated process.
There are only processes that are temporarily stuck, blocked on a free
endpoint—one endpoint of a channel whose other endpoint has not yet
been connected. Unfortunately, it is not sufficient to simply require that
the process contains an action on a free endpoint. For instance, the
process

(νxx̄)(a().P ∥ (νyȳ)(y[].0 ∥ ȳ().Q))
has an action that is blocked on an external channel, but it can still reduce.
Hence, the definition of canonical form should also capture the fact that
no further reduction rules can be applied. Unsurprisingly, that condition
is in and of itself sufficient, so let us formalise it as a starting point.

The simplest and most useless definition would be to say that P is in
canonical form if and only if P ⟶̸. However, it would be more satisfying
if we could characterise the conditions under which no reduction rules
apply.

First, note that E-LINK acts differently from most reduction rules. Most
reduction rules, i.e. E-SEND, E-CLOSE, E-SELECT1, and E-SELECT2, are
synchronous interactions between two processes and are blocked unless
both processes are ready to act on dual endpoints. However, link is
asynchronous. Any ready link can evaluate to a renaming in the process
it communicates with, regardless of whether that process is ready to act
on the relevant channel.
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To capture this difference, I divide reduction into α-reduction, which
captures link evaluating as α-renaming, and β-reduction, which captures
all other reduction. In essence, α-reduction captures asynchronous
reduction, and β-reduction captures synchronous reduction.

Definition 2.28 (α-Reduction). A process P α-reduces to Q, written P⟶𝛼
Q, if there exists a reduction P ⟶ Q which only uses the rules E-LINK, E-
CONG, and E-EQUIV.

Definition 2.29 (β-Reduction). A process P β-reduces to Q, written P⟶𝛽
Q, if there exists a reduction P⟶ Q that does not use the rule E-LINK.

Any reduction is either an α-reduction or a β-reduction.

I could say that P is in canonical form if and only if P⟶̸𝛼 and P⟶̸𝛽.
However, I have already given a tighter characterisation above. A
process P is in canonical form if and only if

1. P contains no link thread ready to act on a bound endpoint; and
2. P contains no two threads ready to act on dual endpoints.

If (1) does not hold, E-LINK applies, and if (2) does not hold, at least one of
the other reduction rules applies… and that is progress in a nutshell!

Definition 2.30 (Canonical Form). A process P is in canonical form,
written canonical(P), if P is of the form 𝒞n[T1,…,Tn] (for some 𝘯 ≥ 𝟣) and
(for 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯)

1. no Ti is a link thread ready to act on an endpoint x ∈ bn(𝒞); and
2. no Ti and Tj are ready to act on dual endpoints {x, x̄} ∈ dn(𝒞).

If condition (1) holds, P⟶̸𝛼. If condition (2) holds, P⟶̸𝛽.

If a process contains two threads ready to act on dual endpoints, then it
can reduce. The following lemma abstracts over the reduction rules for
CP’s many dual actions.

Lemma 2.31 (Reduction). If (νxx̄)(P ∥ Q) ⊢ Γ, and P and Q are ready to act
on x and x̄, respectively, there exists some R such that (νxx̄)(P ∥ Q)⟶ R.

Proof. By inversion on the derivation of (νxx̄)(P ∥ Q) ⊢ Γ. There are eight
cases, which correspond exactly to E-SEND, E-CLOSE, E-SELECT1, E-SELECT2,
and the variants under E-EQUIV with SC-CUTCOMM.

Progress states that any process is either in canonical form or can reduce.
In essence, the proof shows that conditions (1) and (2) of the definition of
canonical form correspond to the absence of α- and β-reduction.

Proposition 2.32 (Progress). If P ⊢ Γ, then either P is in canonical form,
or there exists some Q such that P⟶ Q.
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Proof. P is of the form 𝒞n[T1,…,Tn] (for some 𝘯 ≥ 𝟣).
If P is in canonical form, the result follows.

Otherwise, 𝘯 ≥ 𝟤, and there are two cases:

Condition (1) does not hold. Some Ti (for 𝟣 ≤ 𝘪 ≤ 𝘯) is a link thread ready
to act on an endpoint x ∈ bn(𝒞). By definition, there exists some {x, x̄} ∈
dn(𝒞). By Corollary 2.22 and Proposition 2.18, there exists some Pj (for𝟣 ≤ 𝘫 ≤ 𝘯 and 𝘪 ≠ 𝘫) such that x̄ ∈ fn(Pj).
P ≡S ℰ[(νxx̄)(ℱ1[x↔y] ∥ ℱ2[Pj])] ⟨by Corollary 2.22 and SC-LINKCOMM⟩

≡S ℰ[ℱ1[(νxx̄)(x↔y ∥ ℱ2[Pj])]] ⟨by Lemma 2.23⟩
≡S ℰ[ℱ1[ℱ2[(νxx̄)(x↔y ∥ Pj)]]] ⟨by Lemma 2.23⟩

⟶ ℰ[ℱ1[ℱ2[Pj{y/x̄}]]] ⟨by E-LINK and E-CONG⟩
Condition (2) does not hold. Some threads Ti and Tj (for 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯) are
ready to act on dual endpoints {x, x̄} ∈ dn(𝒞).
P ≡S ℰ[(νxx̄)(ℱi[Ti] ∥ ℱj[Tj])] ⟨by Corollary 2.22⟩

≡S ℰ[ℱi[(νxx̄)(Ti ∥ ℱj[Tj])]] ⟨by Lemma 2.23⟩
≡S ℰ[ℱi[ℱj[(νxx̄)(Ti ∥ Tj)]]] ⟨by Lemma 2.23⟩

⟶ ℰ[ℱi[ℱj[R]]] ⟨by Lemma 2.31 and E-CONG⟩

2.2.4 Duality, Dependency, and Deadlock
The definition of canonical form (Definition 2.30) requires justification:
it defines “canonical forms” as “processes that do not reduce”, which is
an easy way to get in trouble by admitting processes as “canonical” when
they are, in fact, stuck for undesirable reasons such as deadlock.

It is straightforward to argue that processes in canonical form must
contain a process ready to act on a free endpoint, which puts Definition
2.30 on par with Wadler’s definition of canonical form (see § 2.3) and
Lindley and Morris’ definition of blocking. The argument relies on
the simple combinatorics of configuration contexts. Any configuration
context with 𝘯 holes must contain exactly 𝘯 − 𝟣 cuts, and therefore must
create exactly 𝘯 − 𝟣 channels.
Lemma 2.33. For any 𝒞n, |dn(𝒞n)| = 𝘯 − 𝟣 and |bn(𝒞n)| = 𝟤(𝘯 − 𝟣).
Proof. By induction on the structure of the configuration context 𝒞.

The fact that some processmust be ready to act on a free endpoint follows,
since you cannot have 𝘯 processes ready to act on 𝘯 − 𝟣 channels without
having at least two of them ready to act on the same channel.
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Proposition 2.34 (Canonical Form). Anywell-typed process P in canonical
form contains a thread that is ready to act on a free endpoint.

Proof. By contradiction. We have P is of the form 𝒞n[T1,…,Tn] (for some
𝘯 ≥ 𝟣). Assume no thread Ti is ready to act on a free endpoint. Then all 𝘯
threads T1, …, Tn must be ready to act on bound endpoints. By linearity,
all 𝘯 threads T1, …, Tn must act on distinct bound endpoints. By Lemma
2.33, 𝒞n binds 𝟤(𝘯 − 𝟣) endpoints in 𝘯 − 𝟣 dual pairs, so any subset of 𝘯
bound endpoints must contain at least one dual pair. Therefore, at least
two threads must be ready to act on dual endpoints, which contradicts
the premise that P is in canonical form.

Unfortunately, that characterisation is inadequate, since it does not
guarantee that the process cannot reduce. An adequate definition should
to match the intuition that all communication in processes that cannot
reduce is blocked on free endpoints. To formalise this notion, we must
ensure that every ready action is blocked on an action on (1) a free
endpoint or (2) a bound endpoint whose dual depends on some ready
action that is blocked. For instance, in the process

(νxx̄)(a(). x[].0 ∥ x̄().P)
the action a() is blocked on the free endpoint a, but the action x̄() is blocked
because its dual action, x[], depends on the action a(), which is blocked on
the free endpoint a.

I formalise the notion of one action depending on another as the shallow
dependency graph of a process. The dependency graph is a mixed graph,
where undirected edges represent connected endpoints, either by link or
by cut, and directed edges—or arcs—represent sequential dependencies.
For instance, the shallow dependency graph for the above process is

a() x[]

x̄() …

where the arrows out of x̄() connect to the actions in P. The graph is
shallow because it only tracks dependencies up to the first action, e.g. any
dependencies within P are not tracked.

To define the dependency graph, we need some way to uniquely refer
to actions. Unfortunately, the actions themselves are not unique—
consider, e.g. x◁ inl. x◁ inl. x[].0. For shallow dependencies, it suffices
to use endpoint names to refer to the first action on that endpoint. The
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dependency graph of the above process then becomes

a x

x̄ fn(P)

For the deep dependency graph, we could augment names with indices
tracking the usage, e.g. letting (x◁ inl, 𝟣) and (x◁ inl, 𝟢) refer to the first
and second occurrence of x◁ inl in x◁ inl. x◁ inl. x[].0. Alternatively, we
could assign fresh vertices to each action (as is done in Priority CP, see
Chapter 5). Fortunately, the shallow variants suffice for my purposes in
this chapter.

The dependency graph is a mixed graph. I informally revisit the relevant
definitions. For a detailed discussion, see § A.1.

• A mixed graph 𝘎 has a set of vertices (denoted 𝘝𝘎, ranged over by 𝘶,
𝘷), a set of edges (denoted 𝘌𝘎), a set of arcs (denoted 𝘈𝘎). Edges are
unordered pairs denoted by juxtaposition, i.e. 𝘶𝘷 ≜ {𝘶, 𝘷}. The set
of edges may not contain loops 𝘶𝘶. Arcs are ordered pairs denoted
by juxtaposition overset with an arrow to indicate the direction, i.e.
𝘶𝘷 ≜ (𝘶, 𝘷). The set of arcs may not contain loops 𝘶𝘶.

• For any graph 𝘎with vertices 𝘶, 𝘷 ∈ 𝘝𝘎, 𝘶 is adjacent to 𝘷 when there
exists some edge 𝘶𝘷 ∈ 𝘌𝘎 or some arc 𝘶𝘷 ∈ 𝘈𝘎.

• A walk 𝘸 is a sequence of pairwise adjacent vertices.
• A path 𝘱 is a walk with no repeated vertices, except possibly the first
and last.

• A cycle 𝘤 is a path that begins and ends at the same vertex.
• A walk is essentially directed when it contains at least one arc.
• A graph is essentially acyclic if and only if it contains no essentially
directed cycles.

• The undirected reachability relation (denoted by ∼𝘎) is the
equivalence closure over 𝘌𝘎.

• The essentially directed reachability relation (denoted by ≺𝘎) is the
transitive closure over 𝘈𝘎 quotiented by ∼𝘎.

The vertices of the dependency graph are endpoint names, which are a
proxy for the first action on that endpoint. The edges represent channels,
created by either links or cuts. The arcs represent dependencies, created
by prefixing. For instance, in a().b[].0, the process b[].0 is prefixed with
the action a(). Hence, the action on b depends on the action on a.

Definition 2.35 (Dependency graph). The shallow dependency graph of
a process P, written Dep(P), is a mixed graph (see § A.1) defined by the
structure of the process P. The process P is of the form 𝒞n[T1,…,Tn] (for
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some 𝘯 ≥ 𝟣). The shallow dependency graph Dep(P) is defined as:

𝘝Dep(P) ≜ ⋃𝟣≤𝘪≤𝘯 fn(Ti)
𝘌Dep(P) ≜ ⋃𝟣≤𝘪≤𝘯{xy|Ti = x↔y} ∪ {xx̄|{x, x̄} ∈ dn(𝒞)}
𝘈Dep(P) ≜ ⋃𝟣≤𝘪≤𝘯{x⃗y|x, y ∈ fn(Ti), ready(Ti, x) ∧ ¬ ready(Ti, y)}

By Lemma 2.21, 𝘌Dep(P) and 𝘈Dep(P) contain no loops. If 𝘎 is (the subgraph of)
some dependency graph, I write fn(𝘎) for its vertices, i.e. fn(𝘎) = 𝘝𝘎.
The dependency graph gives us duality on actions, which is undirected
reachability in the dependency graph.

Definition 2.36 (Duality). An endpoint x is dual to some endpoint y in P,
written x ∼P y, if and only if there exists an undirected path from x to y in
Dep(P).
If x ∼P y, the corresponding path in Dep(P) may be arbitrarily long, as
undirected edges arise from both cuts and links. Consider the process

(νxx̄)(a↔x ∥ x̄↔b)
The duality a ∼ b is witnessed by the path (ax, xx̄, x̄b). The structure
generated by cuts and links does not fork, i.e. each component of the
undirected subgraph of the dependency graph is a path.

The dependency graph also gives us dependency on actions, which is the
converse of essentially directed reachability in the dependency graph.

Definition 2.37 (Dependency). An endpoint x depends on some endpoint
y, written x ≻P y, if and only if there exists an essentially directed path from
y to x in Dep(P).
One quirk of using endpoints as a proxy for actions is that the duality
and dependency appear to “leak” restricted names, i.e. ∼P and ≻P are
not relations over fn(P), but relations over fn(P) ∪ bn(𝒞), where 𝒞 is
the maximum configuration context of P. However, as discussed, these
relations should be viewed as relations on the first actions on those
endpoints, not the endpoints themselves.

A process is in deadlock if the dependency relation is not antisymmetric,
or, equivalently, if there is an essentially directed cycle in the dependency
graph that contains at least one arc.

Definition 2.38 (Deadlock). A process P is in deadlock, written
deadlock(P), if Dep(P) contains an essential cycle.

Every well-typed CP process is deadlock-free.

Proposition 2.39. If P ⊢ Γ, then ¬deadlock(P).
Proof. By induction on the derivation of P ⊢ Γ.
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• Case T-LINK.

The process P is of the form x↔y.

Dep(x↔y) is essentially acyclic as it has no arcs.
• Case T-CUT.

The process P is of the form (νxx̄)(P1 ∥ P2). By induction Dep(P1) and
Dep(P2) are essentially acyclic.
By T-CUT, fn(P1) ∩ fn(P2) = ∅. Under the Barendregt convention, all
bound names in P1 and P2 are distinct. Hence, Dep(P1) and Dep(P2)
are disjoint.

Dep(P) is essentially acyclic by Lemma A.2.

• Case T-SEND, T-RECV, T-CLOSE, T-WAIT, T-SELECT1, T-SELECT2, T-OFFER,
or T-ABSURD.

The process P is ready, i.e. ready(P, x) for some endpoint x.
Dep(P) is essentially acyclic as it has no edges and only arcs out of x.

The definition of deadlock is shallow. If a process is “free from deadlock”,
that means the process is not in immediate deadlock. However, it does not
mean that the process can never become deadlocked. Fortunately, the
latter follows by type preservation. Since well-typed processes are free
from immediate deadlock, and reduction preserves types, no well-typed
process can ever reduce to a deadlocked process.

Care should be taken to only use Definition 2.38 for well-typed processes,
as it does not imply session fidelity, the property that dual endpoints are
used in dual ways. Hence, there are ill-typed processes that are morally
in deadlock, but whose dependency graphs are essentially acyclic. For
instance, the ill-typed process (νxx̄)(x().P ∥ x̄().Q) is morally in deadlock,
but its dependency graph is essentially acyclic:

fn(P) fn(Q)
x x̄

A blocking action is an action that blocks a process frommaking progress.
For instance, in the process

(νxx̄)(a(). x[].0 ∥ x̄().P)
the action a() is blocking. However, not every ready action is blocking.
The action x̄() is ready, but not blocking. Rather, it is blocked: its dual x[]
depends on a(), so it cannot reduce until a() does.
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As with dependency, I approximate blocking actions by their endpoints.
Blocking endpoint are the maxima of the dependency relation, or,
equivalently, the sources of the dependency graph. The blocking set of
a process is the set of all sources of its dependency graph. Every ready
action in a process is blocked on one of the endpoints in the blocking set.

Definition2.40 (Blocking Set). Theblocking set of endpoints of a processP,
written blocking(P), is the set of sources of Dep(P), i.e. {x ∈ 𝘝Dep(P)|∄y.x ≻P y}.
The blocking set is closed under duality.

Lemma 2.41. If P ⊢ Γ and x ∼P y, then x ∈ blocking(P) ⟹ y ∈
blocking(P).
Each endpoint in the blocking set corresponds to a ready action.

Lemma 2.42. If P ⊢ Γ and x ∈ blocking(P), then P is of the form ℰ[T] such
that ready(T, x).
Due to the dualities generated by links, the blocking setmay containmore
endpoints than necessary. For instance, the blocking set of the process

(νxx̄)(x↔a ∥ x̄().P)
is {x, x̄,a}. An action in P is blocked on all of these endpoints. However, I
want to be able to say that every action is blocked on a free name, and, in
this case, the set {a} suffices. A process is blocked on a set of endpoints if
any action is blocked on at least one endpoint in that set.

Definition 2.43 (Blocked). A process P is blocked on a set of endpoints
X, written blocked(P,X), if closing X under duality yields the blocking set
blocking(P), i.e. if x ∈ X and x ∼P y, then y ∈ blocked(P).
Any process is blocked on its blocking set.

Lemma 2.44. If P ⊢ Γ, then blocked(P,blocking(P)).
If a process is blocked on some set of endpoints, it is blocked on the set
formed by replacing any endpoint in that set with its dual.

Lemma 2.45. If P ⊢ Γ and x ∼P y, then blocked(P,X) ⟹
blocked(P,X{y/x}).
If a process cannot β-reduce, then it is blocked on some set of free names.

Proposition 2.46. If P ⊢ Γ, then P⟶̸𝛽 ⟺ ∃A ⊆ fn(P).blocked(P,A).
Proof. Let P be of the form 𝒞n[T1,…,Tn] (for some 𝘯 ≥ 𝟣).
There are two cases:

• Case (⇒).
By contradiction. Assume x ∈ blocking(P) and ∄a ∈ fn(P).x ∼P a.
There are two cases:
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– If x ∈ fn(P), then x ∼P x.

– If x ∈ bn(𝒞), then there exists some {x, x̄} ∈ dn(𝒞).
There are two cases:

* If x̄ ∈ blocking(P), then there exist threads Ti and Tj that are
ready to act on dual endpoints {x, x̄} ∈ dn(𝒞). By Lemma
2.31, P is not β-free.

* If x̄ ∉ blocking(P), then there exists some y such that x̄ ≻P y.
By definition, xx̄ ∈ 𝘌Dep(P). Therefore, x ≻P y and x ∉
blocking(P).

• Case (⇐).
By contradiction. Assume P⟶𝛽.

By inversion, there exist some Ti and Tj (for 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯) that are ready
to act on dual endpoints x and x̄.

By definition, x and x̄ only have outgoing arcs in Dep(P), and the
only edge connected to either is xx̄. Therefore, {x, x̄} ⊆ blocking(P)
and ∄a ∈ fn(P).x ∼P a ∨ x̄ ∼P a.

Corollary 2.47. If P ⊢ Γ, then canonical(P) ⟹ blocking(P) ⊆ fn(P).

Proof. By Proposition 2.46, there exists a set A ⊆ fn(P) such that
blocked(P,A). By definition, A ⊆ blocking(P). It remains to show that
blocking(P) ⊆ A.

By contradiction. Assume x ∈ blocking(P) and x ∉ A.

By definition, there exists some a ∈ A such that x ∼P a. The duality x ∼P
a corresponds to some undirected path 𝘱xa = (x, … ,a) in Dep(P), which
must contain at least one edge that connects some bound name y to some
free name b, say, yb. By definition, any edge in Dep(P) generated by a cut
connects two bound names. Therefore, yb must be generated by a link.
By Lemma 2.42, P = ℰ[y↔b]. Hence, P⟶𝛼.

Unfortunately, “blocked on free endpoints” does not characterise
canonical forms, as blocking(P) ⊆ fn(P) ⇏ P⟶̸𝛼. For instance, the process

(νxx̄)(a(). x[].0 ∥ (νyȳ)(x̄↔y ∥ b(). ȳ().P))
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can α-reduce. Its dependency graph, with blocking endpoints circled, is

a x

x̄

b ȳ

y

…

In conclusion, my definition of canonical form (Definition 2.30) is
adequate: any process in canonical form is blocked on some set of free
endpoints. Due to the behaviour of links, “blocked on free endpoints”
is insufficient to characterise canonical forms. As this would be a
desirable property to have, I consider an alternative semantics for the
link construct when discussing HCP in § 3.3. I have not adopted any of
these alternatives as standard to maintain backwards compatibility with
the work based on Wadler’s CP.

2.2.5 Connection and Right-Branching Form

In this section, I formalise the notion of the connection graph of a process,
and show that any CP process can be rewritten into right-branching form.

Definition 2.48 (Right-branching Form). Aprocess P is in right-branching
form if P is ready or P is of the form (νx1x̄1)(T1 ∥ ⋯(νxnx̄n)(Tn ∥ Tn+1)⋯) for
some 𝘯 ≥ 𝟣.
As discussed earlier, right-branching form is often used in the literature,
but my metatheory avoids it, since it does not generalise to variants of
CP that relax its rigid connection structure. So why am I talking about it?
Of course, it is nice to justify a piece of reasoning that is frequently used.
However, as it turns out, the theory I develop for converting processes to
right-branching form will be important in the discussion of HCP.

Let us start by examining the connection graphs and right-branching
forms of two simple example processes:

(𝟣) (νxx̄)( x[].0 ∥ (νyȳ)( y[].0 ∥ (νzz̄)( z[].0 ∥ x̄(). ȳ(). z̄().P ) ) )

(𝟤) (νxx̄)( (νyȳ)( y[].0 ∥ ȳ(). x[].0 ) ∥ (νzz̄)( z[].0 ∥ z̄(). x̄().P ) )

The connection graph of a process is the graph formed of all ready
sub-processes and the channels that connect them. In the case of the
example processes, each one consists of four ready sub-processes which
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are connected by three channels:

(𝟣)
x[].0 y[].0 z[].0 x̄(). ȳ(). z̄().P

(x, x̄) (y, ȳ)
(z, z̄)

(𝟤) y[].0 ȳ(). x[].0 z[].0 z̄(). x̄().P
(y, ȳ) (z, z̄)

(x, x̄)

Process (1) is already in right-branching form, though we could reorder
the first three processes. Process (2) is not yet in right-branching form,
but we can use the connection graph to convert it to right-branching
form. The procedure picks a leaf from the connection graph, moves the
corresponding cut and thread to the topmost, leftmost position, removes
the leaf, and continues until all of the graph is empty. The process below
is one of numerous different right-branching forms:

(νyȳ)( y[].0 ∥ (νxx̄)( ȳ(). x[].0 ∥ (νzz̄)( z[].0 ∥ z̄(). x̄().P ) ) )
Our notion of connection graph is shallow, as opposed to deep, as we only
account for the connections up to the maximum configuration context.
However, the shallow definition suffices for our purposes and, as we shall
see in Chapter 3, canbeused to reason about the deep connection graphof
a process by reasoning about the collection of shallow connection graphs
of all sub-processes.

The connection graph is a undirected edge-labelled graph. I informally
revisit the relevant definitions. For a detailed discussion, see § A.1.

• A undirected edge-labelled graph 𝘎 has a set of vertices (denoted
𝘝𝘎, ranged over by 𝘶, 𝘷), a set of edges (denoted 𝘌𝘎), a set of edge
labels (denotedℒ𝘎), and an edge-labeling function (denoted ℓ𝘎) that
assigns labels to edges. Edges are unordered pairs denoted by
juxtaposition, i.e. 𝘶𝘷 ≜ {𝘶, 𝘷}. The set of edges may not contain loops
𝘶𝘶.
(It suffices to define 𝘝𝘎 and ℓ𝘎, since 𝘌𝘎 ≜ dom(ℓ𝘎) and ℒ𝘎 ≜ cod(ℓ𝘎).)

• Two vertices 𝘶, 𝘷 ∈ 𝘝𝘎 are adjacentwhen there exists an edge 𝘶𝘷 ∈ 𝘌𝘎.
• A walk 𝘸 is a sequence of pairwise adjacent vertices.
• A path 𝘱 is a walk with no repeated vertices, except possibly the first
and last.

• A cycle 𝘤 is a path that begins and ends at the same vertex.
• A graph is acyclic when it does not contain a cycle.
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• A graph is connectedwhen there is a path between any two vertices.
• A tree 𝘛 is a graph that is connected and acyclic.

Definition 2.49 (Connection graph). The shallow connection graph of a
well-typed process P, written Con(P), is an undirected edge-labelled graph
(see § A.1) where the vertices are threads, the edges are the channels that
connect those threads, and the edges are labelled by unordered pairs of their
endpoints. The process P is of the form 𝒞n[T1,…,Tn] (for some 𝘯 ≥ 𝟣). The
shallow connection graph Con(P) is defined as:

𝘝Con(P) ≜ {T1, … , Tn}ℓCon(P) ≜ {TiTj ↦ (x, x̄)|Ti,Tj ∈ 𝘝Con(P) ∧ {x, x̄} ∈ dn(𝒞) ∧ x ∈ Ti ∧ x̄ ∈ Tj}
By Lemma 2.21, 𝘌Con(P) contains no loops.

By Proposition 2.18, ℓCon(P) is a function.

If 𝘎 is a subgraph of some connection graph, I write fn(𝘎) for the free names
in the vertices of 𝘎, i.e. fn(𝘎) ≜ ⋃P∈𝘝𝘎 fn(P).
In CP, the connection graph of a process is always a tree.

Proposition 2.50 (Connection Tree). If P is well-typed, Con(P) is a tree.

Proof. By induction on the structure of 𝒞 and inversion on the structure
of P and the derivation of P ⊢ Γ.
There are two cases:

• Case 𝒞 is of the form (νxx̄)(𝒞1 ∥ 𝒞2).
By inversion, the typing derivation is of the form

Q ⊢ Γ, x ∶ A R ⊢ Δ, x̄ ∶ A T-CUT(νxx̄)(Q ∥ R) ⊢ Γ,Δ
The process P is of the form (νxx̄)(Q ∥ R).
By T-CUT, fn(Q) and fn(R) as well as Con(Q) and Con(R) are disjoint.
By induction, Con(Q) and Con(R) are trees.
The vertices of Con(P) are exactly the union of those of Con(Q) and
Con(R). Furthermore, the unordered pair {x, x̄} is the only element
of dn(𝒞) that is not present in dn(𝒞1) or dn(𝒞1). By Proposition 2.18,
there is exactly one Ti ∈ 𝘝Con(Q) and one Tj ∈ 𝘝Con(R) such that x ∈ fn(Ti)
and x̄ ∈ fn(Tj). Therefore,

𝘝Con(P) = 𝘝Con(Q) ∪ 𝘝Con(R)ℓCon(P) = {TiTj ↦ (x, x̄)} ∪ ℓCon(Q) ∪ ℓCon(R)
The result follows, as Con(P) is formed by connecting trees Con(Q)
and Con(R) with the single edge TiTj, and connecting two trees with
a single edge always yields another tree.
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• Case 𝒞 is of the form □.
The result follows, as Con(P) is the singleton graph, which is a tree.

The tree structure of the connection graph can be used to rewrite any
process to right branching form.

Proposition 2.51 (Right-branching Form). For any well-typed process P,
there exists a process Q such that P ≡LS Q and Q is in right-branching form.

Proof. By Proposition 2.50, Con(P) is a tree. Let Ti be any leaf of Con(P)
(for 𝟣 ≤ 𝘪 ≤ |𝘝Con(P)|). As Ti is a leaf, exactly one free endpoint in Ti is bound
in P. Let us name that endpoint x. There exist some ℰ,ℱ, and P′ such that:

P ≡LS ℰ[(νxx̄)(ℱ[Ti] ∥ P′)] ⟨by Corollary 2.22⟩
≡LS ℰ[ℱ[(νxx̄)(Ti ∥ P′)]] ⟨by Lemma 2.23 and SC-CUTCOMM⟩
≡LS (νxx̄)(Ti ∥ ℰ[ℱ[P′]]) ⟨by Lemma 2.23⟩

By Lemma 2.24, ℰ[ℱ[P′]] is well-typed. By induction on the process
ℰ[ℱ[P′]], there exists some Q′ such that ℰ[ℱ[P′]] ≡LS Q′ and Q′ is in right-
branching form. Let Q be (νxx̄)(Ti ∥ Q′). The result follows, as P ≡LS Q and Q
is in right-branching form.

The tree structure of the connection graph implies deadlock freedom.

Proposition 2.52. If Con(P) is a tree, then ¬deadlock(P).
Sketch. Let us give the following definitions:

• P is of the form 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟣).
• 𝘛 is the connection graph Con(P).
• 𝘎 is the dependency graph Dep(P).
• 𝘌𝘊𝘎 are the cut-edges in 𝘎, i.e. {xx̄|{x, x̄} ∈ dn(𝒞)}.
• 𝘌𝘓𝘎 are the link-edges in 𝘎, i.e. ⋃𝟣≤𝘪≤𝘯{xy|Ti = x↔y}.
• 𝘎/𝘈𝘎 is the quotient of 𝘎 by its arcs 𝘈𝘎.

The result follows from the following facts:

1. Any essentially directed path 𝘱 in 𝘎 must alternate cut-edges
with arcs or link-edges. (Cut-edges connect endpoints in different
threads. Link-edges and arcs connect endpoints in the same thread.
By definition, each ready link only generates a single link-edge, and
every other thread only generates arcs out of the same vertex.)

2. There exists a surjective graph homomorphism from 𝘎/𝘈𝘎 to 𝘛 ,
which preserves cut-edges and contracts the vertices connected by
each link-edge, defined as:

𝘧 ≜ {X↦ Ti|𝟣 ≤ 𝘪 ≤ 𝘯 ∧ X ⊆ fn(Ti)}
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Assume P is in deadlock, i.e. there exists an essential cycle 𝘤 in 𝘎.
There are three cases:

• If 𝘤 contains no cut-edges, then, by fact (1), 𝘤 must be a loop.
By definition, 𝘎 contains no loops.

• If 𝘤 contains one cut-edge, then, by fact (1), 𝘛 must contain a loop.
By definition, 𝘛 contains no loops.

• Otherwise, by fact (2), 𝘛 contains a cycle.
This contradicts our premise.

Connection graphs are notmerely a tool for converting processes to right-
branching form and proving deadlock freedom. They are a full-fledged
alternative representation for processes, with the interesting property
that they represent the maximum configuration context of a process
without any spurious ambiguity. Processes with equivalent maximum
configuration contexts have equal connection graphs. Moreover, the
correspondence works both ways! Processes with equal connection
graphs have equivalent maximum configuration contexts.

Proposition 2.53. If P is well-typed, then P ≡LS Q ⟺ Con(P) = Con(Q).
Proof. There are two cases:

• Case (⇒).
By induction on the proof of the structural congruence P ≡LS Q. The
cases for reflexivity, transitivity, symmetry, and SC-CONG follow by
induction and those same properties of equality. The cases for SC-
CUTCOMM and SC-CUTASSOC follow immediately.

• Case (⇐).
Let Proc(𝘛) be the set of processes in right-branching form obtained
from the connection tree 𝘛 of a well-typed process by Proposition
2.51. (This is a set because Proposition 2.51 defines a non-
deterministic procedure.)

Pick any R ∈ Proc(Con(P)). As Con(P) = Con(Q), Proc(Con(P)) =
Proc(Con(Q)). Hence, R ∈ Proc(Con(Q)). By definition, P ≡LS R and
Q ≡LS R. Hence, P ≡LS Q.

In conclusion, connection graphs are a unique representation for
maximum configuration contexts that exactly capture link-preserving
shallow structural congruence. That sounds awfully familiar. The
canonical representation for Classical Linear Logic is proof nets [see
Girard, 1987, p. 28]. Proof nets are a graphical representation of proofs
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described as “classical natural deduction” which equate proofs up to
various commutations. Connection graphs are exactly shallow proof
nets that equate proofs up to the commutations SC-CUTCOMM and SC-
CUTASSOC!

The translation from connection graphs to shallow proof nets is simple.
Consider the connection graph for example (2) as presented above:

y[].0 ȳ(). x[].0 z[].0 z̄(). x̄().P
(y, ȳ) (z, z̄)

(x, x̄)

To create the corresponding shallow proof net, convert each process
to its corresponding sequent calculus proof, convert each edge of the
connection graph to a cut node, and connect each port of the cut node
to the corresponding proposition in the sequent calculus proofs. (The
vertical dots are the sequent calculus proof corresponding to the process
P.)

1 ⊥ 1 ⊥ ⊥ 1
CUTCUT CUT

y ȳ x x̄ z̄ z

y[]
.0

⊢y
∶1 z[].0⊢

z∶1

x[].0 ⊢ x ∶ 1
ȳ(). x[].0 ⊢ ȳ ∶ ⊥, x ∶ 1

⋮
P ⊢ Γ

x̄().P ⊢ Γ, x̄ ∶ ⊥
z̄(). x̄().P ⊢ Γ, z̄ ∶ ⊥, x̄ ∶ ⊥

The correspondence between connection graphs is well-known, e.g.
Honda and Laurent [2010] discuss this relation between structural
congruence and proof nets in the context of polarised linear logic. For CP,
this correspondence opens up several interesting avenues for research.
For instance, we could leverage the correspondence to construct a type-
checking algorithm for CP’s connection graphs, rather than its process
terms, based on the various correctness criteria for proof nets, such
as Girard’s long trip criterion [Girard, 1987, p. 30], the Danos-Regnier
criterion [Danos and Regnier, 1989], or Melliès’ ribbon criterion [Melliès,
2004]. Moreover, it would be interesting to examine the proof structures
that correspond to stronger versions of structural congruence, such
as the shallow or deep congruences defined in this chapter, or strong
bisimulation with delayed actions, as defined, e.g. by Kokke et al. [2019a,
DHCP], which I suspect has a much tighter correspondence to proof nets.



66 Chapter 2. Classical Processes Revisited

2.2.6 Observational Equivalence
In this section, I provide the basis for a behavioural theory for CP, namely,
definitions for an observability predicate and barbed congruence.
The purpose of this section is merely to show that these definitions
can be given without the additional machinery introduced by Atkey
[2017]. Therefore, I will not delve too deeply into the details. Access
to an observability predicate also somewhat eases the discussion of
commuting conversions in § 2.3.

The definition of observability predicates is non-standard, as it is not
defined in terms of a label-transition system, but it is well-known, and
follows Sangiorgi and Walker [2003, p. 56, Exercise 2.1.3]. The definition
of the barbed congruence is standard, and follows Kokke et al. [2019a].

Definition 2.54 (Observability predicates). The observability predicate
↓xP holds if and only if P is of the form ℰ[Q] such that ready(Q, x) and {y ∈
fn(Q)| ready(Q, y)} ∩ bn(ℰ) = ∅.
Definition 2.55 (Barbed congruence). Barbed congruence, written ≊, is
the largest symmetric relation on well-typed processes that is:

1. type preserving (i.e. if P ≊ Q and P ⊢ Γ then Q ⊢ Γ)
2. barb preserving (i.e. if P ≊ Q and ↓xP then ↓xQ)
3. context-closed (i.e. if P ≊ Q then R[P] ≊ R[Q] for any well-typed R[⋅])

For a coarser barbed congruence, which distinguishes, e.g. x◁ inl.P
and x◁ inr.P, index the observability predicates with coarser labels
[Yoshida et al., 2002, Atkey, 2017, Kokke et al., 2019a]. However, such
considerations are outside of the scope of this section.

2.3 Commuting Conversions Considered Bad
Wadler’s CP has additional reduction rules, known as commuting
conversions [Wadler, 2014, § 3.6]. The reason for adding these rules is that
they allow the reduction strategy for Wadler’s CP to correspond step-by-
step to a standard proof of cut elimination in Gentzen’s style [see Girard
et al., 1989, § 13.2].

The commuting conversions are summarised in Figure 2.4. For clarity,
I separate the rules into two different reduction relations [following
Lindley and Morris, 2015]. I write ⟶ for cut reductions and ⟶𝘊𝘊 for
commuting conversions.5 Wadler’s reduction relation is defined as as

5My names for the reduction relations differ from those of Lindley and Morris
[2015]. I use the right arrow (⟶) for CP’s the reduction relation without commuting
conversions, which I consider the canonical reduction relation and is consistent
with later chapters, and the right arrow labelled with a ‘W’ for Wadler (⟶𝘞 ) for
Wadler’s reduction. Lindley and Morris [2015] use the right arrow (⟶) for Wadler’s
reduction, which they consider the canonical reduction relation, and use the right arrow
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(νzz̄)(x[y]. (P ∥ Q) ∥ R) ⟶𝘊𝘊 x[y]. (P ∥ (νzz̄)(Q ∥ R)) if z ∉ P CC-SEND1(νzz̄)(x[y]. (P ∥ Q) ∥ R) ⟶𝘊𝘊 x[y]. ((νzz̄)(P ∥ R) ∥ Q) if z ∉ Q CC-SEND2(νzz̄)(x(y).P ∥ Q) ⟶𝘊𝘊 x(y). (νzz̄)(P ∥ Q) CC-RECV
(νzz̄)(x().P ∥ Q) ⟶𝘊𝘊 x(). (νzz̄)(P ∥ Q) CC-WAIT
(νzz̄)(x◁ inl.P ∥ Q) ⟶𝘊𝘊 x◁ inl. (νzz̄)(P ∥ Q) CC-SELECT1(νzz̄)(x◁ inr.P ∥ Q) ⟶𝘊𝘊 x◁ inr. (νzz̄)(P ∥ Q) CC-SELECT2(νzz̄)(x ▷ {inl∶ P; inr∶Q} ∥ R)

⟶𝘊𝘊
x ▷ {inl∶ (νzz̄)(P ∥ R); inr∶ (νzz̄)(Q ∥ R)} CC-OFFER

CC-ABSURD
z ∈ N, z̄ ∈ fn(P) N′ = (N ∖ {z}) ∪ (fn(P) ∖ {z̄})

(νzz̄)(x N ∥ P)⟶𝘊𝘊 x N′

CC-SC
P ≡ P′ P′ ⟶𝘊𝘊 Q′ Q′ ≡ Q

P⟶𝘊𝘊 Q

CC-CONG
P⟶𝘊𝘊 P′

ℰ[P]⟶𝘊𝘊 ℰ[P′]

Figure 2.4: Commuting Conversions for Classical Processes

their union, written⟶𝘞 :

⟶𝘞 ≜⟶∪⟶𝘊𝘊

A consequence of the commuting conversions is that Wadler’s CP has an
appealingly simple canonical form: ‘canonical form’ simply means ‘not a
cut’. I call this weak cut-free form, by analogy to weak-head normal form.

Definition 2.56 (Weak Cut-Free Form). A process is inweak cut-free form
if is not a cut, i.e. it is not of the form (νxx̄)(P ∥ Q) for any x, x̄, P, and Q.

Equivalently, a process is in weak cut-free form if it is ready.

The commuting conversions are required to reduce processes to weak
cut-free form. For instance, the process

(νxx̄)(a(). x̄[].0 ∥ x().P)
is not in weak cut-free form, but cannot reduce with any cut reduction.

Lindley and Morris [2015, Page 574] claim that it suffices to reduce using
only cut reductions, and use commuting conversions only to reduce from
canonical form to weak cut-free form. I formalize and prove their claim
as a pair of theorems.

labelled with a ‘C’ for principal cut (⟶𝘊) for the reduction relation without commuting
conversions.
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First, I relate Lindley andMorris’ claim tomydefinition of canonical form
by showing that any process in canonical form reduces to a process in
weak cut-free form using only commuting conversions.

Proposition 2.57. For any process P in canonical form, there is a reduction
using only commuting conversionsP⟶⋆𝘊𝘊 P′ such thatP′ is inweak cut-free
form.

Proof. There are two cases:

1. If P is ready, it is in weak cut-free form.

2. Otherwise, we have P ≡ (νx1x̄1)(P1 ∥ ⋯(νxnx̄n)(Pn ∥ Pn+1)⋯) such that (1)
each Pi is ready; (2) no Pi is a link; and (3) no Pi and Pj are ready to
act on dual endpoints of the same channel.

At least one process Pi is ready to act on a free endpoint: There are
𝘯 pairs of dual endpoints (x1, x̄1, …, xn, x̄n) and 𝘯 + 𝟣 processes (P1,
…, Pn+1). By (1), each process Pi is ready. If all 𝘯 + 𝟣 processes P1, …,
Pn+1 are ready to act on endpoints from the bound channels x1, x̄1, …,
xn, x̄n, at least two processes must be ready to act on dual endpoints,
which contradicts (3).

By (2), the process ready to act on a free endpoint cannot be a link.
Therefore, we can use the commuting conversion to propagate that
action to the top, and get the reduction P ⟶⋆𝘊𝘊 P′ such that P′ is in
weak cut-free form.

Secondly, I show that it is sufficient to reduce using only cut reductions
followed by only commuting conversions, by showing that any reduction
in Wadler’s CP can be rewritten to this form.

Proposition 2.58. For any reduction P ⟶⋆𝘞 R, there is a reduction
P⟶⋆⟶⋆𝘊𝘊 R.

Proof. By iteratively commuting all commuting conversion past each
reduction using Lemma 2.59. (For the full proof, see § 2.5.)

Lemma 2.59. If P⟶⋆𝘊𝘊⟶⟶⋆𝘊𝘊 R, then P⟶⟶⋆𝘊𝘊 R.

Proof. By iteratively permuting each commuting conversion past the
reduction using Lemma 2.60. (For the full proof, see § 2.5.)

Lemma 2.60. If P⟶𝘊𝘊⟶ R, then either P⟶⟶𝘊𝘊 R or P⟶ R.
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Proof. I will give the high-level intuition behind the proof, and give the
formal proof for several interesting cases in § 2.5.

Recall that commuting conversions commute an action past a cut, e.g. to

(νzz̄)(x(y).P ∥ Q)⟶𝘊𝘊 x(y).(νzz̄)(P ∥ Q)

Recall that cut reductions eliminate actions, e.g.

(νxx̄)(x[y].(P ∥ Q) ∥ x̄(ȳ).R)⟶ (νyȳ)(P ∥ (νxx̄)(Q ∥ R))

It follows that for any reduction P ⟶𝘊𝘊⟶ R there are two options. The
commuting conversion and cut reduction either act on the same action or
on different actions:

• If they act on the same action, the commuting conversion is being
used to move the action into place for the cut reduction. We can do
this using the structural congruence instead.

• Otherwise, the two reduction steps act on different actions
in different subprocesses. We can postpone the commuting
conversion.

Unfortunately, we cannot easily formalize this high-level intuition, as
actions are not a standalone syntactic sort in CP. Therefore, the formal
proof proceeds by induction on the cut reduction ⟶ R followed by
inversion on the commuting conversion P⟶𝘊𝘊 .

(For the full proof, see § 2.5.)

What is the relation between weak cut-free form and canonical form?
Can we split some reduction P ⟶⋆𝘞 R into P ⟶⋆ Q and Q ⟶⋆𝘊𝘊 R
using Proposition 2.58, then forget about the commuting conversions,
and expect the process Q to be in canonical form? The short answer is
“no”.

Any process in weak cut-free form must be an action on a free endpoint,
since there can be no bound endpoints at the top-level of a process. The
commuting conversions can move an action on a free endpoint past any
number of cuts. Therefore, a process can reduce to weak cut-free form
using only the commuting conversions if it has any action on a free name
under only cuts. As I discussed in § 2.2.4, that is inadequate as a definition
for canonical form, e.g. the process

(νxx̄)(a().P ∥ (νyȳ)(y[].0 ∥ ȳ().Q))
has an action on a free endpoint under a single cut but can still reduce.

Lemma 2.60 reveals an issue with commuting conversions: redundancy.
Pairs of dual actions must be adjacent in the process configuration
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before any reduction rule applies. This is a problem of syntax.
The structural congruence dictates that process configurations can be
permuted. However, in Wadler’s CP, there are at least two ways to move
dual actions into adjacent positions. We can either use the structural
congruence or the commuting conversions. Worse, by combining both,
we can pick any number of unrelated processes for the dual actions to
commute over.

Example 2.61 (Redundancy). The following process has two distinct
reductions that eliminate the dual actions x[] and x̄(). One uses structural
congruence, and the other uses commuting conversions.

(νxx̄)(x[].0 ∥ (νyȳ)(x̄().Q ∥ R))

(νxx̄)(x[].0 ∥ x̄(). (νyȳ)(Q ∥ R)) (νyȳ)((νxx̄)(x[].0 ∥ x̄().Q) ∥ R)

(νyȳ)(Q ∥ R)

≡ ⟶
𝘊𝘊

⟶ ⟶

The reduction strategy described by Wadler [2014, Proposition 2] does
not meaningfully use the structural congruence; its only use is to derive
the symmetric versions of the reduction rules, such as, e.g. the symmetric
version of E-LINK:

(νx̄x)(P ∥ x↔w) ≡ (νxx̄)(x↔w ∥ P) (νxx̄)(x↔w ∥ P)⟶ P{w/x̄}
(νx̄x)(P ∥ x↔w)⟶ P{w/x̄}

There is another issue with commuting conversions. To illustrate the
issue, let us have a look at CC-WAIT:

(νzz̄)(x().P ∥ Q)⟶𝘊𝘊 x(). (νzz̄)(P ∥ Q)
On the left-hand side of the reduction rule, Q is a top-level process.
Therefore, any action on a free endpoint in Q can be observed, and any
reductionQ⟶𝘞 Q′ can happen. On the right-hand side of the reduction,
both of these things are blocked by the action x().
Example 2.62 (Blocked Observable). The reduction with CC-WAIT on the
action a() blocks the observation ↓b

(νxx̄)(a().P ∥ b().Q) has observables ↓a, ↓b⟶
𝘊𝘊

a(). (νxx̄)(P ∥ b().Q) has observables ↓a
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Example 2.63 (Blocked Reduction). The reduction with CC-WAIT on the
action a() blocks the reduction with E-CLOSE on the actions y[] and y()

(νxx̄)(a().P ∥ (νyȳ)(y[].0 ∥ ȳ().Q))⟶

(νxx̄)(a().P ∥ Q)⟶
𝘊𝘊

a(). (νxx̄)(P ∥ Q)
⟶

𝘊𝘊

a(). (νxx̄)(P ∥ (νyȳ)(y[].0 ∥ ȳ().Q))

Example 2.63 reveals that Wadler’s CP is non-confluent! The processes at
the bottom of the tree, a(). (νxx̄)(P ∥ Q) and a(). (νxx̄)(P ∥ (νyȳ)(y[].0 ∥ ȳ().Q)),
are distinct weak cut-free forms of (νxx̄)(a().P ∥ (νyȳ)(y[].0 ∥ ȳ().Q)).
Canonical form is a stronger property than weak cut-free form. For some
reductions P⟶⋆𝘞 Rwhere R is weak cut-free, whenwe apply Proposition
2.58 to decompose the reduction into P⟶⋆ Q and Q⟶⋆𝘊𝘊 R, we find the
process Q is not in canonical form: further cut reductions were initially
possible, but became blocked by the commuting conversions. Formally,
weak cut-free form corresponds to a variant of canonical form, called
weak canonical form, which swaps the universal “all processes are ready”
for an existential “some process is ready”.

Definition 2.64 (Weak Canonical Form). A process P is inweak canonical
form if P is of the form ℰ[Q] such that Q is ready to act on a free endpoint
that is not bound by ℰ.
Equivalently, a process P is in weak canonical form if there is a reduction
P⟶⋆𝘊𝘊 P′ such that P′ is in weak cut-free form.

As a consequence of the blocking behaviour of commuting conversions,
the parallel composition of Wadler’s CP is not truly parallel composition.
To illustrate this, let us each imagine an implementation of Wadler’s CP
in our favourite programming language, and let us recall CC-WAIT:

(νzz̄)(x().P ∥ Q)⟶𝘊𝘊 x(). (νzz̄)(P ∥ Q)
Imagine that we implement each ready action Pi in a process as some
program ti running in its own thread. The program t1 implements x().P:
it is blocked, waiting to receive a ping on the channel x. The programs
t2,…,tN implement Q: they are a collection of programs connected by
channels, each program running in its own thread. There may be some
communication between the programs t2,…,tN, but due to the typing rule
for cut, only one of them is connected to t1.
The commuting conversion CC-WAIT requires that, because t1 is blocked
on x, all of the programs t2,…,tN can become blocked on x. An
implementation would require some communication between t1 and
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t2,…,tN, but this cannot be communication on shared channels, ast1 only
shares a channel with one of t2,…,tN. Therefore, when we implement
the cut from Wadler’s CP, we cannot simply use two parallel threads
with a shared channel. We must add some kind of global scheduler.
Consequently, implementations of Wadler’s CPmust be less parallel than
we would expect from the syntax.

Formally, simulations of Wadler’s CP in the π-calculus must decrease
the degree of distribution, i.e. it is not possible to translate parallel
composition to parallel composition.

Claim 2.65. There exists no translation from the processes of Wadler’s CP
to processes of the π-calculus, written J⋅K𝜋 , such that:

• The translation preserves the degree of distribution, i.e. is a
homomorphism on parallel composition, which, due to CP’s glued
syntax, requires that the following equalities hold

J(νxx̄)(P ∥ Q)K𝜋 = (νx)(JPK𝜋 ∥ JQ{x/x̄}K𝜋)Jx[y]. (P ∥ Q)K𝜋 = x[y]. (JPK𝜋 ∥ JQK𝜋)
(Where the terms on the right-hand side denote π-calculus processes,
i.e. (νx) is channel name restriction and x[y] is bound output.)

• The translation is a simulation, i.e. P ⟶𝘞 Q implies JPK𝜋 ⟶𝜋⋆ JQK𝜋 .
(Where⟶𝜋⋆ denotes the reflexive-transitive closure of the reduction
relation for the π-calculus.)

In summary, the commuting conversions in Wadler’s CP are redundant,
break confluence, and break the interpretation of parallel composition
as parallel composition.

The version of CP presented in this chapter is confluent, but this
is difficult to prove for the reduction semantics, as it requires
showing that the structural congruence preserves the observable actions.
Ultimately, a proof of congruence can be constructed by its operational
correspondence with HCP (Chapter 3), which is the subject of the next
chapter, and the proof of congruence for HCP by Montesi and Peressotti
[2021].

2.4 Conclusion
In this chapter, I revisited Classical Processes and its metatheory. I
dropped the commuting conversions, which cause Wadler’s CP to be
non-confluent, from the reduction semantics. I proved preservation
(Proposition 2.27), and proved that progress (Proposition 2.32) continues
to hold, albeit with a different canonical form (Definition 2.30). I
proved that CP’s processes are deadlock-free (Proposition 2.39), and
that the new canonical forms are adequate (Corollary 2.47). I proved
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that CP’s connection graphs are trees (Proposition 2.50), and that any
process can be rewritten to right-branching form (Proposition 2.51).
Finally, I discussed the relation between CP with and CP without
commuting conversions. I proved that any process in canonical
form can reduce to a process in Wadler’s canonical form using only
commuting conversions (Proposition 2.57); and that any reduction that
uses commuting conversions is equivalent to a reduction that does
not use commuting conversions followed by a reduction using only
commuting conversions (Proposition 2.58).

2.5 Omitted Proofs
Proposition 2.58. For any reduction P ⟶⋆𝘞 R, there is a reduction
P⟶⋆⟶⋆𝘊𝘊 R.

Proof. By induction on the length of the reduction P⟶⋆𝘞 R.

There are three cases:

1. The length is 𝟢.
The result follows by reflexivity.

2. The length is 𝘕 + 𝟣 and the reduction is of the form P⟶⋆𝘞 R′ ⟶ R.

By induction, we have P⟶⋆⟶⋆𝘊𝘊 R′. Hence, P⟶⋆⟶⋆𝘊𝘊 R′ ⟶ R.

The result follows by Lemma 2.59.

3. The length is 𝘕+𝟣 and the reduction is of the form P⟶⋆𝘞 R′ ⟶𝘊𝘊 R.

By induction, we have P⟶⋆⟶⋆𝘊𝘊 R′. Hence, P⟶⋆⟶⋆𝘊𝘊 R′ ⟶𝘊𝘊 R.

The result follows immediately.

Lemma 2.59. If P⟶⋆𝘊𝘊⟶⟶⋆𝘊𝘊 R, then P⟶⟶⋆𝘊𝘊 R.

Proof. By induction on the length of the reduction P⟶⋆𝘊𝘊 .

There are two cases:

1. The length is 𝟢.
The reduction is of the form P⟶⟶⋆𝘊𝘊 R.

The result follows immediately.

2. The length is 𝘕 + 𝟣.
The reduction is of the form P⟶⋆𝘊𝘊 P′ ⟶𝘊𝘊⟶ R′ ⟶⋆𝘊𝘊 R.

By Lemma 2.60, one of two cases must hold:
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a. There is a reduction P′ ⟶⟶𝘊𝘊 R′.

Hence, P⟶⋆𝘊𝘊 P′ ⟶⟶𝘊𝘊 R′ ⟶⋆𝘊𝘊 R.

The result follows from the induction hypothesis.

b. There is a reduction P′ ⟶ R′.

Hence, P⟶⋆𝘊𝘊 P′ ⟶ R′ ⟶⋆𝘊𝘊 R.

The result follows from the induction hypothesis.

Lemma 2.60. If P⟶𝘊𝘊⟶ R, then either P⟶⟶𝘊𝘊 R or P⟶ R.

Proof. By induction on the cut reduction ⟶ R followed by inversion
on the commuting conversion P ⟶𝘊𝘊 . The induction is guarded by the
decreasing length of the derivation of the cut reduction. We examine
three cases:

1. The cut reduction uses E-SEND and is of the form (reusing P and R)

(νxx̄)(x[y]. (P ∥ Q) ∥ x̄(ȳ).R)⟶ (νyȳ)(P ∥ (νxx̄)(Q ∥ R))
By inversion, there are six cases for the commuting conversion.
It uses either CC-SEND1, CC-SEND2, or CC-RECV under CC-CONG, or
the symmetric version of any of these. We examine only the case
where the reduction uses CC-RECV under CC-CONG and is of the form
(reusing P, Q, and R)

(νxx̄)(x[y]. (P ∥ Q) ∥ (νzz̄)(x̄(ȳ).R ∥ R′))
⟶𝘊𝘊 (νxx̄)(x[y]. (P ∥ Q) ∥ x̄(ȳ). (νzz̄)(R ∥ R′))
⟶ (νyȳ)(P ∥ (νxx̄)(Q ∥ (νzz̄)(R ∥ R′)))

We replace the use of the commuting conversion with two uses of
the structural congruence:

(νxx̄)(x[y]. (P ∥ Q) ∥ (νzz̄)(x̄(ȳ).R ∥ R′))
≡ (νzz̄)((νxx̄)(x[y]. (P ∥ Q) ∥ x̄(ȳ).R) ∥ R′)
⟶ (νzz̄)((νyȳ)(P ∥ (νxx̄)(Q ∥ R)) ∥ R′)
≡ (νyȳ)(P ∥ (νxx̄)(Q ∥ (νzz̄)(R ∥ R′)))

2. The cut reduction uses E-CONG and is of the form (reusing P)

(νxx̄)(P ∥ Q)⟶ (νxx̄)(P′ ∥ Q)
The premise to E-CONG is of the form P ⟶ P′. By inversion, there
are two cases for the commuting conversion. It uses CC-CONG.
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a. The reduction uses CC-CONG and is of the form

(νxx̄)(P″ ∥ Q)⟶𝘊𝘊 (νxx̄)(P ∥ Q)⟶ (νxx̄)(P′ ∥ Q)
The premise to CC-CONG is of the form P″ ⟶𝘊𝘊 P. The induction
hypothesis gives us either P″ ⟶⟶𝘊𝘊 P′ or P″ ⟶ P′. In either
case, the result follows immediately.

b. The reduction uses CC-CONG and is of the form

(νxx̄)(P ∥ Q′)⟶𝘊𝘊 (νxx̄)(P ∥ Q)⟶ (νxx̄)(P′ ∥ Q)
The premise to CC-CONG is of the form Q′ ⟶𝘊𝘊 Q. The two
reduction steps act on parallel processes, and can be reordered:

(νxx̄)(P ∥ Q′)⟶ (νxx̄)(P′ ∥ Q′)⟶𝘊𝘊 (νxx̄)(P′ ∥ Q)

3. The cut reduction uses E-EQUIV and is of the form Q ≡ Q′ ⟶ R′ ≡ R.
The premise to E-EQUIV is of the form Q′ ⟶ R′. The induction
hypothesis, applied to P ⟶𝘊𝘊≡ Q′ ⟶ R′, gives us either P ⟶⟶𝘊𝘊
R′ or P ⟶ R′. The result follows as P ⟶⟶𝘊𝘊≡ R or P ⟶≡ R,
respectively.
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Chapter 3

Hypersequent Classical Processes

This chapter presents Hypersequent Classical Processes (HCP), a session-
typed process calculus based on CP as presented in Chapter 2.
Nonetheless, the definitions, statements, and proofs in this chapter are
self-contained, and do not reference those in Chapter 2, except where the
goal is to relate CP and HCP.

HCP was independently developed by myself and by Fabrizio Montesi &
Marco Peressotti [see Montesi and Peressotti, 2018]. Upon finding out
about this parallel development, we collaborated on HCP, and published
two versions:

• Taking Linear Logic Apart at Linearity-TLLA’18 [Kokke et al., 2019b]

The paper presents HCP as presented in this chapter. Unfortunately,
the published version contains errors anduses notation andnaming
conventions that do not match later publications, so I have chosen
not to include it in this thesis.1

The paper refers to the calculus as HCP-, rather than HCP, to
distinguish it from the version below.

• Better Late Than Never at POPL’19 [Kokke et al., 2019a]

The paper presents Delayed HCP, which extends HCP with non-
blocking actions. DHCP is not presented in this thesis.

The paper refers to the calculus as HCP, rather than DHCP, as we
believed at the time that DHCP would be the preferred version. The
authors have since changed their minds. I use HCP to refer to the

1In May of 2019, Marco Peressotti discovered an error in the published version of
Kokke et al. [2019b]. We submitted an erratum to EPTCS in July of 2019 which was
approved for publication in October of 2021. Unfortunately, at the time of writing, the
erratum has not yet been published. The version of the paper on Marco Peressotti’s
personal website, linked from the bibliography, contains an erratum.
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version without delayed actions. Montesi and Peressotti [2021] use
the name πLL instead of HCP2.

HCP’s main innovation is its type system, which lets us safely separate
name restriction and parallel composition. Consequently, HCP more
closely resembles the π-calculus and is more amenable to standard
behavioural theory. Before we delve into the details, let us examine HCP
at a glance, and investigate how it relates to Classical Processes, Classical
Linear Logic [CLL, Girard, 1987], and the π-calculus [Milner et al., 1992b].

In this chapter, HCP’s processes are printed in red, and its types are
printed in blue, and both are rendered in a sans-serif font. To save on
accessible colour combinations, the terms and types of any other system
are printed in pink and green, respectively, both are rendered in an
italicised font with serif, and any relations, such as typing and reduction,
are marked by a subscript.

How does HCP relate to CP? The primary difference between CP and HCP
is that HCP has a standalone process construct for parallel composition,
whereas CP bakes parallel composition into the constructs for name
restriction and sending—i.e. (νxx̄)P, x[y].P, and P ∥ Q versus (νxx̄)(P ∥ Q)
and x[y]. (P ∥ Q). Likewise, HCP has a standalone process construct for
the terminated process, which CP bakes into the construct for channel
closing—i.e. x[].P and 0 versus x[].0.
To match the decomposition of processes, HCP decomposes its typing
rules, and adds new typing rules for parallel composition and the
terminated process:

P ⊢ 𝒢 Q ⊢ ℋ T-PARP ∥ Q ⊢ 𝒢 ∥ℋ T-HALT0 ⊢ ∘

To ensure that the properties of CP are preserved, only channel endpoints
held by different processes are safe to connect. To this end, HCP adds the
structural connectives “∥” and “∘” which separate channel endpoints into
groups corresponding to the processes that hold them. (Note that “∘” is
distinct from the empty typing environment “∅”.)
Why are parallel composition and the terminated process typed by
structural connectives rather than logical connectives? A channel
endpoint is typed by a session type, and a process is typed by a typing
environment that maps each free endpoint to its session type. An action
acts on an endpoint, so the typing rules for actions are naturally the
logical rules for some logical connective. However, parallel composition
acts on processes and the terminated process simply is a process, so their
typing rules must be structural rules for some structural connectives.

2Montesi and Peressotti’s πLL continues thework onHCP. Of course, πLL is not amere
renaming. For instance, it includes the exponentials and second-order quantifiers.
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To match the decomposition of processes, HCP also decompose the
rules of its structural congruence, which become the standard rules
for the π-calculus—such as associativity and commutativity for parallel
composition, the unit laws for the terminated process, and scope
extrusion. The reduction rules of HCP are exactly the same as those of
CP.

I defer detailed discussion of the relation between HCP and CP to § 3.2.
There we will see that HCP is a calculus for analysing collections of CP-
like processes, and that HCP connection graphs are forests, rather than
trees.

How does HCP relate to Classical Linear Logic? The crucial property of CP
is its exact correspondence to linear logic. If you erase all that’s written
in red from the typing rules of CP, you get the inference rules of CLL, as
given by Girard [1987]. Certainly, as HCP changes those typing rules, it
must weaken that correspondence. I argue that it does the best possible
job of preserving the property.

HCP is a conservative extension of CP. The corresponding logic, HCLL, is
a conservative extension of CLL. Any CLL proof is an HCLL proof, and
HCLL proves no new theorems about existing connectives. Formally,

⊢𝘊 Γ ⟺⊢ Γ

where ⊢𝘊 Γ and ⊢ Γ denote sequents in CLL and HCLL, respectively.

HCLL extends CLL with the ability to reason about multiple unrelated
proofs using hypersequents [Pottinger, 1983, Avron, 1991]. (Hence,
Hypersequent CP.) A hypersequent logic has judgements over finite
multisets of sequents, rather than single sequents. Avron writes
hypersequents as:

Γ𝟣 ⊢ Δ𝟣 | … | Γ𝘯 ⊢ Δ𝘯
As CLL and HCLL use one-sided sequents, the turnstile is somewhat
superfluous, merely serving to remind us of the polarity of the typing
environment, i.e. that commas are structurally pars rather than tensors.
Frankly, the turnstile remains in CP only because something must
separate the process and its typing environment and the colon is already
taken. Hence, we might as well use the familiar turnstile. It looks
pleasing and it reminds us of the polarity to boot. If we were to use
Avron’s notation for hypersequents, we would find ourselves writing the
turnstile over and over. Worse, the turnstile would lose its primary
function—to stand between a process and its typing environment.
Instead, I present HCLL as a logic over finite multisets of environments,
where environments are multisets of formulas. I refer to multisets of
environments as hyper-environments. The turnstile keeps its position to
the left of the hyper-environment, and continues to serve its primary
function of separating term from type, red from blue. (Nonetheless, we
continue to refer to HCLL as a hypersequent calculus.)
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Hyper-environments, denoted by 𝒢 and ℋ, are multisets of typing
environments. I write ∘ for the empty hyper-environment, and ∥ for
hyper-environment concatenation. The rules for (∥) and (∘) are as follows:

⊢ 𝒢 ⊢ ℋ (∥)⊢ 𝒢 ∥ℋ (∘)⊢ ∘
What does a proof of a hyper-environment mean? A proof of a multiset
of typing environments should imply a multiset of disjoint proofs, with
one separate proof for each typing environment. In the larger proof,
each of the separate proofs may be entangled—their inference rules
mixed together—but each inference rule should belong to exactly one
of the separate proofs, and we should be able to disentangle them into
a sequence of CLL proofs:

𝘱
⋮

⊢ Γ1 ∥ … ∥ Γn
⟹

𝘱𝟣
⋮

⊢ Γ1
, … ,

𝘱𝘯
⋮

⊢ Γn
There is a deep connection between the logical connective “⊗”, the
structural connective “∥”, and branching—having multiple premises—
in multiplicative inference rules. All three capture some notion of
disjointness:

• For branching, the disjointness is immediately apparent. Sequent
calculus proofs are trees, so the premises are disjoint.

• For the structural connective “∥”, the disjointness follows from the
disentanglement property stated above.

• For the logical connective “⊗”, the disjointness follows from the
splitting theorem [e.g. Girard, 1987, p. 39, Theorem 2.9.7, for CLL
proof nets], which states that a proof of some judgement with
subformula A⊗ B can be decomposed into separate proofs of A and
its environment, B and its environment, and a common prefix:

𝘱
⋮

⊢ Γ,C[A⊗ B]
⟹

𝘱𝟣
⋮

⊢ Δ1,A
𝘱𝟤
⋮

⊢ Δ2,B
⊢ Δ1,Δ2,A⊗ B

⋮
𝘧
⋮

⊢ Γ,C[A⊗ B]
In summary, the connective “∥” is a structural “⊗”, and the judgement ⊢
Γ ∥Δmeans that the proofs of Γ and Δ are disjoint and can be disentangled
into separate proofs. Likewise, the connective “∘” is a structural “1”, and
the judgement “⊢ ∘” means that there is nothing to prove.

Since hyper-environments internalise branching for multiplicative rules
into the structure of the logic, the multiplicative rules may become unary.
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For instance, HCLL’s CUT rule has only one premise:

⊢ 𝒢 ∥ Γ,A ∥ Δ,A CUT⊢ 𝒢 ∥ Γ,Δ
The premise requires that the positive and negative occurrences of the
cut formula are separated by a “∥”, which ensures that their respective
proofs are disjoint. In the conclusion, the environments are merged,
since the proofs have become connected. This bookkeepingmaintains the
invariant that cut is only allowed to connect disjoint proofs, and avoids
admitting rules that fundamentally alter the logic, such as MULTICUT [see,
e.g. Atkey et al., 2016].

Likewise, HCLL’s rule for tensor has only one premise, but there are two
possible versions of the rule, which differ in whether or not the rule
applies in the presence of unrelated proofs.

⊢ Γ,A ∥ Δ,B (⊗)⊢ Γ,Δ,A⊗ B
⊢ 𝒢 ∥ Γ,A ∥ Δ,B (⊗𝘋)⊢ 𝒢 ∥ Γ,Δ,A⊗ B

The two are logically equivalent: (⊗) is derivable from (⊗𝘋), and (⊗𝘋) is
admissible using (⊗) and disentanglement. However, the two give rise to
different process semantics:

• HCP, as presented in this chapter and in Kokke et al. [2019b, with
errata], uses (⊗), which gives rise to the standard semantics of the
π-calculus and is compatible with CP.

• DHCP, as presented in Kokke et al. [2019a], uses (⊗𝘋), which gives
rise to delayed action semantics, as disentanglement requires that
the action associatedwith (⊗𝘋) commutes with parallel composition.

How does HCP relate to the π-calculus? There is a slight difference in
the semantics of communication channels, name restriction, and parallel
composition, betweenHCP and the π-calculus, as presented by, e.g.Milner
et al. [1992b] or Sangiorgi and Walker [2003]. Let us investigate this
difference by asking a question: What makes a communication channel?
There are at least two answers:

1. A communication channel is a name. Two processes can
communicate simply by having access to the same name. Name
restriction restricts the scope of a name, but communication
channels exist irrespective of name restriction.

2. A communication channel is explicitly created. Two processes can
only communicate if they have access to the same name bound in
the scope of the name restriction that creates it. Unbound names
are disconnected endpoints, not attached to any channel.

A bit tongue-in-cheek, I will refer to (1) as the restrictive view, and to
(2) as the creative view. The π-calculus [Milner et al., 1992b] takes the
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restrictive3 view, whereas Hypersequent CP takes the creative view. The
two can be distinguished by their reduction rules—or, equivalently, their
label-transition rules, which we will discuss later. Under the restrictive
view, communication happens on free names, e.g. as in rule (a), and can
happen on bound names simply by congruence. Under the creative view,
communication can only happen on bound names, e.g. as in rule (b).

(a) (b)
a⟨c⟩.P ∥ a(y).Q⟶𝜋 P ∥ Q{c/y} (νx)(x⟨c⟩.P ∥ x(y).Q)⟶𝜋 (νx)(P ∥ Q{c/y})
The view we take has significant consequences for our type system:

1. Under the restrictive view, connection happens coincidentally.
When two processes are composed in parallel, any number of
connections can happen simultaneously, by the simple coincidence
of names.

2. Under the creative view, connection happens intentionally. When
two processes are composed in parallel, they are not connected, and
they remain unconnected until they are intentionally connected by
a ν-binder, one channel at a time.

The creative view, due to its simplicity, is significantly more amenable to
a correspondence with logic. To illustrate this, let us compare the typing
rules for parallel composition from linear π-calculus [Lπ, Kobayashi et al.,
1996], which takes the restrictive view, to Hypersequent CP, which takes
the creative view:

P ⊢𝘓𝜋 Γ Q ⊢𝘓𝜋 Δ T-PARP ∥ Q ⊢𝘓𝜋 Γ + Δ
P ⊢ 𝒢 Q ⊢ ℋ T-PARP ∥ Q ⊢ 𝒢 ∥ℋ

Superficially, the rules are similar, but complexity hides in the details:

1. In Lπ, all session types are annotated with their capabilities—
whether the corresponding channel is used to send, receive, neither,
or both. The “+” is a partial function in the meta-language, which
merges two typing environments by adding together the uses of a
channel name in the two environments. In the well-typed cases, it
computes the union of the usages, e.g. if xwas used to send in Γ and
used to receive in Δ, then it is fully used in Γ + Δ. However, in the
ill-typed cases, it is undefined, e.g. if x is used to send in both Γ and Δ,
then Γ + Δ is undefined, and the typing rule for parallel composition
does not apply.

2. In HCP, the “∥” is a structural connective, much like the comma, and
simplymeans “these resources are used in different processes”. The
requirement for wellformedness is simpler: 𝒢 ∥ ℋ is well-formed
when the names in 𝒢 andℋ are all distinct.

3Confusingly, the word “restriction” [as used by Milner et al., 1992a, submitted
in 1989] connotes the restrictive view, but the later introduction of the letter “ν”
[pronounced as “new”, coined by Milner, 1991] connotes the creative view.
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By taking the creative view, we get a typing rule for parallel composition
which is much more logical, in the technical sense. What do we lose? We
lose connection by coincidence, which I believe is not much of a loss, and
perhaps even a win. So Hypersequent CP takes the creative view.

This chapter proceeds as follows:

• In § 3.1, I introduce Hypersequent CP.

• In § 3.2, I introduce the metatheory for Hypersequent CP.

I prove preservation (Proposition 3.30) and progress (Proposition
3.35), that its processes are deadlock-free (Corollary 3.42), that
its canonical forms are adequate (Corollary 3.50), and that its
communication graphs are forests (Proposition 3.52).

Notably, I also define disentanglement (Definition 3.83), which
converts Hypersequent CP processes into multisets of CP processes,
and prove it preserves typing (Proposition 3.84), structural
congruence (Proposition 3.85), and reduction (Proposition 3.87), and
define a label-transition system for HCP (Definition 3.88), and prove
harmony (Proposition 3.93).

• In § 3.3, I discuss the relation between HCP and other developments
in proof theory, and introduce several variants of HCP.

Notably, I introduce variants that interpret the absurd offer as
session cancellation (§ 3.3.1), assign synchronous semantics to link
(§ 3.3.2), and separate actions into their own syntactic sort by
deconstructing the offer into a guarded summation (§ 3.3.3).

• Finally, § 3.5 contains all omitted proofs.

This chapter shares its structure with Chapter 2, and since the two
systems share a fair amount of their structure, an equally fair amount
of exposition is repeated, often verbatim, in Sections 3.1.2 to 3.1.6 and
Sections 3.2.1 to 3.2.3. If you have read Chapter 2, it is worth reading §
3.1 up to and including § 3.1.1, the definition of configuration contexts in
§ 3.2.1, and then reading from § 3.2.5 onwards.

3.1 Hypersequent Classical Processes
In this section, I introduce Hypersequent Classical Processes (HCP),
a session-typed process calculus based on CP. HCP’s process calculus
resembles the π-calculus more closely than CP, and its type system
corresponds to a logic that is a slight variation of Classical Linear Logic,
which I call Hypersequent Classical Linear Logic (HCLL). To the best
of my knowledge, HCLL does not exist in the literature, and is only
implicitly defined in this thesis by means of squinting and ignoring the
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red parts. HCLL is a well-behaved and interesting logic, and, moreover, a
conservative extension of CLL.

The fundamental notions of programs and computation in HCP, as
in CP, are processes and message-passing communication. Processes
communicate by passing messages over channels. Communication
channels are binary, which means that each channel has exactly two
endpoints, and each endpoint is held by exactly one process. Names refer
to channel endpoints, rather than channels.

Processes (ranged over by P, Q, R) are defined by the following grammar:

P,Q,R ⩴ x↔y link
∣ (νxx̄)P new
∣ P ∥ Q parallel
∣ 0 terminated process
∣ x[y].P send
∣ x(y).P receive
∣ x[].P close
∣ x().P wait
∣ x◁ inl.P select left
∣ x◁ inr.P select right
∣ x ▷ {inl∶ P; inr∶Q} choice
∣ x N absurd

The names x, y, z, and w range over the endpoints of communication
channels—‘channel endpoints’ or ‘endpoints’ for short. The names x̄, ȳ,
z̄, and w̄ as well as a, b, and c also range over endpoints, and are used
with the same conventions as in Chapter 2, which we revisit shortly. The
names N andM range over sets of endpoints.

An endpoint is bound in the following cases:

• In (νxx̄)P, x and x̄ are bound in P.
• In x[y].P, y is bound in P.
• In x(y).P, y is bound in P.

An endpoint is free if it is not bound. Notably, for x N, x and all names
in N are free. I write fn(P) to denote the set of free endpoints in P. By
convention, the names a, b, and c are used as a shorthand to imply to the
reader that the endpoint is free.

Two endpoints are dual if they are bound by the same name restriction,
e.g. in (νxx̄)P, x and x̄ are bound in P, and are dual. By convention, the
names x̄, ȳ, z̄, and w̄ are used as a shorthand to imply duality to the reader,
e.g. I use x and x̄ when they are dual endpoints of the same channel.

In HCP, as in CP, actions are not a well-defined syntactic sort. Nonetheless,
I will informally write “action” in reference to the bit before the dot, e.g.
the action for x[y]. (P ∥ Q) is x[y]. For the troublemakers without a dot,
x ▷ {inl∶ P; inr∶Q} and x N, I write x ▷ inl, x ▷ inr, and x , respectively.
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Types (ranged over by A, B) are the formulas of CLL, as defined by the
following grammar:

A,B ⩴ A⊗ B ∣ 1 ∣ A⊕ B ∣ 0
∣ A &B ∣ ⊥ ∣ A & B ∣ ⊤

Duality plays an important role in HCP, as it does in CP and CLL. Viewed
from the perspective of a logic, it corresponds to negation. Viewed from
theperspective of a process calculus, it guarantees sessionfidelity, i.e. that
processes act on dual endpoints of the same channel in dualways, e.g. one
process sends when the other receives. As in CP and CLL, duality is not
defined as a type constructor, but as a function on types:

A⊗ B ≜ A &B 1 ≜ ⊥
A &B ≜ A⊗ B ⊥ ≜ 1
A⊕ B ≜ A & B 0 ≜ ⊤
A & B ≜ A⊕ B ⊤ ≜ 0

As we will see, dual endpoints have dual types. The notation for duality
(A, A) and the naming convention for dual endpoints (x, x̄) were chosen
to emphasize this. Duality is involutive.

Lemma 3.1. A = A

Typing environments (ranged over by Γ, Δ) are sets of type assignments,
as defined by the following grammar:

Γ,Δ ⩴ ∅ ∣ Γ, x ∶ A
The set of free endpoint names in a typing environment, written fn(Γ), is
defined by recursion on the environment, i.e. fn(∅) ≜ ∅ and fn(Γ, x ∶ A) ≜
fn(Γ) ∪ {x}. The extension Γ, x ∶ A is only defined when x is not free in Γ, i.e.
x ∉ fn(Γ).
We write Γ,Δ for the concatenation of typing environments Γ and Δ. The
concatenation Γ,Δ is only defined when the names in Γ and Δ are unique,
i.e. fn(Γ) ∩ fn(Δ) = ∅.
Hyper-environments (ranged over by 𝒢, ℋ) are multisets of typing
environments, as defined by the following grammar:

𝒢,ℋ ⩴ ∘ ∣ 𝒢 ∥ Γ
The set of free endpoint names in a hyper environment, written fn(𝒢), is
defined by recursion on the hyper environment, i.e. fn(∘) ≜ ∅ and fn(𝒢 ∥
Γ) ≜ fn(𝒢) ∪ fn(Γ). The extension 𝒢 ∥ Γ is only defined when the names in
all typing environments in 𝒢 and Γ are unique, i.e. fn(𝒢) ∩ fn(Γ) = ∅.
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T-LINK
x↔y ⊢ x ∶ A, y ∶ A P ⊢ 𝒢 ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A T-NEW(νxx̄)P ⊢ 𝒢 ∥ Γ,Δ

P ⊢ 𝒢 Q ⊢ ℋ T-PARP ∥ Q ⊢ 𝒢 ∥ℋ T-HALT0 ⊢ ∘
P ⊢ Γ, x ∶ A ∥ Δ, y ∶ B

T-SENDx[y].P ⊢ Γ,Δ, x ∶ A⊗ B
P ⊢ Γ, y ∶ A, x ∶ B

T-RECVx(y).P ⊢ Γ, x ∶ A &B
P ⊢ ∘ T-CLOSEx[].P ⊢ x ∶ 1

P ⊢ Γ T-WAITx().P ⊢ Γ, x ∶ ⊥
P ⊢ Γ, x ∶ A T-SELECT1x◁ inl.P ⊢ Γ, x ∶ A⊕ B

P ⊢ Γ, x ∶ B T-SELECT2x◁ inl.P ⊢ Γ, x ∶ A⊕ B

P ⊢ Γ, x ∶ A Q ⊢ Γ, x ∶ B T-OFFERx ▷ {inl∶ P; inr∶Q} ⊢ Γ, x ∶ A & B
N = fn(Γ) T-ABSURDx N ⊢ Γ, x ∶ ⊤

Figure 3.1: Typing Rules for Hypersequent CP

We write 𝒢 ∥ ℋ for the concatenation of hyper-environments 𝒢 and ℋ.
The concatenation 𝒢 ∥ ℋ is only defined when the names in all typing
environments in 𝒢 andℋ are unique, i.e. fn(𝒢) ∩ fn(ℋ) = ∅.
We write 𝒢k to mean that the hyper-environment 𝒢 consists of 𝘬 typing
environments, i.e. 𝒢k is of the form Γ1 ∥ … ∥ Γk.
The typing judgment P ⊢ 𝒢means that P is well-typed if, for each typing
environment Γ in 𝒢, and for each type assignment x ∶ A in Γ, exactly one
process in P uses the endpoint x according to the session type A and that
process only uses free endpoints that are in Γ.

Definition 3.2 (Typing). A process P is well-typed under typing
environment 𝒢 if there exists a derivation with conclusion P ⊢ 𝒢 that uses
the typing rules in Figure 3.1.

Processes are considered equivalent up to structural congruence, written
≡, which ensures that, e.g. the direction of a link and the order of a parallel
composition are irrelevant.

Definition 3.3 (Structural Congruence). Structural congruence, written
P ≡ Q, is the congruence closure over processes which satisfies the rules in
Figure 3.2.

Definition 3.4 (Evaluation Context). Evaluation contexts are one-hole
process contexts, as defined by the following grammar:

ℰ,ℱ ⩴ □ ∣ (νxx̄)ℰ ∣ ℰ ∥ Q ∣ Q ∥ ℰ
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x↔y ≡ y↔x SC-LINKCOMM
P ∥ 0 ≡ P SC-PARNIL
P ∥ Q ≡ Q ∥ P SC-PARCOMM
P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R SC-PARASSOC
(νxx̄)P ≡ (νx̄x)P SC-NEWCOMM
(νxx̄)(νyȳ)P ≡ (νyȳ)(νxx̄)P SC-NEWASSOC
(νxx̄)(P ∥ Q) ≡ P ∥ (νxx̄)Q if x, x̄ ∉ fn(P) SC-SCOPEEXT

Figure 3.2: Structural Congruence for Hypersequent CP

Plugging is defined by replacing the one hole with a process:

□ [P] ≜ P
(νxx̄)ℰ [P] ≜ (νxx̄)ℰ[P]
(ℰ ∥ Q) [P] ≜ ℰ[P] ∥ Q
(Q ∥ ℰ) [P] ≜ Q ∥ ℰ[P]

We write fn(ℰ) for the free endpoints in ℰ.
We write bn(ℰ) for the endpoints bound by ℰ.
We write ℰ ⊢ 𝒢 → ℋ to mean that the evaluation context ℰ is well-typed
under input typing context 𝒢 and output typing contextℋ.

□ ⊢ 𝒢 → 𝒢
ℰ ⊢ 𝒢 →ℋ ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A

(νxx̄)ℰ ⊢ 𝒢 →ℋ ∥ Γ,Δ
ℰ ⊢ 𝒢 →ℋ1 Q ⊢ ℋ2

ℰ ∥ Q ⊢ 𝒢 →ℋ1 ∥ ℋ2

Q ⊢ ℋ1 ℰ ⊢ 𝒢 →ℋ2

Q ∥ ℰ ⊢ 𝒢 →ℋ1 ∥ ℋ2

The semantics of HCP processes is given by reduction, written ⟶.
Reduction is closed over evaluation contexts, and structural congruence
is embedded in reduction by allowing pre- and post-composition using
E-CONG, written as ≡⟶,⟶≡, or ≡⟶≡.
Definition 3.5 (Reduction). Reduction is the smallest relation on processes
defined by the rules in Figure 3.3.

In the remainder of the section, I discuss each process construct together
with its typing rule and operational semantics, either by itself—e.g. link—
or together with its dual—e.g. send and receive.

3.1.1 Process Structure
The process (νxx̄)P denotes a name restriction, which creates a
communication channel with two endpoints, x and x̄, and the process P ∥
Q denotes a parallel composition, which—well—composes two processes
in parallel.
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(νxx̄)(x↔w ∥ P) ⟶ P{w/x̄} E-LINK
(νxx̄)(x[y].P ∥ x̄(ȳ).Q) ⟶ (νxx̄)(νyȳ)(P ∥ Q) E-SEND
(νxx̄)(x[].0 ∥ x̄().Q) ⟶ Q E-CLOSE
(νxx̄)(x◁ inl.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⟶ (νxx̄)(P ∥ Q) E-SELECT1(νxx̄)(x◁ inr.P ∥ x̄ ▷ {inl∶Q; inr∶ R})⟶ (νxx̄)(P ∥ R) E-SELECT2

E-EQUIV
P ≡ P′ P′ ⟶ Q′ Q′ ≡ Q

P⟶ Q

E-CONG
P⟶ P′

ℰ[P]⟶ ℰ[P′]

Figure 3.3: Reduction for Hypersequent CP

The typing rules for name restriction and parallel composition are as
follows:

P ⊢ 𝒢 ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A T-NEW(νxx̄)P ⊢ 𝒢 ∥ Γ,Δ
P ⊢ 𝒢 Q ⊢ ℋ T-PARP ∥ Q ⊢ 𝒢 ∥ℋ

For communication safety, it is important that the two endpoints x and x̄
have dual types, and that every endpoint is used exactly once.

• The T-NEW rule guarantees the former.
It requires that x ∶ A and x̄ ∶ A.

• The T-PAR rule guarantees the latter.
It requires that the processes P and Q do not share any free
endpoints, as the concatenation 𝒢 ∥ ℋ is only defined when the
hyper-environments 𝒢 andℋ do not share any endpoint names.

For deadlock freedom—as well as a close correspondence to CLL—it
is important that the two endpoints of a channel are used in separate
processes, and that any two processes share at most one channel. Both
of these requirements are guaranteed by the T-NEW rule, but the T-PAR
rule does the bookkeeping that enables this. Therefore, let us start our
discussion with the T-PAR rule:

• In a parallel composition P ∥ Q, the two processes P and Q are not
connected by any channel, as there is no name restriction that takes
scope over both. Hence, there cannot be any dependency between
any of their endpoints. The two processes are disjoint. The T-PAR
rule registers this disjointness in the sequent by separating their
respective hyper-environments with a “∥”.

• In a name restriction (νxx̄)P, it is important that the two endpoints of
a channel are used in separate processes, and that any twoprocesses
share at most one channel. The T-NEW rule guarantees both:

– For the former, it requires that the two endpoints x and x̄ are
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separated by “∥” in the premise, which means that they will
eventually be split between two separate processes.

– For the latter, it removes the “∥” in the conclusion, to register the
fact that the two processes that use x and x̄ are now connected
by that channel.

The process 0 denotes the terminated process, which does nothing. The
typing rule for the terminated process is as follows:

T-HALT0 ⊢ ∘
Hyper-environments are multisets. They are considered equal up to the
unit rule for ∥ and ∘, and the commutativity and associativity rules for ∥.

𝒢 ∥ ∘ = 𝒢
𝒢1 ∥ 𝒢2 = 𝒢2 ∥ 𝒢1𝒢1 ∥ (𝒢2 ∥ 𝒢3) = (𝒢1 ∥ 𝒢2) ∥ 𝒢3

These structural rules for hypersequents are used implicitly, e.g. the
following typing derivation implicitly uses the right unit rule.

⋮
P ⊢ 𝒢 0 ⊢ ∘

P ∥ 0 ⊢ 𝒢
Processes are equivalent up to structural congruence, which includes the
unit rule for ∥ and 0 and the commutativity and associativity rules for ∥.
These explicit structural rules for processesmirror the implicit structural
rules for hyper-environments.

P ∥ 0 ≡ P SC-PARNIL
P ∥ Q ≡ Q ∥ P SC-PARCOMM
P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R SC-PARASSOC

The structural congruence also permits flipping the direction of a channel,
permuting two name restrictions, and scope extrusion—which permits a
process to move out of and into the scope of a name restriction, as long
as it does not use the channel bound by that name restriction.

(νxx̄)P ≡ (νx̄x)P SC-NEWCOMM
(νxx̄)(νyȳ)P ≡ (νyȳ)(νxx̄)P SC-NEWASSOC
(νxx̄)(P ∥ Q) ≡ P ∥ (νxx̄)Q if x, x̄ ∉ fn(P) SC-SCOPEEXT

There are no reduction rules associated with name restriction, parallel
composition, or the terminated process. None of these constructs
perform any action. Rather, they manage the structure of connections
and parallel processes that facilitate message-passing communication.

Name restriction and parallel composition appear in every reduction
rule, as communication can only happen over a channel, which requires



92 Chapter 3. Hypersequent Classical Processes

the presence of a name restriction, and between parallel processes,
which requires the presence of a parallel composition. Furthermore,
the E-CONG rule permits communication to occur under an arbitrary
evaluation context of name restrictions, parallel compositions, and
unrelated processes.

E-CONG
P⟶ P′

ℰ[P]⟶ ℰ[P′]

3.1.2 Link
The process x↔y denotes a link. It forwards any messages received on x
to y, and vice versa. For communication safety, the two endpoints must
have dual types. Hence, x ∶ A and y ∶ A.

T-LINK
x↔y ⊢ x ∶ A, y ∶ A

HCP’s semantics follows CP’s semantics for link, and does not explicitly
forward messages, but treats links as suspended α-renaming. When a
link x↔y reduces, it renames all occurrences of the dual of x to y, or all
occurrences of the dual of y to x. In essence, this updates all the processes
connected to the one side of the link to point directly at the other side,
circumventing the link.

(νxx̄)(x↔w ∥ P) ⟶ P{w/x̄} E-LINK

The renaming targets a bound name. Hence, there cannot be any other
occurrences of that name, and the link can be removed.

Links are commutative. If two channels are connected by a link, the order
in which they are connected is irrelevant. This property is captured by
the following equivalence:

x↔y ≡ y↔x SC-LINKCOMM

3.1.3 Send and Receive
The send and receive actions are dual:

• The process x[y].P denotes a send action.
It creates a fresh channel, names one endpoint of that channel y,
sends the other endpoint over x, then continues as P.

• The process x(y).P denotes a receive action.
It receives an endpoint over x, names it y, then continues as P.

The typing rules for send and receive are as follows:

P ⊢ Γ, x ∶ A ∥ Δ, y ∶ B
T-SENDx[y].P ⊢ Γ,Δ, x ∶ A⊗ B

P ⊢ Γ, y ∶ A, x ∶ B
T-RECVx(y).P ⊢ Γ, x ∶ A &B
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The behaviour of send and receive is given by the following rule:

(νxx̄)(x[y].P ∥ x̄(ȳ).Q) ⟶ (νxx̄)(νyȳ)(P ∥ Q) E-SEND

The continuation of a send action is P, as opposed to CP’s send, x[y]. (P ∥ Q),
which requires that the endpoints y and x are immediately split between
the processes P and Q. This is misleading. HCP still requires that the
channels y and x are split between parallel processes. It does not require
that the split happens immediately, settling for eventually. However,
HCP’s eventually is not as lenient as onemight assume. As discussed in the
introduction to Chapter 3, the T-SEND rule does not permit the presence of
any unrelated typing environments—i.e. there is no generic 𝒢 in the rule,
as there is in the T-NEW rule. The same is true for the typing rules for
the other actions. Consequently, no other action may come between the
send action x[y] and the parallel composition that splits x and y. The only
process constructs that may come between those are unrelated name
restrictions and parallel compositions. In effect, the only possible forms
for a send action and its continuation are

x[y]. ℰ[P x∥y Q] and x[y]. ℰ[P y∥x Q].
Where P x∥y Q denotes the parallel composition that splits x and y such
that x ∈ fn(P) and y ∈ fn(Q). This may seem restrictive—and it is—but the
purpose of HCP is to preserve the semantics of CP.

(The alternative—permitting unrelated typing environments—is
explored in DHCP [Kokke et al., 2019a]. DHCP preserves the semantics of
CLL, but not of CP. It uses delayed actions, where the actions in a process
may to some extent resolve out of order.)

3.1.4 Close and Wait
The close and wait actions are dual:

• The process x[].P denotes a close action.
It sends a ping over x, then continues as P.

• The process x().P denotes a wait action.
It receives a ping over x, then continues as P.

(I say ‘ping’ to imply the interaction between close and wait is merely a
synchronisation, and does not transmit any information.)

The typing rules for close and wait are as follows:

P ⊢ ∘ T-CLOSEx[].P ⊢ x ∶ 1
P ⊢ Γ T-WAITx().P ⊢ Γ, x ∶ ⊥

The behaviour of these two actions is given by the following rule:

(νxx̄)(x[].P ∥ x̄().Q) ⟶ Q E-CLOSE
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The continuation of the close action is P, as opposed to CP’s close,
x[].0, which requires that the process immediately terminates. This is
misleading. HCP still requires that the process immediately terminates,
but as a consequence of its type system rather than its process syntax.
The T-CLOSE rule requires that the continuation P is typed under
the empty hyper-environment, and—as I will show Lemma 3.55—all
processes typed under the empty hyper-environment are equivalent to
the terminated process. In effect, the only possible forms for a close
action and its continuation are variations of x[].0 ∥ … ∥ 0.

3.1.5 Select and Offer
The select and offer actions are dual:

• The process x◁ inl.P denotes a left selection action.
It sends the label inl over x, then continues as P.

• The process x◁ inr.P denotes a right selection action.
It sends the label inr over x, then continues as P.

• The process x ▷ {inl∶ P; inr∶Q} denotes a choice action.
It receives a label over x, and then continues as either P or Q,
depending on which label was received.

The typing rules for select and offer are as follows:

P ⊢ Γ, x ∶ A T-SELECT1x◁ inl.P ⊢ Γ, x ∶ A⊕ B
P ⊢ Γ, x ∶ B T-SELECT2x◁ inl.P ⊢ Γ, x ∶ A⊕ B

P ⊢ Γ, x ∶ A Q ⊢ Γ, x ∶ B T-OFFERx ▷ {inl∶ P; inr∶Q} ⊢ Γ, x ∶ A & B

The behaviour of these actions is given by the following rules:

(νxx̄)(x◁ inl.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⟶ (νxx̄)(P ∥ Q) E-SELECT1(νxx̄)(x◁ inr.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⟶ (νxx̄)(P ∥ R) E-SELECT2

As discussed in § 2.1.5, this syntax was adapted from Dardha and Gay
[2018], because is more easily generalized to variant types.

3.1.6 The Absurd Offer
The process x N denotes the absurd offer. It waits to receive a choice
between zero alternatives. Such a choice cannot be made, which means
that there is no corresponding select action, and no corresponding
reduction rule. In essence, an absurd offer is inert. The absurd offer is
the sole process that is allowed to leave endpoints unused, and the set of
those unused endpoints is denoted by N.

N = fn(Γ) T-ABSURDx N ⊢ Γ, x ∶ ⊤
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For an in-depth discussion of the absurd offer, its syntax, its inert
semantics, and its relation to Wadler’s absurd offer, see § 2.1.6. I present
an exceptional semantics for the absurd offer in § 3.3.1.

3.2 Metatheory
In this section, I introduce the metatheory for Hypersequent Classical
Processes. The principal developments are as follows:

• In § 3.2.1, I give several preliminary definitions that are used
throughout the discussion of the metatheory.

• In § 3.2.2, I prove preservation (Proposition 3.30).

• In § 3.2.3, I define canonical form (Definition 3.33) and prove
progress (Proposition 3.35). The proof of progress is adapted from
the proof for CP (Proposition 2.32) and first appeared in Kokke et al.
[2019b].

• In § 3.2.4, I define dependency graphs for HCP processes (Definition
3.36). I prove that HCP is deadlock-free, as its dependency graphs
are always acyclic (Corollary 3.42), and I prove that my definition of
canonical form is adequate (Corollary 3.50).

• In § 3.2.5, I define connection graphs for HCP processes (Definition
2.49) and prove that HCP’s connection graphs are always forests
(Proposition 3.52). The validity of right-branching forest form for
HCP follows as a corollary.

• In § 3.2.6, I define Multiset CP, a process calculus whose processes
are multisets of parallel CP processes. The principal use of Multiset
CP is to clarify the correspondence between HCP and CP.

• In § 3.2.7, I define fission, the translation from Multiset CP into HCP,
and its inverse, disentanglement-and-fusion, the translation from
HCP into Multiset CP, and prove that these translations preserve
types, structural congruence, and reduction.

3.2.1 Preliminaries
Configuration Contexts

Configuration contexts are multi-hole process contexts that consist only
of name restrictions, parallel compositions, and the terminated process.

The notion of configuration contexts generalises neatly from CP to HCP.
We follow the changes made to the process language, and decompose
the cut into name restriction and parallel composition, and add a new
constructor for the terminated process. The latter leads to an important
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distinction between CP andHCP configuration contexts, which is thatHCP
configuration contexts can have zero holes.

Definition 3.6 (Configuration Context). Configuration contexts are 𝘯-hole
process contexts, as defined by the following grammar:

𝒞[⋅],𝒟[⋅] ⩴ □ ∣ 0 ∣ (νxx̄)𝒞[⋅] ∣ 𝒞[⋅] ∥ 𝒟[⋅]
If there is risk of ambiguity, we explicitly write the number of holes in a
configuration context with a superscript, e.g. as 𝒞n[⋅].
Plugging is defined by replacing the 𝘯 holes with 𝘯 processes, left to right:

□ [P ] ≜P
0 [ ] ≜0
(νxx̄)𝒞n[⋅] [P1, …,Pn ] ≜(νxx̄)(𝒞n[P1, …,Pn])(𝒞n[⋅] ∥ 𝒟k[⋅]) [P1, …,Pn,Pn+1, …,Pn+k] ≜(𝒞n[P1, …,Pn] ∥ 𝒟k[Pn+1, …,Pn+k])

I write 𝒞[P1, …,□i, …,Pn] for the evaluation context focused on the 𝘪’th hole
in 𝒞[⋅] such that 𝒞[P1, …,□i, …,Pn][Pi] = 𝒞[P1, …,Pi, …,Pn].
I write dn(𝒞[⋅]) for the unordered pairs of dual endpoints bound by 𝒞[⋅].

dn(□) ≜ ∅
dn(0) ≜ ∅
dn((νxx̄)𝒞[⋅]) ≜ {{x, x̄}} ∪ dn(𝒞[⋅])
dn(𝒞[⋅] ∥ 𝒟[⋅]) ≜ dn(𝒞[⋅]) ∪ dn(𝒟[⋅])

I write bn(𝒞[⋅]) for the endpoints bound by 𝒞[⋅], i.e. bn(𝒞[⋅]) ≜ ⋃dn(𝒞[⋅]).
I write 𝒞n[⋅] ⊢ 𝒢1 ∣ ⋯ ∣ 𝒢n → 𝒢 to mean that the configuration context
𝒞n[⋅] is well-typed under input hyper-environments 𝒢1, … ,𝒢n and output
hyper-environment𝒢. I use “⋅” and “𝒢1|… |𝒢n” to denote sequences of hyper-
environments, which correspond, in left-to-right order, to the holes in the
configuration context.

□ ⊢ 𝒢 → 𝒢 0 ⊢ ⋅ → ∘
𝒞n[⋅] ⊢ 𝒢1 ∣ ⋯ ∣ 𝒢n → 𝒢 ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A

(νxx̄)𝒞n[⋅] ⊢ 𝒢1 ∣ ⋯ ∣ 𝒢n → 𝒢 ∥ Γ,Δ
𝒞n[⋅] ⊢ 𝒢1 ∣ ⋯ ∣ 𝒢n → 𝒢 𝒟k[⋅] ⊢ ℋn+1 ∣ ⋯ ∣ ℋk →ℋ

𝒞n[⋅] ∥ 𝒟k[⋅] ⊢ 𝒢1 ∣ ⋯ ∣ 𝒢n ∣ ℋn+1 ∣ ⋯ ∣ ℋk → 𝒢,ℋ

Shallow Structural Congruence

Reduction is closed under evaluation contexts, not under arbitrary
process contexts, and only acts on the topmost actions. As such,
reduction only needs a structural congruence that is similarly closed
under evaluation contexts—a shallow structural congruence. Therefore,
it is useful to distinguish different kinds of structural congruence, based
on which portions of the process they are permitted to rewrite.
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Definition 3.7 (Shallow Structural Congruence). Shallow structural
congruence, written ≡S , is the smallest symmetric relation over processes
that satisfies the rules in Figure 3.2 and is closed under evaluation contexts,
as per the following rule:

SC-CONG
P ≡S P′

ℰ[P] ≡S ℰ[P′]
Most rules of the structural congruence target name restriction and
parallel composition. The odd one out is SC-LINKCOMM, which rewrites
a link action. It will be useful to single out the portions of a structural
congruence that rewrite links.

Definition 3.8 (Link-Preserving Structural Congruence).
Link-preserving structural congruence, written ≡L , is the congruence
closure over processes that satisfies the rules in Figure 3.2 except for
SC-LINKCOMM.

Finally, it will be useful to have variantswhich combine these restrictions.
In practice, I only need link-preserving shallow structural congruence
and deep structural congruence.

Definition 3.9 (Link-Preserving Shallow Structural Congruence). Link-
preserving shallow structural congruence, written ≡LS, is the intersection of
link-preserving and shallow structural congruence.

Definition 3.10 (Deep Structural Congruence). Deep structural
congruence, written ≡D , is the equivalence closure of the complement of ≡LS
with respect to ≡.
Any structural congruence can be decomposed into its link-preserving
shallow and deep structural components.

Lemma 3.11. If P ≡ Q, then there exists some R such that P ≡LS R and R ≡D Q.

Ready Processes and Threads

A process is ready if it is ready to perform some communication action,
i.e. if it is a link or it is prefixed by an action. (The definition of ready
remains essentially unchanged from CP, though, of course, the forms of
send and close actions has changed.)

Definition 3.12 (Ready). A process P is ready to act on x, written
ready(P, x), if it is of one of the forms:

x↔y x[y].P x[].P x◁ inl.P x ▷ {inl∶ P; inr∶Q}
y↔x x(y).P x().P x◁ inr.P x N

A process is ready if it ready to act on some endpoint.
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In particular, that links x↔y are considered ready to act on both x and y,
and absurd x N is not considered ready to act on the channels y ∈ N.

A process can be decomposed into a prefix of its cuts, and a series
of threads connected by those cuts. Such a prefix is the maximum
configuration context, in the sense that no further cuts can be added.
(The definition of maximal configuration contexts is adjusted to permit
configuration contexts with zero holes, i.e. the maximum configuration
contexts for terminated processes, but otherwise unchanged.)

Definition 3.13 (Maximum Configuration Context). The maximum
configuration context𝒞n[⋅] of a process P is the configuration context such
that P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟢) and (for 𝟣 ≤ 𝘪 ≤ 𝘯) each Pi is ready.
The processes Pi are the threads of P. Every process has a uniquemaximum
configuration context.

Likewise, evaluation contexts are maximal if no further cuts can be
added. Informally, maximal evaluation contexts are paths to the threads
contained within some process, so each maximum configuration context
𝒞n[⋅] gives us 𝘯 distinct maximal evaluation contexts. (The definition of
maximal evaluation contexts is unchanged from CP.)

Definition 3.14 (Maximal Evaluation Context). A maximal evaluation
context ℰ of a process P is an evaluation context such that P = ℰ[Q]
and Q is ready. If 𝒞[⋅] is the maximum configuration context of P, then
𝒞[P1, …,□i, …,Pn] is a maximal evaluation context of P.

Finally, we refer to the top-level ready processes as threads. A significant
portion of HCP’s metatheory deals with threads. Let the metavariable T
range over threads.

Definition 3.15 (Thread). A process P is a thread of Q if there exists some
evaluation context ℰ of Q such that Q = ℰ[P] and P is ready. We say that Q
contains the thread P to mean that P is a thread of Q. We say P is a thread
when the process Q that P is a thread of can be inferred from context. Let T
range over threads.

The use of the thread metavariable allows us to succinctly decompose
any process P into its maximum configuration context and its threads,
by stating “P is of the form 𝒞[T1, …,Tn]”, as the notation implies that each
thread Ti is a ready process, and therefore that 𝒞[⋅] is the maximum
configuration context.

Process Contexts

For the occasional convenience, I define full 𝘯-hole process contexts,
which are arbitrary processeswith anynumber of holes. Process contexts
may contain anyprocess construct, andmay contain holes in any position,
including nested under actions. As such, process contexts generalise
evaluation and configuration contexts.
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Definition 3.16 (Process Context). Process contexts are defined by the
grammar for processes, extended with the hole constructor, written □. A
process context may have any number of holes.

The names P[⋅],Q[⋅], and R[⋅] range over process contexts, where the trailing
[⋅] is intended to help distinguish between process and process context
metavariables, and denotes the position of the arguments for plugging. We
write Pn[⋅] to denote that the process context P[⋅] has 𝘯 holes.
Plugging, written P[P1, …,Pn], is defined by replacing the 𝘯 holes in the
process context P[⋅] with the processes P1, … ,Pn in order from left to right.

Linearity

HCP has a linear type system. It ensures that resources are always used
exactly once, and never copied or dropped. However, due to HCP’s reuse
of endpoint names, it may appear that resources are used multiple times.
(For instance, the process x(). x[].0 appears to use the endpoint x twice.)

I define linearity bymeans of a free name count—taking the sum across a
parallel composition, the union across an offer, and counting the absurd
offer as using all available resources. The definition of the free name
count is easily adapted to HCP. (For an in-depth discussion, see § 2.2.1.)

Definition 3.17 (Free Name Count). The multiset of free endpoints in P,
written fn(P), is a multiset (see Definition A.3) with support set fn(P) and
multiplicity function 𝜇fn(P).

fn(x↔y) ≜ *x, y+
fn((νxx̄)P) ≜ fn(P) ∖ {x, x̄}
fn(P ∥ Q) ≜ fn(P) + fn(Q)
fn(0) ≜ *+
fn(x[y].P) ≜ *x+ + (fn(P) ∖ {x, y})
fn(x[].0) ≜ *x+
fn(x(y).P) ≜ *x+ + (fn(P) ∖ {x, y})
fn(x().P) ≜ *x+ + fn(P)
fn(x◁ inl.P) ≜ *x+ + (fn(P) ∖ {x})
fn(x◁ inr.P) ≜ *x+ + (fn(P) ∖ {x})
fn(x ▷ {inl∶ P; inr∶Q}) ≜ *x+ + ((fn(P) ∖ {x}) ∪ (fn(Q) ∖ {x}))
fn(x N) ≜ *x + + *w ∣ w ∈ N+

Note that the operation 𝒳 ∖ 𝘟 removes all occurrences of the elements in
the set 𝘟 from the multiset𝒳 (see Definition A.3).

Linearity states that, forwell-typed processes, each endpoint in the typing
environment is used exactly once in the process, and vice versa.

Proposition 3.18 (Linearity). If P ⊢ 𝒢, then:
• x ∈𝘬 fn(P) ⟹ 𝘬 = 𝟣
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• x ∈𝟣 fn(P) ⟺ x ∈ fn(𝒢)
Proof. By induction on the derivation of P ⊢ 𝒢.

For anywell-typed process ℰ[P], each endpoint bound by ℰ is used exactly
once in the process P, and vice versa.

Corollary 3.19. If ℰ[P] ⊢ 𝒢, then:
• x ∈𝘬 fn(P) ⟹ 𝘬 = 𝟣
• x ∈𝟣 fn(P) ⟺ x ∈ bn(ℰ)
• bn(ℰ) ⊆ fn(P)

For anywell-typed configuration𝒞n[P1, …,Pn], the processes P1, …, Pn must
collectively use all the endpoints bound by 𝒞n[⋅] exactly once.
Corollary 3.20. If 𝒞n[P1, …,Pn] ⊢ 𝒢, then:

• x ∈𝘬 ⋃𝟣≤𝘪≤𝘯 fn(Pi) ⟹ 𝘬 = 𝟣
• x ∈𝟣 ⋃𝟣≤𝘪≤𝘯 fn(Pi) ⟺ x ∈ bn(𝒞[⋅])
• bn(𝒞[⋅]) ⊆ ⋃𝟣≤𝘪≤𝘯 fn(Pi)

Separation

Separation relates configuration contexts and evaluation contexts—it
‘zooms in’, from viewing a process as a series of connected processes, to
viewing two specific processes and the cut connecting them. Separation
also captures an essential property of HCP’s type system: dual endpoints
must be in distinct processes, separated by a parallel composition.

Whereas CP has one separation lemma, HCP has two. One for parallel
composition, and one for name restriction.

Lemma 3.21. If P ⊢ 𝒢∥Γ, x ∶ A ∥Δ, x̄ ∶ A,𝒞n[⋅] is a configuration context such
that P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟤), and there exists some {x, x̄} ∈ fn(P)
such that x ∈ fn(Pi) and x̄ ∈ fn(Pj) (for some 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯), there exist ℰ, ℱi,
andℱj such that

1. P = ℰ[ℱi[Pi] ∥ ℱj[Pj]], or
2. P = ℰ[ℱj[Pj] ∥ ℱi[Pi]].

Proof. By induction on the structure of 𝒞[⋅], followed by inversion on P
and the corresponding typing derivation.

There are two cases:

• Case 𝒞n[⋅] is of the form (νyȳ)𝒞[⋅] (reusing 𝒞[⋅]).
By the induction on 𝒞[⋅], there exist ℰ,ℱi, andℱj such that (1) or (2).
The result follows by prepending (νyȳ)□ to ℰ.
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• Case 𝒞n[⋅] is of the form 𝒟n
1[⋅] ∥ 𝒟m

2 [⋅] (reusing 𝘯).
By inversion, P = 𝒟n

1[P1, …,Pn] ∥ 𝒟m
2 [Pn+1, …,Pn+m]. There are four

subcases, depending on whether Pi and Pj are on the same or
different sides of the parallel composition.

– Subcase 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯.
By induction on 𝒟n

1[⋅], there exist ℰ, ℱi, and ℱj such that (1) or
(2). The result follows by prepending □ ∥ 𝒟m

2 [Pn+1, …,Pn+m] to ℰ.
– Subcase 𝘯 < 𝘪, 𝘫 ≤ 𝘮.

By induction on 𝒟m
2 [⋅], there exist ℰ, ℱi, and ℱj such that (1) or

(2). The result follows by prepending 𝒟n
1[P1, …,Pn] ∥ □ to ℰ.

– Subcase 𝟣 ≤ 𝘪 ≤ 𝘯 < 𝘫 ≤ 𝘮.

Let ℰ = □,ℱi = 𝒟1[P1,□i,Pn], andℱj = 𝒟2[Pn+1,□j,Pn+m].
The result follows as (1).

– Subcase 𝟣 ≤ 𝘫 ≤ 𝘯 < 𝘪 ≤ 𝘮.

Let ℰ = □,ℱi = 𝒟1[Pn+1,□i,Pn+m], andℱj = 𝒟2[P1,□j,Pn].
The result follows as (2).

Lemma 3.22 (Separation). If P ⊢ 𝒢, and 𝒞n[⋅] is a configuration context
such that P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟤), and there exists some {x, x̄} ∈
dn(𝒞[⋅]) such that x ∈ fn(Pi) and x̄ ∈ fn(Pj) (for some 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯), there exist
ℰ1, ℰ2,ℱi, andℱj such that either

1. P = ℰ1[(νxx̄)(ℰ2[ℱi[Pi] ∥ ℱj[Pj]])],
2. P = ℰ1[(νx̄x)(ℰ2[ℱi[Pi] ∥ ℱj[Pj]])],
3. P = ℰ1[(νxx̄)(ℰ2[ℱj[Pj] ∥ ℱi[Pi]])], or
4. P = ℰ1[(νx̄x)(ℰ2[ℱj[Pj] ∥ ℱi[Pi]])].

Proof. By induction on the structure of 𝒞[⋅], followed by inversion on P
and the corresponding typing derivation.

There are two cases:

• Case 𝒞n[⋅] is of the form (νyȳ)𝒞n[⋅] (reusing 𝒞[⋅]).
By inversion, P = (νyȳ)(𝒟n

1[Pi, …,Pn]).
There are three subcases:

– Subcase x = y and x̄ = ȳ.

By Lemma 3.21, there exist ℰ,ℱi, andℱj such that:

a. P = ℰ[ℱi[Pi] ∥ ℱj[Pj]], or
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b. P = ℰ[ℱj[Pj] ∥ ℱi[Pi]].
Let ℰ1 = □ and ℰ2 = ℰ.
In case (a), the result follows as case (1).

In case (b), the result follows as case (3).

– Subcase x = ȳ and x̄ = y.

By Lemma 3.21, there exist ℰ,ℱi, andℱj such that:

a. P = ℰ[ℱi[Pi] ∥ ℱj[Pj]], or
b. P = ℰ[ℱj[Pj] ∥ ℱi[Pi]].
Let ℰ1 = □ and ℰ2 = ℰ.
In case (a), the result follows as case (2).

In case (b), the result follows as case (4).

– Subcase {x, x̄} ∈ dn(𝒞[⋅]).
By induction on 𝒞[⋅], there exist ℰ1, ℰ2, ℱi, and ℱj such that (1)
or (2). The result follows by prepending (νyȳ)□ to ℰ1.

• Case 𝒞n[⋅] is of the form 𝒟n
1[⋅] ∥ 𝒟k

2[⋅] (reusing 𝘯).
By inversion, P = 𝒟n

1[Pi, …,Pn] ∥ 𝒟k
2[Pn+1, …,Pk]. By inversion on the

fact that {x, x̄} ∈ dn(𝒞[⋅]), Pi and Pj must be on the same side of the
parallel composition. There are two subcases:

– Subcase 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯.
By induction on 𝒟n

1[⋅], there exist ℰ1, ℰ2, ℱi, and ℱj such that (1)
or (2). The result follows by prepending □ ∥ 𝒟k

2[Pn+1, …,Pk] to ℰ1.

– Subcase 𝘯 < 𝘪, 𝘫 ≤ 𝘬.
By induction on 𝒟k

2[⋅], there exist ℰ1, ℰ2, ℱi, and ℱj such that (1)
or (2). The result follows by prepending 𝒟n

1[Pi, …,Pn] ∥ □ to ℰ1.

The separation lemma is rather precise, and gives us one of four
equalities. However, all cases are equivalent up to structural congruence.
Usually, it is easier to forget the exact case.

Corollary 3.23 (Separation). If P ⊢ 𝒢,𝒞n[⋅] is a configuration context such
that P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟤), and there exists some {x, x̄} ∈ dn(𝒞[⋅])
such that x ∈ fn(Pi) and x̄ ∈ fn(Pj) (for some 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯), there exist ℰ1, ℰ2,ℱi, and ℱj such that P ≡LS ℰ1[(νxx̄)(ℰ2[ℱi[Pi] ∥ ℱj[Pj]])].
Proof. By Lemma 3.22, SC-NEWCOMM, and SC-PARCOMM.
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Evaluation contexts commute with name restriction and parallel
composition.

Lemma 3.24. If x, x̄ ∉ fn(ℰ) ∪ bn(ℰ), then ℰ[(νxx̄)P] ≡LS (νxx̄)(ℰ[P]).
Proof. By induction on the structure of the evaluation context ℰ.

Lemma 3.25. If fn(P) ∩ bn(ℰ) = ∅, then ℰ[P ∥ Q] ≡LS P ∥ ℰ[Q].
Proof. By induction on the structure of the evaluation context ℰ.

Corollary 3.26. If fn(P) ∩ bn(ℰ) = ∅, then ℰ[P] ≡LS ℰ[0] ∥ P.
Proof. By SC-PARNIL and Lemma 3.25.

3.2.2 Preservation
Structural congruence preserves typing. If some process P is well-typed
and is equivalent to some processQ under structural congruence, thenQ
is well-typed under the same typing environment.

Lemma 3.27. If P ≡ Q, then P ⊢ 𝒢 if and only if Q ⊢ 𝒢.
Proof. By induction on the derivation of the equivalence P ≡ Q.

The case for reflexivity follows immediately. The cases for symmetry and
transitivity follow immediately by induction. The case for congruence
closure follows by induction and the injectivity of the type derivation
rules. The cases for applications of SC-LINKCOMM, SC-PARNIL, SC-
PARCOMM, SC-PARASSOC, SC-NEWCOMM, and SC-SCOPEEXT are as follows,
presented as equivalences on type derivations:

• Case SC-LINKCOMM:

x↔y ⊢ x ∶ A, y ∶ A ≡ y↔x ⊢ x ∶ A, y ∶ A
Lemma 2.1

y↔x ⊢ x ∶ A, y ∶ A
• Case SC-PARNIL.

P ⊢ 𝒢 0 ⊢ ∘
P ∥ 0 ⊢ 𝒢 ≡ P ⊢ 𝒢

• Case SC-PARCOMM.

P1 ⊢ 𝒢1 P2 ⊢ 𝒢2
P1 ∥ P2 ⊢ 𝒢1 ∥ 𝒢2

≡ P2 ⊢ 𝒢2 P1 ⊢ 𝒢1
P2 ∥ P1 ⊢ 𝒢1 ∥ 𝒢2
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• Case SC-PARASSOC.

P1 ⊢ 𝒢1

P2 ⊢ 𝒢2 P3 ⊢ 𝒢3

P2 ∥ P3 ⊢ 𝒢2 ∥ 𝒢3

P1 ∥ (P2 ∥ P3) ⊢ 𝒢1 ∥ 𝒢2 ∥ 𝒢3

≡
P1 ⊢ 𝒢1 P2 ⊢ 𝒢2
P1 ∥ P2 ⊢ 𝒢1 ∥ 𝒢2 P3 ⊢ 𝒢3

P1 ∥ (P2 ∥ P3) ⊢ 𝒢1 ∥ 𝒢2 ∥ 𝒢3

• Case SC-NEWCOMM.

P ⊢ 𝒢 ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A
(νxx̄)P ⊢ 𝒢 ∥ Γ,Δ ≡

P ⊢ 𝒢 ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A Lemma 2.1
P ⊢ 𝒢 ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A

(νx̄x)P ⊢ 𝒢 ∥ Γ,Δ
• Case SC-NEWASSOC.

P ⊢ 𝒢 ∥ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A ∥ Δ1, y ∶ B ∥ Δ2, ȳ ∶ B
(νyȳ)P ⊢ 𝒢 ∥ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A ∥ Δ1,Δ2

(νxx̄)(νyȳ)P ⊢ 𝒢 ∥ Γ1, Γ2 ∥ Δ1,Δ2≡
P ⊢ 𝒢 ∥ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A ∥ Δ1, y ∶ B ∥ Δ2, ȳ ∶ B

(νxx̄)P ⊢ 𝒢 ∥ Γ1, Γ2 ∥ Δ1, y ∶ B ∥ Δ2, ȳ ∶ B
(νyȳ)(νxx̄)P ⊢ 𝒢 ∥ Γ1, Γ2 ∥ Δ1,Δ2

• Case SC-SCOPEEXT.

P ⊢ 𝒢1 Q ⊢ 𝒢2 ∥ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A
P ∥ Q ⊢ 𝒢1 ∥ 𝒢2 ∥ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A
(νxx̄)(P ∥ Q) ⊢ 𝒢1 ∥ 𝒢2 ∥ Γ1, Γ2≡

P ⊢ 𝒢1

Q ⊢ 𝒢2 ∥ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A
(νxx̄)Q ⊢ 𝒢2 ∥ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A

P ∥ (νxx̄)Q ⊢ 𝒢1 ∥ 𝒢2 ∥ Γ1, Γ2
By inversion, these derivations are the only ones, as x, x̄ ∉ fn(P).

Renaming preserves typing. If a process is well-typed, then renaming any
free endpoint does not affect its typing.

Lemma 3.28. If P ⊢ 𝒢 ∥ Γ, x ∶ A, then P{w/x} ⊢ 𝒢 ∥ Γ,w ∶ A.
Proof. The result follows by induction.

Plugging with any form of process context preserves typing.

Lemma 3.29. If Pn[⋅] ⊢ 𝒢1 ∣ ⋯ ∣ 𝒢n → 𝒢 and Pi ⊢ 𝒢i (for 𝟣 ≤ 𝘪 ≤ 𝘯),
Pn[P1, …,Pn] ⊢ 𝒢.



3.2. Metatheory 105

Proof. By induction on the derivation of Pn[⋅] ⊢ 𝒢1 ∣ ⋯ ∣ Γn → 𝒢.

Reduction preserves typing. If a process P is well-typed and reduces
to some other process Q, then Q is well-typed under the same typing
environment.

Proposition 3.30 (Preservation). If P ⊢ 𝒢 and P⟶ Q, then Q ⊢ 𝒢.
Proof. By induction on the derivation of the reduction P⟶ Q.
The case for E-CONG follows by induction and Lemma 3.29. The case for
E-EQUIV follows by induction and Lemma 3.27. The cases for the rules E-
LINK, E-SEND, E-CLOSE, E-SELECT1, and E-SELECT2 are as follows, presented
as reductions on type derivations:

• Case E-LINK:
x↔w ⊢ x ∶ A,w ∶ A P ⊢ Γ, x̄ ∶ A
x↔w ∥ P ⊢ x ∶ A,w ∶ A ∥ Γ, x̄ ∶ A
(νxx̄)(x↔w ∥ P) ⊢ Γ,w ∶ A⟶

P ⊢ Γ, x̄ ∶ A Lemma 2.25
P{w/x̄} ⊢ Γ,w ∶ A

• Case E-SEND:
P ⊢ Γ1, y ∶ A Q ⊢ Γ2, x ∶ B
P ∥ Q ⊢ Γ1, y ∶ A ∥ Γ2, x ∶ B

x[y]. (P ∥ Q) ⊢ Γ1, Γ2, x ∶ A⊗ B
R ⊢ Γ3, ȳ ∶ A, x̄ ∶ B

x̄(ȳ).R ⊢ Γ3, x̄ ∶ A &B
x[y]. (P ∥ Q) ∥ x̄(ȳ).R ⊢ Γ1, Γ2, x ∶ A⊗ B ∥ Γ3, x̄ ∶ A &B

(νxx̄)(x[y]. (P ∥ Q) ∥ x̄(ȳ).R) ⊢ Γ1, Γ2, Γ3⟶

P ⊢ Γ1, y ∶ A

Q ⊢ Γ2, x ∶ B R ⊢ Γ3, ȳ ∶ A, x̄ ∶ B
Q ∥ R ⊢ Γ2, x ∶ B ∥ Γ3, ȳ ∶ A, x̄ ∶ B
(νxx̄)(Q ∥ R) ⊢ Γ2, Γ3, ȳ ∶ A

P ∥ (νxx̄)(Q ∥ R) ⊢ Γ1, y ∶ A ∥ Γ2, Γ3, ȳ ∶ A
(νyȳ)(P ∥ (νxx̄)(Q ∥ R)) ⊢ Γ1, Γ2, Γ3

• Case E-CLOSE:

x[].0 ⊢ x ∶ 1
Q ⊢ Γ2

x̄().Q ⊢ Γ2, x̄ ∶ ⊥
x[].0 ∥ x̄().Q ⊢ x ∶ 1 ∥ Γ2, x̄ ∶ ⊥
(νxx̄)(x[].0 ∥ x̄().Q) ⊢ Γ2

⟶ Q ⊢ Γ2
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• Case E-SELECT1:

P ⊢ Γ1, x ∶ A
x◁ inl.P ⊢ Γ1, x ∶ A⊕ B

Q ⊢ Γ2, x̄ ∶ A R ⊢ Γ2, x̄ ∶ B
x̄ ▷ {inl∶Q; inr∶ R} ⊢ Γ2, x̄ ∶ A & B

x◁ inl.P ∥ x̄ ▷ {inl∶Q; inr∶ R} ⊢ Γ1, x ∶ A⊕ B ∥ Γ2, x̄ ∶ A & B
(νxx̄)(x◁ inl.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⊢ Γ1, Γ2⟶

P ⊢ Γ1, x ∶ A Q ⊢ Γ2, x̄ ∶ A
P ∥ Q ⊢ Γ1, x ∶ A ∥ Γ2, x̄ ∶ A
(νxx̄)(P ∥ Q) ⊢ Γ1, Γ2

• Case E-SELECT2:

P ⊢ Γ1, x ∶ B
x◁ inr.P ⊢ Γ1, x ∶ A⊕ B

Q ⊢ Γ2, x̄ ∶ A R ⊢ Γ2, x̄ ∶ B
x̄ ▷ {inl∶Q; inr∶ R} ⊢ Γ2, x̄ ∶ A & B

x◁ inr.P ∥ x̄ ▷ {inl∶Q; inr∶ R} ⊢ Γ1, x ∶ A⊕ B ∥ Γ2, x̄ ∶ A & B
(νxx̄)(x◁ inr.P ∥ x̄ ▷ {inl∶Q; inr∶ R}) ⊢ Γ1, Γ2⟶

P ⊢ Γ1, x ∶ B R ⊢ Γ2, x̄ ∶ B
P ∥ R ⊢ Γ1, x ∶ B ∥ Γ2, x̄ ∶ B
(νxx̄)(P ∥ R) ⊢ Γ1, Γ2

3.2.3 Progress
What should the canonical forms be for processes in HCP?

Unlike CP, HCP has syntax for the terminated process. We couldmake the
distinction between normal form and neutral form. The normal form is
the terminated process. The neutral forms are processes stuck on a free
name, i.e. processes whose communication is blocked on a free channel.

Is that distinction meaningful? No, not in the context of HCP’s reduction
semantics. HCP processes do not reduce to normal form. After all, HCP
preserves CP’s semantics. Any process that does anything is never done.

Let us stick with the terminology “canonical form” for now. CP’s
definition for canonical form is adapted almost effortlessly. An HCP
process P is in canonical form if and only if

1. P contains no link thread ready to act on a bound endpoint; and
2. P contains no two processes ready to act on dual endpoints.
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Case (1) rules out α-reduction—any link evaluating as α-renaming. Case
(2) rules out β-reduction—any other reduction. (The definitions of α- and
β-reduction are unchanged from § 2.2.3.)

Definition 3.31 (α-Reduction). A process P α-reduces to Q, written P⟶𝛼
Q, if there exists a reduction P ⟶ Q which only uses the rules E-LINK, E-
CONG, and E-EQUIV.

Definition 3.32 (β-Reduction). A process P β-reduces to Q, written P⟶𝛽
Q, if there exists a reduction P⟶ Q that does not use the rule E-LINK.

I divide reduction into α-reduction, which captures link evaluating as
α-renaming, and β-reduction, which captures all other reduction. In
essence, α-reduction captures asynchronous reduction, and β-reduction
captures synchronous reduction.

Canonical forms are defined, as described above, by the forms of
processes that cannot α- or β-reduce. The definition does not require
that terminated processes are normalised to 0, e.g. 0 ∥ 0 is considered
canonical. This simplifies the statement of progress, as we do not need to
make allowances for processes such as 0 ∥ 0 that do not reduce, but are
not exactly 0, and lets us defer proving Lemma 3.55. (The definition for
canonical forms is adjusted to permit maximum configuration contexts
with zero holes, i.e. the canonical forms of terminated processes.)

Definition 3.33 (Canonical Form). A process P is in canonical form,
written canonical(P), if P is of the form 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢) and
(for 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯) and

1. no Ti is a link thread ready to act on an endpoint x ∈ bn(𝒞[⋅]); and
2. no Ti and Tj are ready to act on dual endpoints {x, x̄} ∈ dn(𝒞[⋅]).

If condition (1) holds, P⟶̸𝛼. If condition (2) holds, P⟶̸𝛽.

If a process contains two processes ready to act on dual endpoints, then
it can reduce. The following lemma abstracts over the reduction rules for
HCP’s many dual actions, and is unchanged from CP.

Lemma 3.34 (Reduction). If (νxx̄)(P ∥ Q) ⊢ 𝒢, and P and Q are ready to act
on x and x̄, respectively, there exists some R such that (νxx̄)(P ∥ Q)⟶ R.

Proof. By inversion on the derivation of (νxx̄)(P ∥ Q) ⊢ 𝒢.
There are two cases, where either P or Q is a link, which correspond to
E-LINK and its symmetric variant under E-EQUIV with SC-PARCOMM.

There are eight cases that correspond exactly to E-SEND, E-CLOSE, E-
SELECT1, E-SELECT2, and their symmetric variants under E-EQUIV with SC-
PARCOMM.
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Progress states that any process is either in canonical form or can reduce.
In essence, the proof shows that conditions (1) and (2) of the definition of
canonical form correspond to the absence of α- and β-reduction.

Proposition 3.35 (Progress). If P ⊢ 𝒢, then either P is in canonical form,
or there exists some Q such that P⟶ Q.

Proof. The process P is of the form 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢).
If P is in canonical form, the result follows.

Otherwise, 𝘯 ≥ 𝟤, and there are two cases:

Condition (1) does not hold. Some Ti (for 𝟣 ≤ 𝘪 ≤ 𝘯) is a link thread ready to
act on an endpoint x ∈ bn(𝒞[⋅]). By SC-LINKCOMM, Ti ≡S x↔y. By definition,
there exists some {x, x̄} ∈ dn(𝒞[⋅]). By Corollary 3.23 and Proposition 3.18,
there exists some Tj (for 𝟣 ≤ 𝘫 ≤ 𝘯 and 𝘪 ≠ 𝘫) such that x̄ ∈ fn(Tj).
P ≡S ℰ1[(νxx̄)(ℰ2[ℱ1[x↔y] ∥ ℱ2[Tj]])] ⟨by Corollary 3.23 and SC-LINKCOMM⟩

≡S ℰ1[ℰ2[(νxx̄)(ℱ1[x↔y] ∥ ℱ2[Tj])]] ⟨by Lemma 3.24⟩
≡S ℰ1[ℰ2[ℱ1[(νxx̄)(x↔y ∥ ℱ2[Tj])]]] ⟨by Lemma 3.25⟩
≡S ℰ1[ℰ2[ℱ1[ℱ2[(νxx̄)(x↔y ∥ Tj)]]]] ⟨by Lemma 3.25⟩

⟶ ℰ1[ℰ2[ℱ1[ℱ2[Tj{y/x̄}]]]] ⟨by E-LINK and E-CONG⟩
Condition (2) does not hold. Some Ti and Tj (for 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯) are ready to
act on dual endpoints {x, x̄} ∈ dn(𝒞[⋅]).
P ≡S ℰ1[(νxx̄)(ℰ2[ℱi[Ti] ∥ ℱj[Tj]])] ⟨by Corollary 3.23⟩

≡S ℰ1[ℰ2[(νxx̄)(ℱi[Ti] ∥ ℱj[Tj])]] ⟨by Lemma 3.24⟩
≡S ℰ1[ℰ2[ℱi[(νxx̄)(Ti ∥ ℱj[Tj])]]] ⟨by Lemma 3.25⟩
≡S ℰ1[ℰ2[ℱi[ℱj[(νxx̄)(Ti ∥ Tj)]]]] ⟨by Lemma 3.25⟩

⟶ ℰ1[ℰ2[ℱi[ℱj[R]]]] ⟨by Lemma 3.34 and E-CONG⟩

3.2.4 Duality, Dependency, and Deadlock
The definition of canonical form (Definition 3.33) requires justification.
It defines canonical forms as “processes that do not reduce”, which is
an easy way to get in trouble and admit processes that are stuck for
undesirable reasons such as deadlock as “canonical”.

The section follows the same structure as the corresponding section for
CP (§ 2.2.4):

• Dependency Graph and Deadlock Freedom.
I define the dependency graph for HCP processes, and prove that
HCP processes are deadlock-free because their dependency graph
is always essentially acyclic.

• Adequacy.
I define when a process is blocked on a set of endpoints, and prove
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that an HCP process cannot β-reduce if and only if it is blocked on a
set of free endpoints.

The dependency graph is a mixed graph. I informally revisit the relevant
definitions. For a detailed discussion, see § A.1.

• A mixed graph 𝘎 has a set of vertices (denoted 𝘝𝘎, ranged over by 𝘶,
𝘷), a set of edges (denoted 𝘌𝘎), a set of arcs (denoted 𝘈𝘎). Edges are
unordered pairs denoted by juxtaposition, i.e. 𝘶𝘷 ≜ {𝘶, 𝘷}. The set
of edges may not contain loops 𝘶𝘶. Arcs are ordered pairs denoted
by juxtaposition overset with an arrow to indicate the direction, i.e.
𝘶𝘷 ≜ (𝘶, 𝘷). The set of arcs may not contain loops 𝘶𝘶.

• For any graph 𝘎with vertices 𝘶, 𝘷 ∈ 𝘝𝘎, 𝘶 is adjacent to 𝘷 when there
exists some edge 𝘶𝘷 ∈ 𝘌𝘎 or some arc 𝘶𝘷 ∈ 𝘈𝘎.

• A walk 𝘸 is a sequence of pairwise adjacent vertices.
• A path 𝘱 is a walk with no repeated vertices, except possibly the first
and last.

• A cycle 𝘤 is a path that begins and ends at the same vertex.
• A walk is essentially directed when it contains at least one arc.
• A graph is essentially acyclic when if it contains no essentially
directed cycles.

• A graph is strongly connected when if there exists a path between
any two vertices.

• A graph is connectedwhen if the graph formed by replacing all arcs
with edges is strongly connected.

• The subgraph of 𝘎 induced by 𝘜 (denoted by 𝘎[𝘜]) is the graph
formed by taking the subset of vertices 𝘜 and restricting the edges
and arcs according to their correctness criteria, i.e. 𝘌𝘎[𝘜] ≜ 𝘌𝘎 ∩{𝘶𝘷|𝘶, 𝘷 ∈ 𝘜 ∧ 𝘶 ≠ 𝘷}.

• A component of a graph is a maximal connected subgraph.
• The undirected reachability relation (denoted by ∼𝘎) is the
equivalence closure over 𝘌𝘎.

• The essentially directed reachability relation (denoted by ≺𝘎) is the
transitive closure over 𝘈𝘎 quotiented by ∼𝘎.

The vertices of the dependency graph are endpoint names, which are
a proxy for the first action on that endpoint. The edges represent
channels, created by either links or name restrictions. The arcs represent
dependencies, created by prefixing. For instance, in a().b[].0, the process
b[].0 is prefixed with the action a(). Hence, the action on b depends on
the action on a. (The definition of the dependency graph is unchanged
from CP, except to account for the terminated process.)

Definition 3.36 (Dependency Graph). The shallow dependency graph of
a process P, written Dep(P), is a mixed graph (see § A.1). The process
P is of the form 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢). The shallow dependency
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graph Dep(P) is defined as:

𝘝Dep(P) ≜ ⋃𝟣≤𝘪≤𝘯 fn(Ti)
𝘌Dep(P) ≜ ⋃𝟣≤𝘪≤𝘯{xy|Ti = x↔y} ∪ {xx̄|{x, x̄} ∈ dn(𝒞[⋅])}
𝘈Dep(P) ≜ ⋃𝟣≤𝘪≤𝘯{x⃗y|x, y ∈ fn(Ti), ready(Ti, x) ∧ ¬ ready(Ti, y)}

By Lemma 3.22, 𝘌Dep(P) and 𝘈Dep(P) contain no loops. If 𝘎 is (the subgraph of)
some dependency graph, I write fn(𝘎) for its vertices, i.e. fn(𝘎) = 𝘝𝘎.
The dependency graph gives us duality on actions, which is undirected
reachability in the dependency graph. (The definition of duality is
unchanged from CP.)

Definition 3.37 (Duality). An endpoint x is dual to some endpoint y in P,
written x ∼P y, if and only if there exists an undirected path from x to y in
Dep(P).
If x ∼P y, the corresponding path in Dep(P) may be arbitrarily long, as
undirected edges arise from both cuts and links. Consider the process

(νxx̄)(a↔x ∥ x̄↔b)
The duality a ∼ b is witnessed by the path (ax, xx̄, x̄b). However, while
the paths arising from cuts and links may be arbitrarily long, they must
alternate between cut-edges and link-edges and can never branch.

The dependency graph also gives us dependency on actions, which is the
converse of essentially directed reachability in the dependency graph.
(The definition of dependency is unchanged from CP.)

Definition 3.38 (Dependency). An endpoint x depends on some endpoint
y, written x ≻P y, if and only if there exists an essentially directed path from
y to x in Dep(P).
One quirk of using endpoints as a proxy for actions is that the duality
and dependency appear to “leak” restricted names, i.e. ∼P and ≻P are not
relations over fn(P), but relations over fn(P) ∪ bn(𝒞[⋅]), where 𝒞[⋅] is the
maximum configuration context of P. However, as stated, these relations
should be viewed as relations on the first actions on those endpoints, not
the endpoints themselves.

A process is in deadlock if the dependency relation is not antisymmetric,
or, equivalently, if there is a cycle in the dependency graph that contains
at least one arc.

Definition 3.39 (Deadlock). A process P is in deadlock, written
deadlock(P), if Dep(P) contains an essential cycle.

For HCP, the statement that well-typed processes are deadlock free is
too weak as an induction hypothesis. Instead, we prove the stronger
proposition that (1) the dependency graph is essentially acyclic, and (2)
that the components of the dependency graph correspond one-to-one to
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the typing environments in the hyper-environment. When specialised to
CP, this property becomes deadlock freedom, since every CP process is
typed under exactly one typing environment, and its dependency graph
is always connected.

Let us start with the base case. If a process is ready, then its dependency
graph is essentially acyclic and connected. The latter suffices, since
threads are always typed under a single typing environment.

Lemma 3.40. If P is ready, then Dep(P) is essentially acyclic and connected.

Proof. By case analysis on P.

(For the full proof, see § 3.5.)

While the statement of deadlock freedom is stronger, the actual proof
does not differ significantly from CP. There is only the small additional
burden ofmaintaining the isomorphismbetween components and typing
environments. The interesting case is the case for name restriction,
which, as for CP, relies on Lemma A.2, the property that connecting two
essentially acyclic graphs with a single edge yields another essentially
acyclic graph.

Proposition 3.41. If P ⊢ 𝒢, then the dependency graph Dep(P) is
essentially acyclic, and there is an isomorphism 𝘧 between the typing
environments in 𝒢 and the components of Dep(P) that preserves fn, i.e.
fn(Γ) = fn(𝘧 (Γ)).

Proof. By induction on the derivation of P ⊢ 𝒢. The case where P
is ready follows by Lemma 3.40. The case where P is of the form 0
follows vacuously. The case where P is of the form P1 ∥ P2 follows
by taking the union of the induction hypotheses. The case where
P is of the form (νxx̄)P′, is the interesting case. By typing, x and x̄
are in distinct typing environments By 𝘧 , these typing environments
correspond to distinct components of the dependency graph. By
Lemma A.2, connecting distinct components with a single edge preserves
acyclicity.

(For the full proof, see § 3.5.)

Every well-typed HCP process is deadlock-free. This follows immediately
from Proposition 3.41 by forgetting the isomorphism.

Corollary 3.42. If P ⊢ 𝒢, then ¬deadlock(P).
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A blocking action is an action that blocks a process frommaking progress.
For instance, in the process

(νxx̄)(a(). x[].0 ∥ x̄().P)
the action a() is blocking. However, not every ready action is blocking.
The action x̄() is ready, but not blocking. Rather, it is blocked: its dual x[]
depends on a(), so it cannot reduce until a() does.
As I did with dependency, I approximate blocking actions with blocking
endpoints. Blocking endpoints are the maxima of the dependency
relation, or, equivalently, the sources of the dependency graph. The
blocking set of a process is the set of all sources of its dependency graph.
Every ready action in a process is blocked on one of the endpoints in the
blocking set. (The definition of the blocking set is unchanged from CP.)

Definition 3.43 (Blocking Set). The blocking set of endpoints of a process P,
written blocking(P), is the set of sources of Dep(P), i.e. {x ∈ 𝘝Dep(P)|∄y.x ≻P y}.
The blocking set is closed under duality.

Lemma 3.44. If P ⊢ Γ and x ∼P y, then x ∈ blocking(P) ⟹ y ∈
blocking(P).
Each endpoint in the blocking set corresponds to a ready action.

Lemma 3.45. If P ⊢ Γ and x ∈ blocking(P), then P = ℰ[T] and ready(T, x).
Due to the dualities generated by links, the blocking setmay containmore
endpoints than necessary. For instance, the blocking set of the process

(νxx̄)(x↔a ∥ x̄().P)
is {x, x̄,a}. An action in P is blocked on all of these endpoints. However, I
want to be able to say that any action in is blocked on a free name, and, in
this case, the set {a} suffices. A process is blocked on a set of endpoints if
any action is blocked on at least one endpoint in that set. (The definition
of blocking is unchanged from CP.)

Definition 3.46 (Blocked). A process P is blocked on a set of endpoints
X, written blocked(P,X), if closing X under duality yields the blocking set
blocking(P), i.e. if x ∈ X and x ∼P y, then y ∈ blocked(P).
Any process is blocked on its blocking set.

Lemma 3.47. If P ⊢ Γ, then blocked(P,blocking(P)).
If a process is blocked on some set of endpoints, it is blocked on the set
formed by replacing any endpoint in that set with its dual.

Lemma 3.48. If P ⊢ Γ and x ∼P y, then blocked(P,X) ⟹
blocked(P,X{y/x}).
If a process cannot β-reduce, then it is blocked on some set of free names.
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Proposition 3.49. If P ⊢ Γ, then P⟶̸𝛽 ⟺ ∃A ⊆ fn(P).blocked(P,A).
Proof. There are two cases:

• Case (⇒).
By contradiction. Assume x ∈ blocking(P) and ∄a ∈ fn(P).x ∼P a.

There are two cases:

– If x ∈ fn(P), then x ∼P x.

– The process P = 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢).
If x ∈ bn(𝒞[⋅]), then there exists some {x, x̄} ∈ dn(𝒞[⋅]).
There are two cases:

* If x̄ ∈ blocking(P), there exist processes Ti and Tj that are
ready to act on dual endpoints. By Lemma 3.34, P is not
β-free.

* If x̄ ∉ blocking(P), there exists some y such that x̄ ≻P y. By
definition, xx̄ ∈ 𝘌Dep(P). Hence, x ≻P y and x ∉ blocking(P).

• Case (⇐).
By contradiction.

Assume P⟶𝛽. By inversion, there exist some Ti and Tj (for 𝟣 ≤ 𝘪, 𝘫 ≤𝘯) that are ready to act on dual endpoints x and x̄.

By definition, x and x̄ only have outgoing arcs in Dep(P), and the
only edge connected to either is xx̄. Hence, {x, x̄} ⊆ blocking(P) and
∄a ∈ fn(P).x ∼P a ∨ x̄ ∼P a.

Corollary 3.50. If P ⊢ Γ, then canonical(P) ⟹ blocking(P) ⊆ fn(P).
Proof. As canonical(P), P⟶̸𝛼 and P⟶̸𝛽. By Proposition 3.49, there exists
some A ⊆ fn(P) such that blocked(P,A). By definition, A ⊆ blocking(P). It
remains to show that blocking(P) ⊆ A.

By contradiction.

Assume x ∈ blocking(P) and x ∉ A. By definition, there exists some
a ∈ A such that x ∼P a. The duality x ∼P a corresponds to some
undirected path 𝘱xa = (x, … ,a) in Dep(P), which must contain at least
one edge that connects some bound name y to some free name b, say,
yb. By definition, any edge in Dep(P) generated by a cut connects two
bound names. Therefore, ybmust be generated by a link. By Lemma 3.45,
P = ℰ[y↔b]. Hence, P⟶𝛼.
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Unfortunately, as with CP, “blocked on free endpoints” does not
characterise canonical forms, as blocking(P) ⊆ fn(P) ⇏ P⟶̸𝛼. For
instance, the process

(νxx̄)(a(). x[].0 ∥ (νyȳ)(x̄↔y ∥ b(). ȳ().P))
can α-reduce. Its dependency graph, with blocking endpoints circled, is

a x

x̄

b ȳ

y

…

In conclusion, my definition of canonical form (Definition 3.33) is
adequate: any process in canonical form is blocked on some set of free
endpoints. Due to the behaviour of links, “blocked on free endpoints” is
insufficient to characterise canonical forms. As this would be a desirable
property to have, I consider alternative semantics for the link construct in
§ 3.3. I have not adopted any of these alternatives as standard tomaintain
backwards compatibility with the work based on Wadler’s CP.

3.2.5 Connection and Disentanglement
In this section, I formalise the notion of the connection graph of a process,
and prove disentanglement, the property that any HCP process can be
rewritten into the parallel composition of CP-like processes, where I
use “CP-like” to mean processes that would be syntactically well-formed
and well-typed CP processes, i.e. each name restriction is followed by its
corresponding parallel composition, each send action is followed by its
corresponding parallel composition in the correct order, and each close
action is followed by the terminated process.

The first part of this section follows the same structure as the
corresponding section for CP (§ 2.2.5):

• Connection Forest.
I define the connection graph for HCP processes, and prove that the
connection graph is always a forest.

• Right-Branching Forest Form.
I define the equivalent of right-branching form for HCP, which is
right-branching forest form, and prove that any process can be
rewritten to right-branching forest form.

The second part of this section proves disentanglement for HCP. In the
introduction, I defined disentanglement as a function that converts HCLL
proofs into a sequence of CLL proofs:

𝘱
⋮

⊢ Γ1 ∥ … ∥ Γn
⟹

𝘱𝟣
⋮

⊢ Γ1
, … ,

𝘱𝘯
⋮

⊢ Γn
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For the process calculus HCP, I prefer a slightly stronger property.
Disentanglement should convert HCP processes to the parallel
composition of CP-like processes and should be justified by the
structural congruence. For any well-typed process P ⊢ 𝒢k:

• If 𝘬 = 𝟢, then P ≡ 0 and 𝒢0 = ∘.
• If 𝘬 ≥ 𝟣, then P ≡ P1 ∥ … ∥ Pk and 𝒢k = Γ1 ∥ … ∥ Γk such that Pi ⊢ Γi (for𝟣 ≤ 𝘪 ≤ 𝘬) and each Pi is CP-like.

The conversion to right-branching forest form satisfies part of this
definition. It converts an HCP process to a sequence of processes that
are typed under a single typing environment, and it is justified by the
structural congruence. However, the conversion is shallow. It only
rewrites the maximum configuration context. Hence, the resulting
processes are shallowly CP-like. Only the name restrictions and parallel
compositions in their maximum configuration contexts are arranged as
CP cuts.

I define disentanglement by iterating the conversion to right-branching
forest form, which arranges all name restrictions and parallel
compositions as CP cuts, and subsequently arranging the continuations
of send and close actions to match those of CP send and close actions. (I
defer the proof that disentangled processes are CP-like to § 3.2.7, where I
discuss the translation between HCP processes and multisets of CP
processes.)

Let us revisit connection graphs by examining three example processes:

(𝟣) (νxx̄)(νyȳ)(νzz̄)( x[].0 ∥ y[].0 ∥ z[].0 ∥ x̄(). ȳ(). z̄().P )
(𝟤) (νxx̄)(νyȳ)(νzz̄)( y[].0 ∥ ȳ(). x[].0 ∥ z[].0 ∥ z̄(). x̄().P )
(𝟥) (νxx̄)(νyȳ)( x[].0 ∥ x̄().P ∥ y[].0 ∥ ȳ().Q )

The connection graph of a process is the graph formed of all ready sub-
processes and the channels that connect them. Whereas CP’s connection
graphs are trees, HCP’s connection graphs are forests. The connection
graphs for processes (1) and (2) are equivalent to those for the example
processes discussed in § 2.2.5. Both are fully connected, consisting of four
threads, connected by three channels. Process (3) is not fully connected.
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It consists of four processes, connected in pairs by two channels.

(𝟣)
x[].0 y[].0 z[].0 x̄(). ȳ(). z̄().P

(x, x̄) (y, ȳ)
(z, z̄)

(𝟤) y[].0 ȳ(). x[].0 z[].0 z̄(). x̄().P
(y, ȳ) (z, z̄)

(x, x̄)

(𝟥)
x[].0 x̄().P y[].0 ȳ().Q

(x, x̄) (y, ȳ)
We can use the connection graph to rewrite any process into right-
branching forest form, which is the parallel composition of a sequence of
processes in right-branching tree form, which is more or less CP’s right-
branching form:
(νx11x̄11)(P1

1 ∥ ⋯ (νx1nx̄1n)(P1
n ∥ P1

n+1)⋯) ∥ ⋯ ∥ (νxk1x̄k1)(Pk
1 ∥ ⋯ (νxknx̄kn)(Pk

n ∥ Pk
n+1)⋯)

As mentioned, CP’s right-branching form is often used to write nice and
concise proofs. Unfortunately, HCP’s right-branching forest form is a bit
too verbose to fill the same niche. Worse, the presentation above does
not communicate the case where 𝘬 = 𝟢 and the process is 0.
The procedure to convert processes to right-branching forest form
picks a tree from the connection graph, moves all the corresponding
name restrictions and threads to the top-level, arranges them in right-
branching tree form, removes the tree, and continues until the graph is
empty.

The procedure to convert processes to right-branching tree form is the
same as the procedure for CP. It picks a leaf from the tree, moves
the corresponding name restriction and thread to the topmost, leftmost
position, removes the leaf, and continues until all of the tree is empty.

A process may have multiple different right-branching forest forms. The
following are one possible right-branching forest form for each of the
example processes above:

(𝟣) (νxx̄)( x[].0 ∥ (νyȳ)( y[].0 ∥ (νzz̄)( z[].0 ∥ x̄(). ȳ(). z̄().P ) ) )

(𝟤) (νyȳ)( y[].0 ∥ (νxx̄)( ȳ(). x[].0 ∥ (νzz̄)( z[].0 ∥ z̄(). x̄().P ) ) )

(𝟥) (νxx̄)( x[].0 ∥ x̄().P ) ∥ (νyȳ)( y[].0 ∥ ȳ().Q )
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As in § 2.2.5, the definition of connection graph is shallow, rather than
deep, as we only account for the connections up to the maximum
configuration context. However, in the second part of this section, I will
demonstrate that we can use the shallow connection graph to reason
about the deep connection structure of a process.

The connection graph is a undirected edge-labelled graph. I informally
revisit the relevant definitions. For a detailed discussion, see § A.1.

• A undirected edge-labelled graph 𝘎 has a set of vertices (denoted
𝘝𝘎, ranged over by 𝘶, 𝘷), a set of edges (denoted 𝘌𝘎), a set of edge
labels (denotedℒ𝘎), and an edge-labeling function (denoted ℓ𝘎) that
assigns labels to edges. Edges are unordered pairs denoted by
juxtaposition, i.e. 𝘶𝘷 ≜ {𝘶, 𝘷}. The set of edges may not contain loops
𝘶𝘶.
(It suffices to define 𝘝𝘎 and ℓ𝘎, since 𝘌𝘎 ≜ dom(ℓ𝘎) and ℒ𝘎 ≜ cod(ℓ𝘎).)

• Two vertices 𝘶, 𝘷 ∈ 𝘝𝘎 are adjacentwhen there exists an edge 𝘶𝘷 ∈ 𝘌𝘎.
• A walk 𝘸 is a sequence of pairwise adjacent vertices.
• A path 𝘱 is a walk with no repeated vertices, except possibly the first
and last.

• A cycle 𝘤 is a path that begins and ends at the same vertex.
• The subgraph of 𝘎 induced by 𝘜 (denoted by 𝘎[𝘜]) is the graph
formed by taking the subset of vertices 𝘜 and restricting the
edges, edge labels, and edge-labelling function according to their
correctness criteria, i.e. 𝘌𝘎[𝘜] ≜ 𝘌𝘎 ∩ {𝘶𝘷|𝘶, 𝘷 ∈ 𝘜 ∧ 𝘶 ≠ 𝘷}.

• A graph is acyclic when it does not contain a cycle.
• A graph is connectedwhen there is a path between any two vertices.
• A component 𝘊 of a graph is a maximal connected subgraph.
• A tree 𝘛 is a graph that is connected and acyclic.
• A forest 𝘍 is a graph whose components are trees.

(The definition of the connection graph is unchanged from CP, except to
account for the terminated process.)

Definition 3.51 (Connection Graph). The shallow connection graph of a
well-typed process P, written Con(P), is an undirected edge-labelled graph
(see § A.1) where the vertices are threads, the edges are the channels that
connect those threads, and the edges are labelled by unordered pairs of their
endpoints. The process P is of the form 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢). The
shallow connection graph Con(P) is defined as:

𝘝Con(P) ≜ {T1, … , Tn}ℓCon(P) ≜ {TiTj ↦ (x, x̄)|Ti,Tj ∈ 𝘝Con(P), {x, x̄} ∈ dn(𝒞[⋅]), x ∈ Ti ∧ x̄ ∈ Tj}
By Lemma 2.21, 𝘌Con(P) contains no loops. By Proposition 2.18, ℓCon(P) is a
function. If 𝘎 is a subgraph of some connection graph, I write fn(𝘎) for the
free names in the vertices of 𝘎, i.e. fn(𝘎) ≜ ⋃P∈𝘝𝘎 fn(P).
In HCP, the connection graph of a process is always a forest. However,
that statement by itself is too weak to prove by induction. Instead, we
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prove the stronger proposition that (1) the connection graph is a forest,
and (2) that the components in the connection graph correspond one-
to-one to the typing environments in the hyper-environment. When
specialised to CP, this property becomes the property that every
connection graph is a tree, since every CP process is typed under exactly
one typing environment, and its connection graph is always connected.

The proof does not differ significantly from CP. There is only the small
additional burden of maintaining the isomorphism between component
and typing environments. The interesting case is the case for name
restriction, which, as for CP, relies on the property that connecting two
trees with a single edge yields another tree.

Proposition 3.52. If P ⊢ 𝒢, then Con(P) is a forest, and there is an
isomorphism 𝘧 between the typing environments in 𝒢 and the trees of
Con(P) that preserves fn, i.e. fn(Γ) = fn(𝘧 (Γ)).
Proof. By induction on the maximum configuration context of P and
inversion on P and its typing derivation. The interesting case is for
name restriction. The endpoints connected by the name restriction occur
in different typing environment. Hence, by the isomorphism 𝘧 , those
endpoints occur in disjoint trees in the connection graph and, by Lemma
A.1, the connection graph for the result, formed by connecting those trees
with the single edge arising from the name restriction, remains a forest.

(For the full proof, see § 3.5.)

A process is in right-branching forest form when it is either 0 or it is the
parallel composition of processes in right-branching tree form.

Definition 3.53 (Right-branching Tree Form). A process P is in right-
branching tree form if P is ready or if P is of the form (for some 𝘯 ≥ 𝟣)

(νx1x̄1)(T1 ∥ ⋯ (νxnx̄n)(Tn ∥ Tn+1)⋯)

A process is in right-branching tree form is if is a right-branching list of
CP cuts connecting threads.

(The definition of right-branching tree form is unchanged, except in
name, from CP’s definition of right-branching form.)

Definition 3.54 (Right-branching Forest Form). A process P is in right-
branching forest form if P is of the form 0, or if P is of the form P1 ∥ ⋯ ∥ Pn
(for some 𝘯 ≥ 𝟣) such that (for 𝟣 ≤ 𝘪 ≤ 𝘯) each Pi is in right-branching tree
form.

Any well-typed process can be rewritten to right-branching forest form.
The proof is given by induction on the structure of the hypersequent, and
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is decomposed into two lemmas, which correspond to the two cases of
the induction:

• If P ⊢ ∘, then P can be rewritten to the terminated process.
• If P ⊢ 𝒢 ∥ Γ, then P can be rewritten to pull one process in right-
branching tree form out to the top level, using a procedure similar
to the one used for converting CP processes to right-branching form.

Lemma 3.55. If P ⊢ ∘, then P ≡LS 0.
Proof. Let 𝘎 be Con(P). By Proposition 3.52, there is an isomorphism 𝘧
between the typing environments in ∘ and the trees of 𝘎 that preserves
fn, i.e. fn(Γ) = fn(𝘧 (Γ)). As there are no typing environments in ∘, 𝘧 is the
empty function, and 𝘎 is the null graph. Let 𝒞n[⋅] be maximal for P such
that P = 𝒞n[P1, …,Pn] (for some 𝘯 ≥ 𝟢). By definition, 𝘝𝘎 = {P1, …Pn}. As 𝘎 is
the null graph, 𝘝𝘎 = ∅. Hence, 𝘯 = 𝟢, i.e. the maximum configuration
context 𝒞0[⋅] contains zero holes. By induction on 𝒞0[⋅], the process
P is equal to the parallel composition of terminated processes, and is
equivalent to 0 by repeated application of SC-PARNIL.

Lemma 3.56. If P ⊢ 𝒢 ∥ Γ, then there exist processes Q and R such that
Q ⊢ 𝒢, R ⊢ Γ, P ≡LS Q ∥ R, and R is in right-branching tree form.

Proof. The proof proceeds by picking the tree corresponding to Γ
from the connection forest, using the isomorphism constructed by
Proposition 3.52, and then iteratively picking its leaves and rewriting the
corresponding process to right-branching form, as in Proposition 2.51.

(For the full proof, see § 3.5.)

Proposition 3.57. If P ⊢ 𝒢, then there exists a process Q, such that P ≡LS
Q, and Q is in right-branching forest form, and there is an isomorphism
𝘧 between the processes in right-branching tree form in Q and the typing
environments in 𝒢 that preserves fn, i.e. fn(Γ) = fn(𝘧 (Γ)).
Proof. The proof proceeds by iteratively picking typing environments in
the hyper-environment andmoving the corresponding process to the top-
level in right-branching tree form using Lemma 3.56.

(For the full proof, see § 3.5.)

Connection graphs are an alternative representation for processes, with
the interesting property that they represent the maximum configuration
context of a process without any spurious ambiguity. Connection
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graphs correspond to shallow proof nets for HCLL. (For a more detailed
discussion of the correspondence between connection graphs and proof
nets, see § 2.2.5.)

Proposition 3.58. If P is well-typed, then P ≡LS Q ⟺ Con(P) = Con(Q).

Proof. There are two cases:

• Case (⇒).
By induction on the proof of the structural congruence P ≡LS Q. The
cases for reflexivity, transitivity, symmetry, and SC-CONG follow by
induction and those same properties of equality. The remaining
cases follow immediately.

• Case (⇐).
Let Proc(𝘛) be the set of processes in right-branching forest form
obtained from the connection graph 𝘎 of a well-typed process by
Proposition 3.57. (This is a set because Proposition 3.57 defines a
non-deterministic procedure.)

Pick any R ∈ Proc(Con(P)). As Con(P) = Con(Q), Proc(Con(P)) =
Proc(Con(Q)). Hence, R ∈ Proc(Con(Q)). By definition, P ≡LS R and
Q ≡LS R. Hence, P ≡LS Q.

An HCP process is disentangled when it is the terminated process, or
the parallel composition of a sequence of CP-like processes. The formal
definition does not make explicit reference to CP syntax, and I defer the
proof disentangled HCP processes correspond to CP processes to § 3.2.7.

Definition 3.59 (Disentangled). A process P is disentangled when every
terminated process matches the form of a CP close, and every parallel
composition matches the form of a CP cut or CP send, or is at the top-level.

Formally, P is disentangled when the following conditions hold:

1. If P is of the form Q[P1 ∥ P2], then one of the following holds:

a. Q[⋅] is of the form R[(νxx̄)□] such that x ∈ fn(P1) and x̄ ∈ fn(P2).
b. Q[⋅] is of the form R[x[y].□] such that y ∈ fn(P1) and x ∈ fn(P2).
c. Q[⋅] is of the form ℰ such that bn(ℰ) = ∅.

2. If P is of the form Q[0], then one of the following holds:

a. Q[⋅] is of the form □.
b. Q[⋅] is of the form R[x[].□].

The conditions of disentangled form in Definition 3.59 are sufficient to
guarantee that the process is CP-like.
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Lemma 3.60. If P ⊢ 𝒢 and P is disentangled, then:

1. 𝒢 is of the form ∘ ⟹ P is of the form 0
2. 𝒢 is of the form 𝒢 ∥ Γ ⟹ P is of the form Q ∥ R
3. P is of the form Q[(νxx̄)R]⟹ R is of the form R1 x∥x̄ R2
4. P is of the form Q[x[y].R] ⟹ R is of the form R1 y∥x R2
5. P is of the form Q[x[].R] ⟹ R is of the form 0

Proof. There are five cases:

1. By induction on the structure of P. If P is of the form 0, the result
follows immediately. If P is of the form Q ∥ R, the induction
hypotheses give us Q = 0 and R = 0, which contradicts condition
(2) of disentangled form. The remaining cases, where P is ready or
P is of the form (νxx̄)P′ are impossible, by inversion on the typing
derivation.

2. By induction on the structure of P. If P is of the form Q ∥ R, the
result follows immediately. If P is of the form (νxx̄)P′, the induction
hypothesis gives us that P′ is of the form Q′ ∥ R′, which contradicts
condition (1) of disentangled form. The remaining cases, where P is
ready or P is of the form 0 are impossible, by inversion on the typing
derivation.

3. By case (2) and condition (1a) of disentangled form.
4. By case (2) and condition (1b) of disentangled form.
5. By case (1).

Every HCP process can be disentangled.

Right-branching forest form is useful for disentangling processes, but not
quite sufficient. If we convert every sub-process to right-branching forest
form, the resulting process is nearly disentangled. Every terminated
process matches the form of a CP close, and every parallel composition
is at the top-level, matches a CP cut, or nearly matches a CP send. The
continuation of a send action must be the parallel composition that splits
the corresponding endpoints, but the processes need not be in the correct
order, i.e. we may have x[y].Q ∥ P, where Q handles x and P handles y.

To disentangle a process, we convert every sub-process to right-
branching forest form, and take special care to correct the order in the
continuation of send actions.

Proposition 3.61. If P ⊢ 𝒢, then there exists some Q such that P ≡LS Q and
Q is disentangled.

Proof. By induction on the derivation of P ⊢ 𝒢 and inversion on P.

If P is ready, the result follows by induction. Most cases can be handled
uniformly, but send, offer and the absurd offer are handled separately.
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• Case P is of the form x[y].P′.
By induction, P′ ≡LS Q′ for some disentangled process Q′. By Lemma
3.60 (2), Q′ is of the form Q′

1 ∥ Q′
2. By condition (2) of disentangled

form, Q′
1 ≠ 0 and Q′

2 ≠ 0. There are two cases:

– Subcase y ∈ fn(Q′
1) and x ∈ fn(Q′

2).
Let Q be x[y].Q′

1 ∥ Q′
2. The result follows.

– Subcase x ∈ fn(Q′
1) and y ∈ fn(Q′

2).
Let Q be x[y].Q′

2 ∥ Q′
1. The result follows by SC-PARCOMM.

• Case P is of the form x(y).P′, x[].P′, x().P′, x◁ inl.P′, or x◁ inr.P′.
By induction, P′ ≡LS Q′ for some disentangled process Q′. Let Q be
x(y).Q′, x[].Q′, x().Q′, x◁ inl.Q′, or x◁ inr.Q′, respectively. The result
follows.

• Case P is of the form x ▷ {inl∶ P′1; inr∶ P′2}.
By induction on P′1, P′1 ≡LS Q′

1 for some disentangled process Q′
1. By

induction on P′2, P′2 ≡LS Q′
2 for some disentangled process Q′

2. Let Q be
x ▷ {inl∶Q′

1; inr∶Q′
2}. The result follows.

• Case P is of the form x↔y or x N.
The result follows immediately.

Otherwise, the result follows by converting P to right-branching forest
form, taking themaximum configuration context of the resulting process,
and converting each ready subprocess by induction.

• Case P is of the form (νxx̄)P′, P1 ∥ P2, or 0.

By Proposition 3.57, there exists some Q′ such that P ≡LS Q′ and Q′ is
in right-branching forest form. By case analysis on Q′:

– If Q′ is of the form 0, the result follows immediately.
– Otherwise, let 𝒞n[⋅] be the maximum configuration context of
Q′ such thatQ′ = 𝒞n[Q′

1, …,Q′
n] (for some 𝘯 ≥ 𝟣) and (for 𝟣 ≤ 𝘪 ≤ 𝘯)

each Q′
i is ready. By induction, there exist processes Q1, … ,Qn

such that (for 𝟣 ≤ 𝘪 ≤ 𝘯) each Q′
i ≡LS Qi and Qi is disentangled.

Let Q be 𝒞n[Q1, …,Qn]. By transitivity and congruence, P ≡LS Q.
By induction on the structure of 𝒞n[⋅] and inversion on the fact
thatQ′ is in right-branching forest form,Q is disentangled. The
result follows.

Disentanglement is the procedure defined by the proof of Proposition
3.61. The procedure is non-deterministic and follows the outline in
the introduction to this section. (The non-determinism arises from the
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arbitrary choice of tree in Proposition 3.61 and the arbitrary choice of
leaf in Lemma 3.56.)

The result is a function that converts a process to a set of disentangled
processes, all of which are equivalent to the original process and to each
other by structural congruence.

Definition 3.62 (Disentanglement). The disentanglement of P, written ⧘P⧙,
is the set of processes obtained from P by Proposition 3.61.

All elements of ⧘P⧙ are equivalent to each other and to P under link-
preserving structural congruence. I use ⧘⋅⧙ as functional under structural
congruence, and write ⧘P⧙ ≡L Q to mean Q is an arbitrary element of ⧘P⧙. I
extend ⧘⋅⧙ to configuration and evaluation contexts by preserving holes and
otherwise acting as on the corresponding process terms.

The disentanglement ⧘P⧙ does not contain all disentangled processes
equivalent to P, only those which are in right-branching form.

Disentanglement distributes over maximal evaluation contexts.

Lemma 3.63. If ℰ[T] ⊢ 𝒢, then ⧘ℰ[T]⧙ = {ℰ′[T′] ∣ ℰ′ ∈ ⧘ℰ⧙,T′ ∈ ⧘T⧙}.
Disentanglement distributes over the maximum configuration context.

Lemma 3.64. If 𝒞[T1, …,Tn] ⊢ 𝒢, then
⧘𝒞[T1, …,Tn]⧙ = {𝒞′[T′ρ(1), …,T′ρ(n)] ∣ ∃𝜌.𝒞′[⋅] ∈ ⧘𝒞[⋅]⧙,T′1 ∈ ⧘T1⧙, … , T′n ∈ ⧘Tn⧙}

where 𝜌 is a permutation on the indices [𝟣, 𝘯].
The set of right-branching forms of a process is closed under link-
preserving shallow structural congruence, as link-preserving shallow
structural congruence preserves the connection graph. Likewise,
the disentanglement is closed under any link-preserving structural
congruence.

Lemma 3.65. If P ⊢ 𝒢 and P ≡L Q, then ⧘P⧙ = ⧘Q⧙.
More importantly, disentanglement is closed under CP’s structural
congruence, as we will see in § 3.2.7. First, however, we must pause our
discussion of disentanglement to introduce Multiset CP, the calculus of
multisets of CP processes.

3.2.6 Multiset CP
In this section, I define Multiset CP. At several points in this chapter, I
have mentioned that an HCP process corresponds to a multiset of CP
processes. However, I have found that it is tedious to relate HCP directly
to multisets of CP processes, and much clearer to relate it to another
session-typed processes calculus which captures that notion. Multiset CP
is that calculus. Its processes are multisets of unconnected CP processes,
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presented using process notation. Its processes are typed under hyper-
environments, which are multisets of CP typing environments. Its typing
derivation, structural congruence, and reduction relations are all some
sort of pointwise lifting of the corresponding CP relations. (I will not
abbreviate Multiset CP, and continue to write it in full, to avoid confusion
with Multiparty CP [MCP, Carbone et al., 2016].)

To avoid syntax highlighting whiplash between sections, the terms
and types of both Multiset CP and CP are printed in pink and green,
respectively, both are rendered in an italicised font with serif, and any
relations, such as typing and reduction, are marked by subscript “𝒞” or
“C”, respectively.

The processes of Multiset CP are the parallel composition of CP processes,
as defined by the following grammar:

𝒫,𝒬,ℛ ⩴ P ∣ 0 ∣ 𝒫 ∥ 𝒬
The metavariables 𝒫, 𝒬, and ℛ refer to Multiset CP processes, and the
metavariables P, Q, and R refer to CP processes, as defined in § 2.1. This
matches the convention to use the calligraphic font for multisets.

Multiset CP’s parallel composition and terminated process may only
occur at the top-level. The syntax for CP processes is not permitted to
recurse back into the syntax for Multiset CP processes. The parallel
composition and terminated process that are syntactically part of CP’s
cut, send, and close constructs are distinct from Multiset CP’s parallel
composition and terminated process.

Multiset CP has no top-level name restriction. Hence, there is no
possibility to connect the individual CP processes, and no possibility for
them to communicate amongst each other.

The processes of Multiset CP are equivalent up to structural congruence.
Concretely, the individual CP processes—i.e. the elements of the
multiset—are equivalent up to CP’s structural congruence, as defined
in § 2.1, and Multiset CP processes—i.e. the multisets themselves—are
equivalent up to reordering.

𝒫 ∥ 0 ≡𝒞 𝒫 SC-PARNIL
𝒫 ∥ 𝒬 ≡𝒞 𝒬 ∥ 𝒫 SC-PARCOMM
𝒫 ∥ (𝒬 ∥ ℛ) ≡𝒞 (𝒫 ∥ 𝒬) ∥ ℛ SC-PARASSOC

SC-EMBED
P ≡𝘊 Q
P ≡𝒞 Q

SC-PARCONG
𝒫 ≡𝒞 𝒫′ 𝒬 ≡𝒞 𝒬′

𝒫 ∥ 𝒬 ≡𝒞 𝒫′ ∥ 𝒬′

In essence, the rules SC-PARNIL, SC-PARCOMM, and SC-PARASSOC ensure
the process syntax defines a multiset, and the rules SC-EMBED and
SC-PARCONG define the universal pointwise lifting of CP’s structural
congruence to multisets of equal length. I likewise lift the restricted
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versions of structural congruence—≡S 𝒞, ≡L 𝒞, ≡LS𝒞, and ≡D𝒞—toMultiset CP (see
§ 2.2.1 for details).

Reduction for Multiset CP processes is the existential pointwise lifting of
CP’s reduction, i.e. if 𝒫 ⟶𝒞 𝒬, then one of the processes P ∈ 𝒫 reduces
to one of the processes Q ∈ 𝒬, and all the other processes are preserved
up to structural congruence.

E-EMBED
P⟶𝘊 Q
P⟶𝒞 Q

E-EQUIV
𝒫 ≡𝒞 𝒫′ 𝒫′ ⟶𝒞 𝒬′ 𝒬′ ≡𝒞 𝒬

𝒫⟶𝒞 𝒬
E-PARCONG1𝒫⟶𝒞 𝒫′

𝒫 ∥ 𝒬⟶𝒞 𝒫′ ∥ 𝒬
E-PARCONG2𝒬⟶𝒞 𝒬′

𝒫 ∥ 𝒬⟶𝒞 𝒫 ∥ 𝒬′

Finally, the typing judgement for Multiset CP uses hyper-environments.
The definition of hyper-environments follows the definition for HCP.
Recall that hyper-environments are multisets of CP typing environments
with the additional restriction that endpoint names must be unique
across all typing environments.

𝒢,ℋ ⩴ ∘ ∣ 𝒢 ∥ Γ
The typing judgement itself is defined, similar to the structural
congruence, as the universal pointwise lifting of CP’s typing judgement
to multisets of equal size.

T-EMBED
P ⊢𝘊 Γ
P ⊢𝒞 Γ

T-PAR

0 ⊢𝒞 ∘
T-HALT
𝒫 ⊢𝒞 𝒢 𝒬 ⊢𝒞 ℋ
𝒫 ∥ 𝒬 ⊢𝒞 𝒢 ∥ ℋ

The metatheory for Multiset CP can be constructed from the metatheory
for CP, borrowing the occasional bit fromHypersequent CP. (I only discuss
preservation and progress, but these should suffice to reassure the reader
of that claim.)

Preservation follows from CP’s preservation proofs (Lemma 2.24 and
Proposition 2.27), and the additional cases for the new rules follow those
from HCP’s preservation proofs (Lemma 3.27 and Proposition 3.30).

Lemma 3.66. If𝒫 ≡𝒞 𝒬, then𝒫 ⊢𝒞 𝒢 if and only if 𝒬 ⊢𝒞 𝒢.
Proposition 3.67 (Preservation). If𝒫 ⊢𝒞 𝒢 and𝒫⟶𝒞 𝒬, then 𝒬 ⊢𝒞 𝒢.
Canonical form and progress are lifted directly from CP. A Multiset
CP process is in canonical form when each CP process is in canonical
form, and progress follows by pointwise application of CP’s progress
(Proposition 2.32).

Definition 3.68 (Canonical Form). A process𝒫 is in canonical formwhen
each CP process P ∈ 𝒫 is in CP’s canonical form (Definition 2.30).
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Proposition 3.69 (Progress). If𝒫 ⊢𝒞 𝒢, then either𝒫 is in canonical form,
or there exists some 𝒬 such that𝒫⟶𝒞 𝒬.
I sketched the correspondence between Multiset CP and CP in the
introduction to this section. Propositions 3.70 to 3.72 formalise it. The
proof of each proposition follows by induction. I believe the verbosity
of these statements illustrates the advantage of working with Multiset CP
over working directly with multisets of CP processes.

Multiset CP’s typing relation is the universal pointwise lifting of CP’s
typing relation, i.e. a Multiset CP process is well-typed if each individual
CP process is well-typed under one of the typing environments.

Proposition 3.70. If 𝒫 ⊢𝒞 𝒢, then there is an isomorphism 𝘧 ∶ 𝒫 → 𝒢
between the elements of the multisets𝒫 and𝒢 such that P ⊢𝘊 𝘧 (P) for every
P ∈ 𝒫 and 𝘧 −𝟣(Γ) ⊢𝘊 Γ for every Γ ∈ 𝒢.
Multiset CP’s structural congruence is the universal pointwise lifting of
the CP’s structural congruence, i.e. one Multiset CP process is equivalent
to another if each individual CP process in the one is equivalent to one in
the other.

Proposition 3.71. If 𝒫 ≡𝒞 𝒬, then there is an isomorphism 𝘧 ∶ 𝒫 → 𝒬
between the elements of the multisets𝒫 and𝒬 such that P ≡𝘊 𝘧 (P) for every
P ∈ 𝒫 and 𝘧 −𝟣(Q) ≡𝘊 Q for every Q ∈ 𝒬.
Multiset CP’s reduction is the existential pointwise lifting of CP’s
reduction, i.e. one Multiset CP process reduces to another if one of
its component CP processes reduces to one in the other, and all other
component CP processes are preserved.

Proposition 3.72. If𝒫⟶𝒞 𝒬, then there is exactly one pair of processes
(P,Q) ∈ 𝒫×𝒬 such that P⟶𝘊 Q, and an isomorphism 𝘧 ∶ 𝒫′ → 𝒬′ between
the remaining elements of the multisets,𝒫′ = 𝒫−*P+ and𝒬′ = 𝒬−*Q+, such
that P′ ≡𝘊 𝘧 (P′) for every P′ ∈ 𝒫′ and 𝘧 −𝟣(Q′) ≡𝘊 Q′ for every Q′ ∈ 𝒬′.

3.2.7 Fission, Fusion, and Disentanglement

In this section, I discuss the correspondence between Hypersequent
CP and Multiset CP. The correspondence has three components—the
titular components of this section. Fission is a translation from Multiset
CP to Hypersequent CP, and, together, fusion and disentanglement
are a translation from Hypersequent CP to Multiset CP. I discuss each
component of the correspondence in order, starting with the easy one.
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Fission

Fission is a translation fromMultiset CP to Hypersequent CP, which splits
CP’s cut, send, and close into the corresponding HCP processes:

(νxx̄)(P ∥ Q) to (νxx̄)⎵(P ∥ Q)
x[y].(P ∥ Q) to x[y].⎵(P ∥ Q)
x[].0 to x[].⎵0

Visually, its definition resembles an elaborate identity function.

Definition 3.73. Fission, JPK𝘏, translates CP processes into HCP processes
by splitting each cut into a separate name restriction and parallel
composition, and likewise splitting send and close.

Jx↔yK𝘏 ≜ x↔yJ(νxx̄)(P ∥ Q)K𝘏 ≜ (νxx̄)(JPK𝘏 ∥ JQK𝘏)Jx[y]. (P ∥ Q)K𝘏 ≜ x[y]. (JPK𝘏 ∥ JQK𝘏)Jx(y).PK𝘏 ≜ x(y). JPK𝘏Jx[].0K𝘏 ≜ x[].0Jx().PK𝘏 ≜ x(). JPK𝘏Jx◁ inl.PK𝘏 ≜ x◁ inl. JPK𝘏Jx◁ inr.PK𝘏 ≜ x◁ inr. JPK𝘏Jx ▷ {inl∶ P; inr∶Q}K𝘏 ≜ x ▷ {inl∶ JPK𝘏; inr∶ JQK𝘏}Jx NK𝘏 ≜ x N
Fission is extended to Multiset CP as follows:

JPK𝘏 ≜ JPK𝘏J𝒫 ∥ 𝒬K𝘏 ≜ J𝒫K𝘏 ∥ J𝒬K𝘏
Fission is extended to process contexts, where it preserves holes and
otherwise acts as it does on processes. Fission is the identity on types
and typing environments, mapping each connective in CP to the same
connective in HCP.

Fission distributes over arbitrary process contexts.

Proposition 3.74. J(P[Q])K𝘏 = (JP[⋅]K𝘏)[JQK𝘏]
Proof. By induction on the structure of the evaluation context P[⋅].

Fission preserves types, structural congruence, and reduction.

Proposition 3.75. If P ⊢𝘊 Γ, then JPK𝘏 ⊢ JΓK𝘏.
Proof. By induction on the structure of the derivation of P ⊢𝘊 Γ.
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• Case T-CUT.

We have
P ⊢𝘊 Γ, x ∶ A Q ⊢𝘊 Δ, x̄ ∶ A T-CUT(νxx̄)(P ∥ Q) ⊢𝘊 Γ,Δ

By induction, JPK𝘏 ⊢ JΓK𝘏, x ∶ JAK𝘏 and JQK𝘏 ⊢ JΔK𝘏, x̄ ∶ JAK𝘏.
The result follows as

JPK𝘏 ⊢ JΓK𝘏, x ∶ JAK𝘏 JQK𝘏 ⊢ JΔK𝘏, x̄ ∶ JAK𝘏 T-PARJPK𝘏 ∥ JQK𝘏 ⊢ JΓK𝘏, x ∶ JAK𝘏 ∥ JΔK𝘏, x̄ ∶ JAK𝘏
(νxx̄)(JPK𝘏 ∥ JQK𝘏) ⊢ JΓK𝘏, JΔK𝘏

• Case T-SEND.

We have
P ⊢𝘊 Γ, y ∶ A Q ⊢𝘊 Δ, x ∶ B T-SENDx[y]. (P ∥ Q) ⊢𝘊 Γ,Δ, x ∶ A⊗ B

By induction, JPK𝘏 ⊢ Γ, y ∶ A and JQK𝘏 ⊢ Δ, x ∶ B.
The result follows as

JPK𝘏 ⊢ JΓK𝘏, y ∶ JAK𝘏 JQK𝘏 ⊢ JΔK𝘏, x ∶ JBK𝘏 T-PARJPK𝘏 ∥ JQK𝘏 ⊢ JΓK𝘏, y ∶ JAK𝘏 ∥ JΔK𝘏, x ∶ JBK𝘏
x[y]. (JPK𝘏 ∥ JQK𝘏) ⊢ JΓK𝘏, JΔK𝘏, x ∶ JAK𝘏 ⊗ JBK𝘏

• Case T-CLOSE. We have

T-CLOSEx[].0 ⊢𝘊 x ∶ 1
The result follows as

0 ⊢ ∘
x[].0 ⊢ x ∶ 1

• Cases T-LINK, T-RECV, T-WAIT, T-SELECT1, T-SELECT2, T-OFFER, T-
ABSURD.

The result follows immediately from the HCP rules T-LINK, T-RECV,
T-WAIT, T-SELECT1, T-SELECT2, T-OFFER, T-ABSURD and the induction
hypotheses (if any).

Proposition 3.76. If P ≡𝘊 Q, then JPK𝘏 ≡ JQK𝘏.
Proof. The cases for reflexivity, symmetry, transitivity, and congruence
follow from the same properties of the structural congruence of HCP. The
cases for the axioms are as follows:
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• Case SC-LINKCOMM.

Immediately, by SC-LINKCOMM.

• Case SC-CUTCOMM.

Immediately, by SC-NEWCOMM and SC-PARCOMM.

• Case SC-CUTASSOC.

Immediately, by SC-SCOPEEXT, SC-NEWASSOC, and SC-PARASSOC.

Proposition 3.77. If P⟶𝘊 Q, then JPK𝘏 ⟶ JQK𝘏.
Proof. By induction on the structure of the derivation P⟶𝘊 Q.

• Cases E-LINK, E-SEND, E-CLOSE, E-SELECT1, and E-SELECT2.

Immediately, by E-LINK, E-SEND, E-CLOSE, E-SELECT1, and E-SELECT2,
respectively.

• Case E-EQUIV.

By E-EQUIV, the induction hypothesis, and Proposition 3.76.

• Case E-CONG.

By E-CONG, the induction hypothesis, and Proposition 3.74.

Fusion

Fusion is the partial inverse of fission. It fuses an HCP name restriction
and parallel composition into a CP cut, an HCP send and parallel
composition into a CP send, and an HCP close and parallel composition
into a CP close, but only if the HCP process already has the form of a CP
process.

(νxx̄)⎵(P ∥ Q) to (νxx̄)(P ∥ Q)
x[y].⎵(P ∥ Q) to x[y].(P ∥ Q)
x[].⎵0 to x[].0

Visually, its definition likewise resembles an elaborate identity function.

Definition 3.78. Fusion, JPK𝘊 , translates HCP processes into CP processes
by fusing adjacent name restrictions and parallel compositions into cuts,
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and likewise fusing send and close. Fusion is partial.

Jx↔yK𝘊 ≜ x↔yJ(νxx̄)(P ∥ Q)K𝘊 ≜ (νxx̄)(JPK𝘊 ∥ JQK𝘊)Jx[y]. (P ∥ Q)K𝘊 ≜ x[y]. (JPK𝘊 ∥ JQK𝘊)Jx(y).PK𝘊 ≜ x(y). JPK𝘊Jx[].0K𝘊 ≜ x[].0Jx().PK𝘊 ≜ x(). JPK𝘊Jx◁ inl.PK𝘊 ≜ x◁ inl. JPK𝘊Jx◁ inr.PK𝘊 ≜ x◁ inr. JPK𝘊Jx ▷ {inl∶ P; inr∶Q}K𝘊 ≜ x ▷ {inl∶ JPK𝘊 ; inr∶ JQK𝘊}Jx NK𝘊 ≜ x N
Fusion is extended to Multiset CP as follows:

JPK𝒞 ≜ {JQK𝒞 ∥ JRK𝒞 if P = Q ∥ RJPK𝘊 otherwise

Fusion is extended to process contexts, where it preserves holes and
otherwise acts as it does on processes. Fusion is the identity on types
and typing environments, mapping each connective in HCP to the same
connective in CP.

Fusion is the partial inverse of fission.

Fusion distributes over arbitrary process contexts.

Lemma 3.79. JP[Q]K𝘊 = JP[⋅]K𝘊[JQK𝘊].
Fusion preserves types.

Proposition 3.80. If JPK𝘏 ⊢ JΓK𝘏, then P ⊢𝘊 Γ.

Proof. By induction on the structure of the derivation JPK𝘏 ⊢ JΓK𝘏.
• Cases T-NEW, T-SEND, and T-CLOSE.

The result follows from the CP rules T-CUT, T-SEND, and T-CLOSE and
inversion on the structure of the CPprocessP, which establishes that
the derivations constructed in Case (⇒) are the only derivations.

• Cases T-PAR and T-HALT.

Impossible, by inversion on the structure of the CP process P.

• Cases T-LINK, T-RECV, T-WAIT, T-SELECT1, T-SELECT2, T-OFFER, and T-
ABSURD.

The result follows from the induction hypotheses (if any) and the
CP rule of the same name, i.e. T-LINK, T-RECV, T-WAIT, T-SELECT1, T-
SELECT2, T-OFFER, and T-ABSURD, respectively.
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Fusion is defined for all disentangled processes.

Lemma 3.81. If P ⊢ 𝒢 and Q ∈ ⧘P⧙, then JQK𝒞 is defined.

Proof. By induction on the structure of Q with Lemma 3.60.

The fusions of the disentangled processes are equivalent up to CP’s link-
preserving structural congruence.

Lemma 3.82. If P ⊢ 𝒢 and Q,R ∈ ⧘P⧙, then JQK𝒞 ≡L 𝒞 JRK𝒞.
Proof. The proof is an extension to the proof of Proposition 3.61, which
proves the following two facts:

1. In the proof for Lemma 3.56, under the case 𝘝𝘛 > 𝟣, we pick an
arbitrary leaf of the connection tree 𝘛 . Any choice is equivalent up
to CP’s structural congruence.

Assume that Pi and Pj are both leaves of 𝘛 . If we pick Pi and then Pj,
we get (a), but if we pick Pj and then Pi, we get (b).

(a) (b)
Q ∥ (νxx̄)(Pi ∥ (νyȳ)(Pj ∥ R′)) Q ∥ (νyȳ)(Pj ∥ (νxx̄)(Pi ∥ R′))

As Pi and Pj are both leaves of 𝘛 , x, x̄ ∉ fn(Pj) and y, ȳ ∉ fn(Pi), which
means the two processes are equivalent by SC-CUTCOMM and SC-
CUTASSOC.

If we pick Pi, then pick a number of processes that have become
leaves by the removal of Pi and successive choices, and then pick Pj,
we get (a), where there is some (right-branching) evaluation context
ℰ between Pi and Pj, but if we pick Pj, then pick Pi, and then pick the
processes in ℰ, we get (b).

(a) (b)
Q ∥ (νxx̄)(Pi ∥ ℰ[(νyȳ)(Pj ∥ R′)]) Q ∥ (νyȳ)(Pj ∥ (νxx̄)(Pi ∥ ℰ[R′]))

As Pj is a leaf of 𝘛 , fn(Pj) ∩bn(ℰ) = ∅, which means the two processes
are equivalent by Lemma 3.24 and Lemma 3.25.

2. In the proof for Proposition 3.57, under the case where 𝒢 is of the
form 𝒢 ∥ Γ, we pick an arbitrary tree of the connection forest 𝘎. Any
choice is equivalent up to Multiset CP’s structural congruence.

The result follows immediate from themultiset structure ofMultiset
CP’s processes, i.e. by SC-PARCOMM and SC-PARASSOC.

Disentanglement into CP is the composition of disentanglement and
fusion.
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Definition 3.83 (Disentanglement into CP). The disentanglement of P into
CP, [⧘P⧙]𝒞, is the composition of disentanglement and fusion. Formally,

[⧘P⧙]𝒞 ≜ {JQK𝒞|Q ∈ ⧘P⧙}
By Lemma 3.81 and Lemma 3.82, the set [⧘P⧙]𝒞 is non-empty for any P, and
all elements of [⧘P⧙]𝒞 are equivalent to each other under Multiset CP’s link-
preserving structural congruence. I use [⧘⋅⧙]𝒞 as functional up to structural
congruence, and write [⧘P⧙]𝒞 ≡L 𝒞 𝒬 to mean 𝒬 is an arbitrary element of [⧘P⧙]𝒞.
Disentanglement into CP does not distribute over process contexts, as
disentanglement normalises the entire maximum configuration context
of a process in a single step. Consequently, when doing proof by
induction over the structure of a process, wemust generalise the cases for
name restriction and parallel composition to cover the entire maximum
configuration context, as done in, e.g. the proof of Proposition 3.85.

Disentanglement into CP preserves types, structural congruence, and
reduction.

Proposition 3.84. If P ⊢ 𝒢 and [⧘P⧙]𝒞 ≡L 𝒞 𝒫, then𝒫 ⊢𝒞 J𝒢K𝒞.
Proof. By Proposition 3.61, Lemma 3.27, Proposition 3.80, and Lemma
2.24.

Proposition 3.85. If P ⊢ 𝒢 and P ≡ Q, then [⧘P⧙]𝒞 ≡𝒞 [⧘Q⧙]𝒞.
Proof. By induction on the derivation of P ⊢ 𝒢 and inversion on P. There
are three distinct cases, based on whether P is a link, some other ready
process, or some other process construct.

• Case P is of the form x↔y.

By inversion on P ≡ Q, there are two cases. EitherQ = x↔y, in which
case the result follows by reflexivity, or Q = y↔x, in which case the
result follows by SC-LINKCOMM.

• Case P is of the form x[y].P′, x(y).P′, x[].P′, x().P′, x◁ inl.P′, or
x◁ inr.P′.
By inversion on P ≡ Q, Q is of the form x[y].Q′, x(y).Q′, x[].Q′, x().Q′,
x◁ inl.Q′, or x◁ inr.Q′. By the induction hypothesis, [⧘P′ ⧙]𝒞 ≡𝒞 [⧘Q′ ⧙]𝒞.
The result follows by congruence.

• Case P is of the form x ▷ {inl∶ P1; inr∶ P2}.
As above, but with two appeals to the induction hypothesis.

• Case P is of the form x N.
By inversion on P ≡ Q, P = Q. The result follows by reflexivity.
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• Case P is of the form (νxx̄)P′, P1 ∥ P2, or 0.

By Lemma 3.11, there exists some R such that P ≡LS R and R ≡D
Q. By Lemma 3.65, ⧘P⧙ = ⧘R⧙. Hence, [⧘P⧙]𝒞 = [⧘R⧙]𝒞. We have
R is of the form 𝒞n[T1, …,Tn] for some 𝘯 ≥ 𝟢. By inversion on
the structure of 𝒞[⋅], decompose R ≡D Q into separate structural
congruences for each thread Ti ≡ T′i for 𝟣 ≤ 𝘪 ≤ 𝘯. (The “deep”
restriction is not lost. For ready processes, ≡D is exactly ≡.) By the
induction hypothesis, [⧘Ti ⧙]𝒞 ≡𝒞 [⧘T′i ⧙]𝒞 for 𝟣 ≤ 𝘪 ≤ 𝘯. The result follows
by composing these intermediate results using Lemma 3.64.

Lemma 3.86. Any derivation of a reduction P⟶ Q can be rewritten to

P ≡ ℰ[(νxx̄)(P1 ∥ P2)]
𝘳(νxx̄)(P1 ∥ P2)⟶ R

ℰ[(νxx̄)(P1 ∥ P2)]⟶ ℰ[R] ℰ[R] ≡ Q
P⟶ Q

where 𝘳 is E-LINK, E-SEND, E-CLOSE, E-SELECT1, or E-SELECT2.

Proof. By induction on the derivation of the reduction P ⟶ Q. In
the cases for E-LINK, E-SEND, E-CLOSE, E-SELECT1, or E-SELECT2, the result
follows immediately. In the case for E-CONG, the result follows by
composing the two evaluation contexts. In the case for E-EQUIV, the result
follows by composing the structural congruences using transitivity.

Proposition 3.87. If P ⊢ 𝒢 and P⟶ Q, then [⧘P⧙]𝒞 ⟶𝒞 [⧘Q⧙]𝒞.

Proof. By Lemma 3.86, rewrite the derivation of the reduction P⟶ Q to

P ≡ (νxx̄)(P1 ∥ P2)
𝘳(νxx̄)(P1 ∥ P2)⟶ R

ℰ[(νxx̄)(P1 ∥ P2)]⟶ ℰ[R] ℰ[R] ≡ Q
P⟶ Q

where 𝘳 is E-LINK, E-SEND, E-CLOSE, E-SELECT1, or E-SELECT2.
By Proposition 3.85, [⧘P⧙]𝒞 ≡𝒞 [⧘ℰ[(νxx̄)(P1 ∥ P2)]⧙]𝒞 and [⧘ℰ[R]⧙]𝒞 ≡𝒞 [⧘Q⧙]𝒞.
Pick an arbitrary P′ ∈ [⧘ℰ[(νxx̄)(P1 ∥ P2)]⧙]𝒞.
If 𝘳 is not E-LINK, both P1 and P2 are ready, and, by Lemma 3.63, preserved
up to link-preserving deep structural congruence, by disentanglement.
By Lemma 2.21 and the fact that P′ is in right-branching form, P′ is either
of the form ℱ1[(νxx̄)(P′

1 ∥ ℱ2[P′
2])] or of the form ℱ2[(νx̄x)(P′

2 ∥ ℱ1[P′
1])],
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where P′
1 ∈ [⧘P1 ⧙]𝒞 and P′

2 ∈ [⧘P2 ⧙]𝒞. In the first case, the CP reduction is
constructed as:

ℱ1[(νxx̄)(P′
1 ∥ ℱ2[P′

2])] ≡LS𝒞 ⟨by Lemma 2.23⟩
ℱ1[ℱ2[(νxx̄)(P′

1 ∥ P′
2)]]⟶𝒞 ⟨by 𝘳⟩ℱ1[ℱ2[R′]]

By case analysis on 𝘳, it follows thatℱ1[ℱ2[R′]] ≡LS𝘊 [⧘ℰ[R]⧙]𝒞.
In the second case, the CP reduction is constructed similarly.

If 𝘳 is E-LINK, the CP reduction is constructed similarly, since, if
P1 is of the form x↔y, the thread in P2 that contains x̄ is preserved up to
fusion and link-preserving deep structural congruence in P′.

3.2.8 Label-Transition System and Harmony
In the previous sections, we got HCP up to speed. We adapted
CP’s metatheory and showed that HCP enjoys all the same properties,
and characterised the exact correspondence between CP and HCP by
disentanglement.

In this section, we get to enjoy some of the spoils of all that work. We
introduce the beginnings of a behavioural theory for HCP, just enough to
relate the use of the label-transition system in the following chapter to the
reduction semantics, and to use as a springboard to find and fix further
flaws in our present formulation of HCP in the discussion.

The label-transition semantics for HCP, first introduced by Montesi and
Peressotti [2018], are given by labelled transition, which is a ternary
relation on two processes and a label. A label is either the internal action
label τ, an observable action label π, or a pair of parallel observable
action labels π ∥ π̄.

ℓ ⩴ τ ∣ π ∣ π ∥ π̄
The observable action labels correspond to the action prefixes of
processes, except for the offer labels x ▷ inl and x ▷ inr, which denote the
offer of inl or inr, respectively, in x ▷ {inl∶ P; inr∶Q}.

π ⩴ x↔y ∣ x[y] ∣ x(y) ∣ x[] ∣ x() ∣ x◁ inl ∣ x◁ inr ∣ x ▷ inl ∣ x ▷ inr

An endpoint occurs free in an action label in the same cases where it
would occur free in a process prefixed by that action. Likewise, an
endpoint is bound by an action label in the same cases where it would
occur bound in a process prefixed by that action. For instance, x ∈ fn(x[y])
and y ∈ bn(x[y]). An endpoint occurs free in π ∥ π̄ when it occurs free in
either π or π̄. An endpoint is bound by π ∥ π̄when it is bound by either π
or π̄. The label τ has no free or bound names.
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Definition 3.88 (Label-Transition). Label-transition, written P ℓ−→ Q, is the
smallest ternary relation on two processes and one label defined by the
rules in Figure 3.4.

What does a label-transitionmean? If a process has an observable action,
i.e. a transition with an observable action label π, it means the action π
is observable—some unblocked sub-process is prefixed by the action π
on a free endpoint. If a process has pair of parallel observable actions,
i.e. a transition with a label π ∥ π̄, it means both actions are observable
and independent. If a process has a τ-transition, it has some internal,
unobservable reduction. To use familiar terminology:

P π−→ Q ⟺ P ≡ π.P′ ∥ R
P π∥π̄−−→ Q ⟺ P ≡ π.P1 ∥ π̄.P2 ∥ R
P τ−→≡ Q ⟺ P⟶ Q

These properties are intended to provide an informal intuition. They are
not well-formed for the offer, since, e.g. “x ▷ inl.P” is a syntactically ill-
formed process. However, the intuition still applies:

P x ▷ inl−−−−→ Q ⟺ P ≡ x ▷ {inl∶ P1; inr∶ P2} ∥ R
P x ▷ inr−−−−−→ Q ⟺ P ≡ x ▷ {inl∶ P1; inr∶ P2} ∥ R
P x◁ inl∥x ▷ inl−−−−−−−−−−→ Q ⟺ P ≡ x◁ inl.P1 ∥ x ▷ {inl∶ P2; inr∶ P3} ∥ R
P x◁ inr∥x ▷ inr−−−−−−−−−−→ Q ⟺ P ≡ x◁ inr.P1 ∥ x ▷ {inl∶ P2; inr∶ P3} ∥ R

Label-transitions are closed under independent evaluation contexts by
STR-CONG, which requires that the bound and free endpoints of the
evaluation context and the label are disjoint. Consequently, τ-transitions,
whose labels have neither free nor bound endpoints, are closed under
arbitrary evaluation contexts.

The label-transition system does not use the structural congruence. As
a consequence of a label-transition, a process may change locally and it
may close the channel or open a new channel. However, the structure
of any name restrictions and parallel compositions unrelated to the
communication does not change. On the other hand, the structural
congruence does not essentially alter actions. Label-transition and
structural congruence are mutually invariant:

P ≡ ℓ−→ Q ⟺ P ℓ−→≡ Q

Reductions may contain arbitrary structural congruence, and change the
process structure in ways that are not strictly necessary for the reduction
itself. Hence, while a τ-transition corresponds to a reduction, a reduction
corresponds to a τ-transition and a structural congruence.

Label-transition and structural congruence are mutually invariant.
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Action Rules

x↔y x↔y−−−→ 0 ACT-LINK1 x↔y y↔x−−−→ 0 ACT-LINK2

x[y].P x[y]−−→ P ACT-SEND x◁ inl.P x◁ inl−−−−→ P ACT-SELECT1
x(y).P x(y)−−−→ P ACT-RECV x◁ inr.P x◁ inr−−−−−→ P ACT-SELECT2
x[].P x[]−−→ P ACT-CLOSE x ▷ {inl∶ P; inr∶Q} x ▷ inl−−−−→ P ACT-OFFER1
x().P x()−−→ P ACT-WAIT x ▷ {inl∶ P; inr∶Q} x ▷ inr−−−−−→ Q ACT-OFFER2

Structural Rules

STR-PAR
P π−→ P′ Q π̄−→ Q′ bn(π) ∩ bn(π̄) = ∅

P ∥ Q π∥π̄−−→ P′ ∥ Q′

STR-CONG
P π−→ P′ (bn(ℰ) ∪ fn(ℰ)) ∩ (bn(π) ∪ fn(π)) = ∅

ℰ[P] π−→ ℰ[P′]
Communication Rules

TAU-LINK

P x↔y−−−→ P′

(νxx̄)P τ−→ P′{y/x̄}

TAU-SEND-RECV
P x[y]∥x̄(ȳ)−−−−−−→ P′

(νxx̄)P τ−→ (νxx̄)(νyȳ)P′

TAU-CLOSE-WAIT
P x[]∥x̄()−−−−→ P′

(νxx̄)P τ−→ P′

TAU-SELECT-OFFER1
P x◁ inl∥x̄ ▷ inl−−−−−−−−−−→ P′

(νxx̄)P τ−→ (νxx̄)P′

TAU-SELECT-OFFER2
P x◁ inr∥x̄ ▷ inr−−−−−−−−−−→ P′

(νxx̄)P τ−→ (νxx̄)P′

Figure 3.4: Label-Transition System for Hypersequent CP
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Lemma 3.89. If P ≡ ℓ−→ Q, then P ℓ−→≡ Q.

Proof. By induction on the derivation of the structural congruence P ≡ Q
and inversion on the transition P ℓ−→ P′.
(For the full proof, see § 3.5.)

Any derivation of a label-transition can be normalised, by combining
successive uses of the STR-CONG rule. Lemmas 3.90 to 3.92 normalise
action transitions, parallel action transitions, and τ-transitions,
respectively.

Lemma 3.90. Any derivation of a transition P π−→ Q can be rewritten to
𝘢

P1
π−→ P′1 STR-CONGℱ1[P1] π−→ ℱ1[P′1]

where 𝘢 is ACT-LINK1, ACT-LINK2, ACT-SEND, ACT-RECV, ACT-CLOSE, ACT-WAIT,
ACT-SELECT1, ACT-SELECT2, ACT-OFFER1, or ACT-OFFER2.

Proof. By induction on the derivation of the transition P π−→ Q. The cases
for ACT-LINK1, ACT-LINK2, ACT-SEND, ACT-RECV, ACT-CLOSE, ACT-WAIT, ACT-
SELECT1, ACT-SELECT2, ACT-OFFER1, or ACT-OFFER2 follow immediately. The
case for STR-CONG follows by induction, composing the evaluation context
introduced by STR-CONG with the evaluation context in the induction
hypothesis.

Lemma 3.91. Any derivation of a transition P π∥π̄−−→ Q can be rewritten to
𝘢

P1
π−→ P′1 STR-CONG

ℱ1[P1] π−→ ℱ1[P′1]

�̄�
P2

π̄−→ P′2 STR-CONG
ℱ2[P2] π̄−→ ℱ2[P′2] STR-PAR

ℱ1[P1] ∥ ℱ2[P2] π∥π̄−−→ ℱ1[P′1] ∥ ℱ2[P′2] STR-CONG
ℰ3[ℱ1[P1] ∥ ℱ2[P2]] π∥π̄−−→ ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]]

where 𝘢 and �̄� are one of ACT-LINK1, ACT-LINK2, ACT-SEND, ACT-RECV, ACT-
CLOSE, ACT-WAIT, ACT-SELECT1, ACT-SELECT2, ACT-OFFER1, or ACT-OFFER2.

Proof. By induction on the derivation of the transition P π−→ Q. The
case for STR-PAR follows by Lemma 3.90. The case for STR-CONG follows
by induction, composing the evaluation context introduced by STR-CONG
with the evaluation context in the induction hypothesis.
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Lemma 3.92. Any derivation of a transition P τ−→ Q can be rewritten to

𝘢
P1

π−→ P′1 STR-CONG
ℱ1[P1] π−→ ℱ1[P′1]

�̄�
P2

π̄−→ P′2 STR-CONG
ℱ2[P2] π̄−→ ℱ2[P′2] STR-PAR

ℱ1[P1] ∥ ℱ2[P2] π∥π̄−−→ ℱ1[P′1] ∥ ℱ2[P′2] STR-CONG
ℰ3[ℱ1[P1] ∥ ℱ2[P2]] π∥π̄−−→ ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]] 𝘵

(νxx̄)ℰ3[ℱ1[P1] ∥ ℱ2[P2]] τ−→ ℰ2[ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]]] STR-CONGℰ1[(νxx̄)ℰ3[ℱ1[P1] ∥ ℱ2[P2]]] τ−→ ℰ1[ℰ2[ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]]]]
where 𝘵 is one of TAU-LINK, TAU-SEND-RECV, TAU-CLOSE-WAIT, TAU-SELECT-
OFFER1, or TAU-SELECT-OFFER2, and 𝘢 and �̄� are one of ACT-LINK1, ACT-LINK2,
ACT-SEND, ACT-RECV, ACT-CLOSE, ACT-WAIT, ACT-SELECT1, ACT-SELECT2, ACT-
OFFER1, or ACT-OFFER2.

Proof. By induction on the structure of the transition. The cases for
TAU-LINK, TAU-SEND-RECV, TAU-CLOSE-WAIT, TAU-SELECT-OFFER1, or TAU-
SELECT-OFFER2 follow by Lemma 3.91. The case for STR-CONG follows
by induction, composing the evaluation context introduced by STR-CONG
with the evaluation context in the induction hypothesis.

The equivalences between action transitions and parallel action
transitions and structural congruence follow as corollaries from
Lemmas 3.90 and 3.91 and Corollary 3.26, and their converses follow
from Lemma 3.89.

P π−→ Q ⟺ P ≡ π.P′ ∥ R
P π∥π̄−−→ Q ⟺ P ≡ π.P1 ∥ π̄.P2 ∥ R

Harmony follows by relating the normal-form derivations of τ-transition
(Lemma 3.92) and reduction (Lemma 3.86).

Proposition 3.93 (Harmony). If P ⊢ 𝒢, then P τ−→≡ Q ⟺ P⟶ Q.

Proof. There are two cases:

• Case (⇒).
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By Lemma 3.92, rewrite the derivation of the transition P τ−→ Q to
𝘢

P1
π−→ P′1 STR-CONG

ℱ1[P1] π−→ ℱ1[P′1]

�̄�
P2

π̄−→ P′2 STR-CONG
ℱ2[P2] π̄−→ ℱ2[P′2] STR-PAR

ℱ1[P1] ∥ ℱ2[P2] π∥π̄−−→ ℱ1[P′1] ∥ ℱ2[P′2] STR-CONG
ℰ3[ℱ1[P1] ∥ ℱ2[P2]] π∥π̄−−→ ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]] 𝘵

(νxx̄)ℰ3[ℱ1[P1] ∥ ℱ2[P2]] τ−→ ℰ2[ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]]] STR-CONGℰ1[(νxx̄)ℰ3[ℱ1[P1] ∥ ℱ2[P2]]] τ−→ ℰ1[ℰ2[ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]]]]
where 𝘵 is one of TAU-LINK, TAU-SEND-RECV, TAU-CLOSE-WAIT, TAU-
SELECT-OFFER1, or TAU-SELECT-OFFER2, and 𝘢 and �̄� are one of ACT-
LINK1, ACT-LINK2, ACT-SEND, ACT-RECV, ACT-CLOSE, ACT-WAIT, ACT-
SELECT1, ACT-SELECT2, ACT-OFFER1, or ACT-OFFER2. By repeated
application of Lemmas 3.24 and 3.25:

ℰ1[(νxx̄)ℰ3[ℱ1[P1] ∥ ℱ2[P2]]] ≡ ℰ1[ℰ3[ℱ1[ℱ2[(νxx̄)(P1 ∥ P2)]]]]
By case analysis on 𝘵 and inversion on 𝘢 and �̄�, the structure of the
messages π and π̄, and the processes P1, P′1, P2, and P′2, and ℰ2:

ℰ1[ℰ3[ℱ1[ℱ2[(νxx̄)(P1 ∥ P2)]]]]⟶ ℰ1[ℰ3[ℱ1[ℱ2[ℰ2[P′1 ∥ P′2]]]]]
By repeated application of Lemmas 3.24 and 3.25:

ℰ1[ℰ3[ℱ1[ℱ2[ℰ2[P′1 ∥ P′2]]]]] ≡ ℰ1[ℰ2[ℰ3[ℱ1[P′1] ∥ ℱ2[P′2]]]]
The result follows by composing these results with E-EQUIV.

• Case (⇐).
By Lemma 3.86, rewrite the derivation of the reduction P⟶ Q to

P ≡ (νxx̄)(P1 ∥ P2)
𝘳(νxx̄)(P1 ∥ P2)⟶ R

ℰ[(νxx̄)(P1 ∥ P2)]⟶ ℰ[R] ℰ[R] ≡ Q
P⟶ Q

where 𝘳 is E-LINK, E-SEND, E-CLOSE, E-SELECT1, or E-SELECT2. By case
analysis on 𝘳 and inversion on the structure of P1, P2, and R, (νxx̄)(P1 ∥
P2) τ−→ R. By STR-CONG, ℰ[(νxx̄)(P1 ∥ P2)] τ−→ ℰ[R]. By Lemma 3.89 and
P ≡ (νxx̄)(P1 ∥ P2), P τ−→≡ ℰ[R]. By transitivity, P τ−→≡ Q.

3.3 Discussion
This section proceeds as follows:
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• In § 3.3.1, I introduce an alternative semantics for the absurd offer
based on exception handling.

• In § 3.3.2, I introduce synchronous semantics for link.
• In § 3.3.3, I introduce a variant of HCP that decomposes the binary
and 𝘯-ary offer into the singleton offer and summation, which
allows us to type guarded summation and enables us to factor
actions out into their own syntactic category.

• In § 3.3.4, I discuss channel names and endpoint names.
• In § 3.3.4, I discuss the relation between tensor and par and send
and receive.

• In § 3.3.5, I discuss the relation between HCP and deep inference
logic.

• In § 3.3.6, I discuss the relation between HCP and hypersequent
calculus.

• In § 3.3.7, I discuss the relation between the empty hypersequent
and hypersequent composition in HCP and the MIX0 and MIX rules.

3.3.1 Zap: the Exceptionally Absurd Offer
In this section, we revisit the semantics for the absurd offer. In § 2.1.6, we
discussed the ‘inert’ semantics for the absurd offer. It does nothing, just
sits around. If we think of the absurd offer as an exception handler, the
inert semantics make sense. It is waiting for an exception that—by the
correctness of the type system—will never arrive. However, the absurd
offer is not quite an exception handler. An exception handler handles
an exceptional case—either the computation succeeds, and we compute
a value, or, in some exceptional circumstances, something goes wrong,
and the exception handler is invoked. The absurd offer deals with the
certainty that something will go wrong. If you are certain, why bother
waiting? Under this view, we refer to the absurd offer as zap or zapper. It
is not inert, and does not wait. It zaps channels, kills processes, and shuts
the whole thing down.

Wadler’s CP handles zapwith a commuting conversion, defined on typing
derivations:

a ▷ {} ⊢𝘊 Γ,a ∶ ⊤, x ∶ A P ⊢𝘊 Δ, x̄ ∶ A
(νxx̄)(a ▷ {} ∥ P) ⊢𝘊 Γ,Δ,a ∶ ⊤

⟶𝘊
a ▷ {} ⊢𝘊 Γ,Δ,a ∶ ⊤

As mentioned in § 2.1.6, this reduction rule does not satisfy type erasure,
since the process x▷ {} does not record which sessions it is allowed to kill.
In HCP and CP, as presented in this thesis, the absurd offer does record
these sessions as part of the process syntax. Hence, we could adapt and
repair Wadler’s reduction rule. To save on ink and eye strain, let us write
N, x to mean N ∪ {x} and N,M to mean N ∪M.

x̄ ∈ fn(P) M ≜ fn(P) ∖ {x̄} E-ZAP-NOW(νxx̄)(w N, x ∥ P)⟶ w N,M
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The above rule is correct, in the sense that it matchesWadler’s semantics,
but it is a bit over-eager. It permitsw N to kill any process that holds any
of the names in N, regardless of whether those processes are currently
attempting to communicate on those channels. Let us consider what
requirements this places on an implementation.

• If we wanted to implement this as part of our channel
implementation, it would require every process to always be
listening on all of their endpoints.

• We could implement this using another mechanism entirely. For
instance, using POSIX Threads, we could implement this by
decorating each channel with the thread ID of the process on the
other end of the channel, and implement kill using pthread_kill
or pthread_cancel.

In either case, the adoption of E-ZAP-NOW significantly complicates an
implementation in ways that are not obvious from the description of the
formal system.

We can address the over-eagerness by restricting the reduction rule to
only apply when the other process is ready:

ready(P, x̄) M ≜ fn(P) ∖ {x̄}
E-ZAP-WHEN-READY(νxx̄)(w N, x ∥ P)⟶ w N,M

What does this semantics require of an implementation? Any process
only needs to monitor the endpoints it is ready on, which is certainly an
improvement. What is a zapper ready on? Consider the two processes

(a) (νxx̄)(a N, x ∥ x̄ M) (b) (νxx̄)(a N, x ∥ b M, x̄)
For both of these processes to reduce by E-ZAP-WHEN-READY, a zapper
x N must be ready on all its endpoints—x and all the endpoints in N.
This reveals an awkwardness: the endpoint x is not special. A zappermay
introducemultiple endpoints of type⊤. From the perspective of the logic,
there is noway to tell these apart. The only thing thatmatters is that there
is at least one, and the principal purpose of the syntax x N is to ensure
that. Unfortunately, this makes reduction with E-ZAP-WHEN-READY non-
confluent. The second process has two reductions, each of which singles
out a different endpoint as special.

(νxx̄)(a N, x ∥ b M, x̄)
a N,M,b b N,M,a

Note that Wadler’s semantics has the same problem, but, in his case, the
non-confluence for the absurd offer is part of the general non-confluence
caused by the commuting conversions (see § 2.3).
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The solution is simple: treat all endpoints in a zapper the same. We alter
the syntax for zappers to  N and alter the typing and reduction rules to
reflect the new syntax.

P,Q,R ⩴ ⋯ ∣ x N ∣  N
N = fn(Γ) T-ZAP N, x ⊢ Γ, x ∶ ⊤

ready(P, x̄) M ≜ fn(P) ∖ {x̄}
E-ZAP(νxx̄)( N, x ∥ P)⟶  N,M

The critical pair is resolved. The two processes are definitionally equal:

(νxx̄)( N,a, x ∥  M,b, x̄)
 N,M,a,b  N,M,b,a

Alternatively, if one wishes to avoid definitional set equality, the
permutation of the endpoints in N could be arranged via the structural
congruence. In this case, there is no need to add rules for contraction,
since the typing rule guarantees the uniqueness of the endpoints in N.
To reflect the fact that a zapper must be ready on all its endpoints, we
alter the definition of ready.

Definition 3.94 (Ready). A process P is ready to act on x, written
ready(P, x), if it is of one of the forms:

x↔y x[y].P x[].P x◁ inl.P x◁ inr.P  N, x
y↔x x(y).P x().P x ▷ {inl∶ P; inr∶Q}

A process P is ready if it is ready to act on some endpoint.

The addition of T-ZAP and E-ZAP preserves all the metatheoretical
properties of HCP presented in this chapter:

• The proof of preservation requires an additional case for E-ZAP (see
Proposition 3.95).

• The proof of progress requires no changes. All relevant changes are
contained in the reduction lemma (see Lemma 3.96).

• The definitions of canonical form and the dependency and
connection graphs are unchanged, as are the corresponding proofs
of the adequacy of canonical forms, right-branching form, and
disentanglement. All relevant changes are contained in the
definition of ready (see Definition 3.94).

• The calculus continues to be in correspondence with CP, with
the caveat that similar changes must be made to CP’s syntax and
semantics for zappers.

• Finally, wemake similar changes to the label-transition system, such
that harmony continues to hold.
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We presented the updated proofs for preservation and progress and the
updated label-transition system.

Proposition 3.95 (Preservation). If P ⊢ 𝒢 and P⟶ Q, then Q ⊢ 𝒢.
Proof. By induction on the derivation of the reduction. The cases for E-
LINK, E-SEND, E-CLOSE, E-SELECT1, E-SELECT2, E-EQUIV, and E-CONG, are as
in Proposition 3.30.

• Case E-ZAP.

The reduction rule guarantees that P is ready on x̄. Therefore, P
must be typed under a single hyper-environment. Hence, the typing
derivation is of the form:

N = fn(Γ) T-ZAP N, x ⊢ Γ, x ∶ A P ⊢ Δ, x̄ ∶ A
T-PAR N, x ∥ P ⊢ Γ, x ∶ A ∥ Δ, x̄ ∶ A

T-NEW(νxx̄)( N, x ∥ P) ⊢ Γ,Δ
The result is well-typed by the following typing derivation:

N,M = fn(Γ,Δ) T-ZAP N,M ⊢ Γ,Δ
The side condition N,M = fn(Γ,Δ) is satisfied. This follows from the
side conditions of typing and reduction, and Proposition 3.18:

N = fn(Γ) and M ≜ fn(P) ∖ {x̄} = fn(Δ)
The other condition is that there must be some endpoint y ∶ ⊤ in Γ,Δ.
By typing, there must be some endpoint y ∶ ⊤ in Γ, x ∶ A. There are
two cases:

1. If x ≠ y, then there exists some endpoint y ∶ ⊤ ∈ Γ.
2. If x = y, then y ∶ ⊤ ∉ Γ. By duality, the endpoint x̄ must have

type 1. As there are no introduction forms for 1, the endpoint
of type 1 must have been introduced by T-ZAP. Hence, there
must be some endpoint z ∶ ⊤ ∈ Δ.

The proof for subcase (2) relies on the consistency of HCLL,
which we have not explicitly proven, but which follows from
disentanglement and the consistency of CLL.

Lemma 3.96 (Reduction). If (νxx̄)(P ∥ Q) ⊢ 𝒢, and P and Q are ready to act
on x and x̄, respectively, there exists some R such that (νxx̄)(P ∥ Q)⟶ R.

Proof. By inversion on the derivation of (νxx̄)(P ∥ Q) ⊢ 𝒢.
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The ten cases that correspond to E-LINK, E-SEND, E-CLOSE, E-SELECT1, E-
SELECT2, and their symmetric variants are as in Lemma 3.34.

There are two new cases, where either P or Q is a zapper, which
correspond to E-ZAP and its symmetric variant under E-EQUIV with SC-
PARCOMM.

Proposition 3.97 (Progress). If P ⊢ 𝒢, then either P is in canonical form,
or there exists some Q such that P⟶ Q.

Proof. The proof is unchanged from Proposition 3.35, except that the
appeal to Lemma 3.34 is replaced by an appeal to Lemma 3.96.

Let us extend the label-transition system and the proof of harmony. We
extend the action labels with two new actions.

π ⩴ ⋯ ∣ x N ∣ x  N
The action x N denotes sending a kill signal, and receiving the unused
endpoints N from the killed process. The action x  N denotes the dual,
receiving a kill signal, and sending the unused endpoints N.
We add two corresponding action transition rules and one corresponding
communication rule.

Action Rules Communication Rules N, x x M−−−−→  N,M ACT-KILL
P x  N−−−→ 0 ACT-DIE
if ready(P, x) and ¬ zapper(P)

where N ≜ fn(P) ∖ {x}

TAU-KILL-DIE
P x N∥x̄  N−−−−−−−−→ P′

(νxx̄)P τ−→ P′

Proposition 3.98 (Harmony). If P ⊢ 𝒢, then P τ−→≡ Q ⟺ P⟶ Q.

Proof. The proof proceeds as Proposition 3.93. In case (⇒), there is an
additional case for TAU-KILL-DIE with ACT-KILL and ACT-DIE. In case (⇐),
there is an additional case for E-ZAP.

A Zapper Is Made of Other, Smaller Zappers

A zapper must be ready to act on all its endpoints in parallel. Hence, we
should think of the zapper  x1, …, xn as a representation of the parallel
composition of individual zappers for each endpoint, i.e.  x1 ∥ … ∥  xn.
Under this view, the permutation of the endpoints in a zapper follows
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from the permutation of parallel processes under structural congruence,
which is rather pleasing. This is exactly how zappers are represented
in Fowler’s Exceptional GV [EGV, Fowler et al., 2019]. However, this
representation is not well-typed in HCP:

(a)  a,b ⊢ a ∶ ⊤,b ∶ A
 a ⊢ a ∶ ⊤  b ⊢ b ∶ A (b) a ∥  b ⊢ a ∶ ⊤ ∥ b ∶ A

To type (b), we would have to change the local constraint that at least
one endpoint introduced by the zapper must have type ⊤ to the non-
local constraint that at least one zapper must introduce an endpoint with
type ⊤. Since EGV is not interested in preserving consistency and allows
exceptions to occur in any context, it does not require this restriction.

To assign (a) and (b) the same type, we would have to admit MIX, which
breaks the connection structure of HCP and the correspondence with
CLL. Since EGV is not interested in preserving that correspondence for
its runtime terms, it admits MIX in its runtime type system.

While the representation  x1 ∥ … ∥  xn is not a good fit for HCP, it provides
an intuition for the implementation of zappers. A zapper is not a single
monolithic process that takes ownership of all the unused resources of
the processes it kills, and the killed process should not transfer ownership
of all their unused endpoints to such a monolithic zapper. Zappers are
small processes responsible for cleaning up individual resources. Once
a zapper has successfully delivered a kill signal, it may terminate. The
killed process, upon receiving a kill signal, simply spawns off one zapper
process for each of its unused resources, and then terminates.

Could You to Tell Me When You Are Done?

In this section, we have described an exceptional semantics for the
absurd offer in which all cancelled endpoints are treated equally. In
this final portion of the section, I hope to convince you that there is no
well-behaved interpretation that treats one endpoint specially, as implied
by the syntax used in Chapter 2 and Chapter 3, and that this is a direct
consequence of the fact that the logical rule corresponding to T-ABSURD
can introduce multiple propositions ⊤ which it cannot distinguish.

Let us consider an alternative interpretation for the zapper x N where
the endpoint x is special:

• When some process P receives a kill signal on x, it becomes the
zapper x N, where N contains its unused endpoints, i.e. N = fn(P) ∖
{x}.

• A zapper x N does the following for each endpoint in N in parallel:

– It sends a kill signal.
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– It waits to receive a notification to confirm that the process on
the other side has finished cleaning up and has terminated.

– It closes the channel, and removes the endpoint from N.
• When N is empty, the zapper notifies the process on the other side
of x that it has finished cleaning up, and terminates.

Such an interpretation is useful. For instance, if we implement processes
as OS threads, then the main thread must not terminate before all the
child threads have finished cleaning up.

Under this interpretation, a zapper x N is ready on all the endpoints in
N in parallel, but is blocked on x until N is empty. Consider the following
reduction rules:

(νxx̄)(w N, x ∥ x̄ ∅)⟶ w N E-ZAP-NOTIFY
(νxx̄)(w N, x ∥ P) ⟶ (νxx̄)(w N, x ∥ x̄ M) E-ZAP-KILL

if ready(P, x̄) and ¬ zapper(P)
whereM ≜ fn(P) ∖ {x̄}

These rules preserve typing. The rule E-ZAP-KILL rebinds x and x̄ with
types x ∶ 0 and x̄ ∶ ⊤, but this is usual for session types. However, they
are only well-behaved under certain circumstances. Consider the two
processes

(a) (νxx̄)(a N, x ∥ x̄ M) (νxx̄)(a N, x ∥ b M, x̄) (b)
If a process up to structural congruence does not contain (b), then
progress, termination, and confluence follow by an argument from the
structure of the connection graph. To simplify matters, let us consider a
fully-connected process with a single zapper

𝒞[a N,P1, …,Pn]
where each Pi is ready on some bound endpoint xi. The process reduces
to a single zapper in 𝟤𝘯 steps.

1. By 𝘯 applications of E-ZAP-KILL, following the structure of the
connection tree outward from the zapper a N, we convert each
process Pi to a zapper xi  Ni where Ni = fn(Pi) ∖ {xi}.

2. If Pi is a leaf of the connection graph, it is of the form xi  ∅.
By 𝘯 application of E-ZAP-NOTIFY, following the structure of the
connection tree inwards from the leaves, we convert the entire
process to a M, where M contains all the free endpoints from N
and each Ni.

If some Pi is blocked on a free endpoint, reduction becomes blocked
as usual. If the process contains multiple zappers, but the connection
structure for these zappers is always as in (a), then that merely reduces
the number of uses of E-ZAP-KILL that are needed. If the process is not
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fully-connected, any component with at least zapper reduces to become
a single zapper, and the remaining components reduce as usual.

Under this interpretation, 0 and ⊤ are assigned dual behaviours—an
endpoint of type 0 is used to send a kill signal and then wait for
confirmation, and an endpoint of type ⊤ is used, dually, to receive a kill
signal, and then send confirmation and terminate—and therein lies the
problem. The typing derivation for process (b)

(νxx̄)(a N, x ∥ b M, x̄)
could assign x ∶ 0 and x̄ ∶ ⊤, or vice versa, but by E-ZAP-KILL, they will
be treated the same, not dually. The type system does not have sufficient
structure to ensure the desired dual behaviour.

3.3.2 Synchronous Links and Lazy Forwarders
In this section, we revisit the semantics of the link. In § 2.1.2,
we mentioned that the semantics of link does not explicitly forward
messages, but rather treats links as a suspended α-renaming. Recall that
the reduction rule for link is as follows:

(νxx̄)(x↔y ∥ P)⟶ P{x̄/y}
Let us consider what requirements this places on an implementation.
The process P is not required to be ready to act on the endpoint x̄,
which means that link cannot be implemented in terms of synchronous
message passing. In essence, link is asynchronous. For instance, if every
channel has an associated message buffer, link could be implemented by
asynchronously sending a redirection notice.

There is a tension between the asynchronous semantics of link, and the
synchronous semantics of all other actions in CP. This is apparent in
the definition of canonical form and its adequacy, which have separate
cases for link and for all other actions. There are two options to resolve
this tension: we either make link synchronous or all other actions
asynchronous. CP is easily adapted to be asynchronous [see, e.g. the
treatment of synchronous and asynchronous GV in Fowler, 2019]. In this
section, we will consider our options for a synchronous link.

Blocking Link

The easiest approach to making link synchronous is to require that the
other process is ready on the relevant endpoint.

ready(P, x̄)
E-LINK-READY(νxx̄)(x↔y ∥ P)⟶ P{x̄/y}
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The new rule allows strictly fewer reductions, and as such does not
affect the proof of preservation. However, it simplifies the definitions of
canonical form and the proof of progress, and strengthens the adequacy
of canonical forms.

The definition of canonical form no longer requires condition (1).

Definition 3.99 (Canonical Form). A process P is in canonical form,
written canonical(P), if P is of the form 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢) and
(for 𝟣 ≤ 𝘪, 𝘫 ≤ 𝘯) no Pi and Pj are ready to act on dual endpoints {x, x̄} ∈
dn(𝒞[⋅]).
The proof of progress for HCP (Proposition 3.35) has two cases: either
condition (1) fails, or condition (2) fails. The proof of progress for HCP
with E-LINK-READY no longer requires the first case, as link reduction is
fully covered by the second case.

Proposition 3.100 (Progress). If P ⊢ 𝒢, then either P is in canonical form,
or there exists some Q such that P⟶ Q.

The adequacy of canonical forms is strengthened by the change. In
HCP with E-LINK-READY, “blocked on free endpoints” fully characterises
canonical forms.

Corollary 3.101. If P ⊢ Γ, then canonical(P) ⟺ blocking(P) ⊆ fn(P).

Identity Expansion

We could implement a synchronous link using the process calculus
equivalent of identity expansion—the procedure that rewrites proofs in
the logic to remove non-atomic uses of the axiom. Under this view, link
is amacrowhich statically computes the link process from the type, using
the following expansions:

A &B
x↔y, A⊗B

y↔x ≜ x(z). y[w]. ( A
z↔w ∥ B

x↔y)
⊥

x↔y, 1
y↔x ≜ x(). y[].0

A&B
x↔y, A⊕B

y↔x ≜ x ▷ {inl∶ y◁ inl. A
x↔y; inr∶ y◁ inr. B

x↔y}
⊤

x↔y, 0
y↔x ≜ x y

(The type written over the arrow is the type of the left endpoint.)

Identity expansion works when the type is statically known, but it breaks
when we add polymorphism, and repairing it requires us to compute the
link process dynamically and to keep session types around at runtime.

From the perspective of an implementation, identity expansion also
inflates the size of the program, froma single link instruction to a number
of instructions equal to the size of the type.
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Action Rules

x↔y x()−−→ y[].0 FWD-CLOSE
x↔y x(z)−−−→ y[w]. (z↔w ∥ x↔y) FWD-SEND
x↔y x ▷ inl−−−−→ y◁ inl. x↔y FWD-SELECT1
x↔y x ▷ inr−−−−−→ y◁ inr. x↔y FWD-SELECT2
x↔y y()−−→ x[].0 BWD-CLOSE
x↔y y(z)−−−→ x[w]. (z↔w ∥ x↔y) BWD-SEND
x↔y y ▷ inl−−−−→ x◁ inl. x↔y BWD-SELECT1
x↔y y ▷ inr−−−−−→ x◁ inr. x↔y BWD-SELECT2

Figure 3.5: Label-Transition System for Lazy Forwarders

The Lazy Forwarder

We could implement a synchronous link that performs identity
expansion, not based on the type, but based on the messages the link
receives. In response to a send action, the link unfolds into a receive
action followed by a send action, and the process reduces by E-SEND.

(νxx̄)(x[z].P ∥ x̄↔y) ≜ (νxx̄)(x[z].P ∥ x̄(z̄). y[w]. (z̄↔w ∥ x̄↔y))
⟶ (νxx̄)(νzz̄)(P ∥ y[w]. (z̄↔w ∥ x̄↔y))

The operational semantics of the lazy forwarder are easier to understand
from the label-transition system, since the reduction rules fold this
two-step behaviour into single rule. The label-transition rules for lazy
forwarders are in Figure 3.5.

The lazy forwarder has the same semantics as identity expansion,
but works in the presence of polymorphism. Lazy forwarders are
synchronous, rather than asynchronous, but they behave differently
from blocking links. They are directed, as they only forward received
messages. Hence, the following process is stuck:

(νxx̄)(x↔y ∥ x̄(z).P)
This is a direct consequence of the correspondence between the process
calculus and the sequent calculus for CLL, since the expansion that sends
and then receives—i.e. y[w]. x(z). (z↔w ∥ x↔y)—is not typeable. However,
with delayed actions [Kokke et al., 2019a], the process can send and then
receive, regardless of the order of the two actions. Hence, under delayed
actions lazy forwarders and blocking link may behave the same.

Lazy forwarders are type preserving by the correctness of identity
expansion, and satisfy progress as well as the adequacy of canonical
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forms. However, the canonical forms are quite different, due to the
directionality of lazy forwarders.

Firstly, we must alter the definition of ready, since lazy forwarders are
only ready on the endpoint on which they receive, which can be inferred
from the types of its endpoints.

Definition 3.102 (Ready). A process P is ready to act on x, written
ready(P, x), if it is of one of the forms:

A &B
x↔y

⊥
x↔y

A&B
x↔y

⊤
x↔y x[y].P x[].P x◁ inl.P x◁ inr.P x N

A⊗B
y↔x

1
y↔x

A⊕B
y↔x

0
y↔x x(y).P x().P x ▷ {inl∶ P; inr∶Q}

A process P is ready if it ready to act on some endpoint.

The definition of canonical form and the proof of progress simplify in
the same manner as for blocking links. However, while the text defining
canonical form is the same, the actual canonical forms are quite different,
due to the different definitions of ready. For instance, the previously
mentioned stuck process is in canonical form:

(νxx̄)( A⊗B
x↔y ∥ x̄(z).P)

While type annotations are unnecessary at runtime, determining
whether or not a lazy forwarder is ready requires case analysis on its
type to determine its direction. For the process above, we can infer that
the endpoint x has type A⊗ B, and hence the link is only ready on y.
The asymmetry of lazy forwarders allows us to simplify the definition
of the dependency graph, by removing the special case for link. Links
no longer generate undirected edges, but directed arcs which align with
their direction:

Dep( A &B
x↔y) = x⃗y Dep( A⊗B

x↔y) = y⃗x

The adequacy of canonical forms is strengthened in the same manner as
with blocking links, i.e. “blocked on free endpoints” fully characterises
canonical forms.

Lazy forwarders continue to work in the presence of polymorphism,
since the direction of the link is determined dynamically, in response to
communication.

3.3.3 Variant Types and Guarded Summation
In this section, we generalise select and offer to variant types, as
mentioned in § 2.1.5, then decompose the 𝘯-ary offer into guarded
summation, which lets us factor out actions into their own syntactic
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sort and which enormously simplifies the reduction and label-transition
semantics, as well as the associated metatheory. The decomposition
guarantees that summations are guardedusing a limited formof focusing,
which is a technique from proof theory to control the structure of proofs
without reducing the expressivity of the logic [see Andreoli, 1992].

The Variant With Variants

To generalise select and offer to variant types, we remove the restriction
that labels must always be drawn from {inl, inr} [following Dardha and
Gay, 2018]. Let L range over finite sets of labels, and let l and k range
over individual labels (not to be confused with ℓ, which ranges over the
entirely unrelated labels used in the label-transition system). Wewrite L, l
to mean L ∪ {l}. Labels occur both in processes and in types, and as such
appear both in blue and red. They are coloured accordingly, and when
they appear by themselves, they are coloured according to whether or
not they can be erased. Regardless of colour, labels with the same name
refer to the same label.

We replace the binary select and offer actions and the corresponding
types with 𝘯-ary labelled variants:

P,Q,R ⩴ … A,B ⩴ …
∣ x◁ inl.P ∣ x◁ inr.P ∣ A⊕ B
∣ x ▷ {inl∶ P; inr∶Q} ∣ A & B
∣ x◁ l.P ∣ ⨁{l∶Al}l∈L∣ x ▷ {l∶Pl}l∈L ∣ ˘{l∶Al}l∈L

The variant offers x ▷ {l∶Pl}l∈L offers a set of alternatives labelled by the
labels from some finite set L, and the variant selection x◁ l.P selects the
alternative labelled by l. The variant selection and offer types, ⨁{l∶Al}l∈L
and

˘{l∶Al}l∈L, respectively, associate each label l ∈ L with the type of the
alternative.

The syntax {l∶Pl}l∈L and {l∶Al}l∈L denote sets of labelled alternatives.
Formally, these are functions from labels to processes and session types,
respectively. Note that the occurrences of l and l between the curly braces
are not free, but bound by the expressions in the subscripts.

For concrete processes and types, we write the set of alternatives in full,
e.g. as x▷ {l1∶P1; …ln∶Pn}. In these cases, we omit the subscript, since the set
of labels can be inferred.

The choice to treat alternatives as sets means that they can be reordered.
For instance, x ▷ {inl∶ P; inr∶ Q} and x ▷ {inr∶ Q; inl∶ P} are definitionally
equal. Alternatively, we could treat the sets of labels as ordered, and treat
alternatives as ordered sequences.4

4Dardha and Gay [2018] use a different construction, where both the label and the



152 Chapter 3. Hypersequent Classical Processes

The typing rules and reduction semantics for variant selection and offer
are standard generalisations of the binary versions.

T-SELECT
P ⊢ Γ, x ∶ Al l ∈ L

x◁ l.P ⊢ Γ, x ∶ ⨁{l∶Al}l∈L

T-OFFER
(Pl ⊢ Γ, x ∶ Al)l∈L

x ▷ {l∶Pl}l∈L ⊢ Γ, x ∶˘{l∶Al}l∈L
(νxx̄)(x◁ l.P ∥ x̄ ▷ {l∶Ql}l∈L)⟶ (νxx̄)(P ∥ Ql) E-SELECT

In the premise of T-OFFER, the notation “(… )l∈L” means that one typing
derivation is required for each label and alternative. Should we want to
support type inference, then every variant selection on a free endpoint
requires one type annotation for each label not selected, though this is no
different from the binary left and right selection actions.

There is an awkwardness betweenvariant types and the absurd offer. The
absurd offer should be the nullary variant, which would let us replace 0
by ⨁{}, ⊤ by

˘{}, and the absurd offer by x ▷ {}. As discussed in § 3.1.6
and § 2.1.6, thisworks inHCPwith the inert semantics and in CPwith both
the inert semantics andWadler’s commuting conversions, though, in both
cases, it complicates the statement of linearity. As discussed in § 2.1.6 and
§ 3.3.1, zappers require that the names of the discarded endpoints are
kept at runtime. Morally, zappers are the nullary offer, and the expected
propositions hold, e.g.

˘{l1∶A;l2∶ ⊤} is equivalent to A. However, zappers
require more information thanwould follow from the nullary case of the
generalisation. To combine variant types with zappers, we must rule out
empty variants and retain the additive units.

The metatheory of HCP generalises easily to variant types, and all
metatheoretical properties of HCP are preserved. In some cases the
proofs simplify, as the variant syntax lets us treat selections uniformly.
However, we will not belabour this point, as the generalisation to variant
types is not novel, and is principally intended as an introduction to the
discussion of guarded summation.

Focusing and Guarded Summation

The π-calculus usually defines the syntax of actions separately from the
syntax of processes, and the two are combined by prefixing, i.e. π.P. This
leads to a much simpler theory, as we can treat all actions uniformly. As
mentioned in § 2.1.5 and § 3.2.8, this cannot easily be done in CP and HCP,
as the offer is a single monolithic construct that combines all labels and
alternative processes.

In the π-calculus, alternatives are combined by summation, e.g. the
process P + Q acts either as P or as Q. To ensure that the choice is not

alternative are indexed by some index i drawn from some set I, e.g. {li∶Pi}i∈I. They do not
specify whether these denote a pair of functions from indices to labels and alternatives,
or whether these denote ordered sequences of pairs.
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arbitrary, each alternative must be guarded, which means that it must be
ready to act on some distinct endpoint, and the first alternative to receive
a message is selected. For instance, when evaluating the process

x[].0 ∥ (x().P + y().Q)
the communication on x selects P and discardsQ. Such a process calculus,
where the selection is made by the choice of endpoint, is difficult to
type in formalisms like CP, where endpoints are linear and channels
must be bound by a name restriction. (Summation naturally corresponds
to a structural with, but the introduction of additive hypersequents
complicates name restriction, which must account for the fact that each
alternative may use some channel at a different type.)

In this section, we introduce an intermediate system, where alternatives
are combined by summation, and each alternative must be guarded by
an offer action on the same endpoint, but with a different label. Actions
are defined as usual, e.g. as in § 3.2.8, with the exception that selection
and offer permit arbitrary labels. (We postpone the discussion of link.)

π ⩴ x[y] ∣ x(y) ∣ x[] ∣ x() ∣ x◁ l ∣ x ▷ l

Processes are defined by name restriction, parallel composition, the
terminated process, prefixing, and summation.

P,Q,R ⩴ (νxx̄)P ∣ P ∥ Q ∣ 0 ∣ P +Q ∣ π.P
The process x ▷ l.P introduces a unary offer, and offers can be combined
by summation. The typing rules for the offer and summation use a
limited form of focusing [see Andreoli, 1992]. Focusing is a technique
from proof theory that can be used to heavily restrict the form of proofs
without affecting expressivity, and is often used for more efficient proof
search. In our case, focusing is only used to enforce guardedness. We add
a new typing judgement, P ⊢ Γ ⇑ x ∶ A, which remembers what endpoint
the process is ready to make an offer on—or, if we focus all actions, ready
to act on.5

T-OFFER1
P ⊢ Γ, x ∶ A

x ▷ l.P ⊢ Γ ⇑ x ∶˘{l∶A}
T-ABSURD

N = fn(Γ)
x N ⊢ Γ ⇑ x ∶˘{}

T-FOCUS
P ⊢ Γ ⇑ x ∶ A
P ⊢ Γ, x ∶ A

T-SUM
P ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L Q ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L′

P +Q ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L∪L′
The rule T-OFFER1 types the unary offer. It is the unary case of the rule for
the variant offer, T-OFFER, except that it remembers what endpoint the

5The upward arrow in “P ⊢ Γ ⇑ x ∶ A” comes from Andreoli’s sequent focused on an
asynchronous proposition, which has a dual focused on a synchronous proposition that
uses a downward arrow.
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offer is made on. The rule T-FOCUS allows us to forget this information at
any point, though, once forgotten, we cannot recover it. The rule T-SUM
types guarded summation, which requires that each alternative is ready
to make an offer on the same endpoint.

We extend the structural congruence with the following rules, such that
summations are associative and commutative, and the absurd offer is the
unit for summation:

P + x N ≡ P SC-SUMABSURD
P +Q ≡ Q + P SC-SUMCOMM
P + (Q + R) ≡ (P +Q) + R SC-SUMASSOC

The reduction rule for selection chooses the alternativewith thematching
label, and discards the other alternatives.

(νxx̄)(x◁ l.P ∥ (x̄ ▷ l.Q + R))⟶ (νxx̄)(P ∥ Q) E-SELECT

The metatheory of HCP generalises easily to the variant with guarded
summation. The proofs of preservation for the structural congruence
and reduction must be updated by adding cases for the new rules. The
proofs for progress, deadlock freedom, and the adequacy of canonical
forms are easily updated. Alternatively, these properties follow from the
operational correspondence between HCP with binary choice and HCP
with guarded summation. We present the updated proofs of preservation
and a sketch for the operational correspondence.

The rules SC-SUMABSURD, SC-SUMCOMM, SC-SUMASSOC, and E-SELECT
preserve types.

Lemma 3.103. If P ≡ Q, then P ⊢ 𝒢 if and only if Q ⊢ 𝒢.

Proof. By induction on the derivation of the equivalence P ≡ Q.

The cases for reflexivity, symmetry, transitivity, and applications of SC-
LINKCOMM, SC-PARNIL, SC-PARCOMM, SC-PARASSOC, SC-NEWCOMM, and SC-
SCOPEEXT are as in Lemma 3.27. The case for congruence closure follows,
similarly to Lemma 3.27, by induction and the injectivity of the type
derivation rules.

• Case SC-SUMABSURD.

P ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L
N = fn(Γ)

x N ⊢ Γ ⇑ x ∶˘{}
P ∥ x N ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L≡

P ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L
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• Case SC-SUMCOMM.
P ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L Q ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L′

P +Q ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L∪L′≡

Q ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L′ P ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L
Q + P ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L∪L′

• Case SC-SUMASSOC.

P1 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L1
P2 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L2 P3 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L3

P2 + P3 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L2∪L3
P1 + (P2 + P3) ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L1∪L2∪L3≡

P1 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L1 P2 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L2
P1 + P2 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L1∪L2 P3 ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L3

P1 + (P2 + P3) ⊢ Γ ⇑ x ∶˘{l∶Al}l∈L1∪L2∪L3

Proposition 3.104 (Preservation). If P ⊢ 𝒢 and P⟶ Q, then Q ⊢ 𝒢.
Proof. By induction on the derivation of the reduction. The cases for E-
SEND, E-CLOSE, E-EQUIV, and E-CONG, are as in Proposition 3.30. The case
for E-LINK, if included, follows by similarly to Proposition 3.30.

• Case E-SELECT.

By inversion, the typing derivation for the summation x̄ ▷ l.Q + R is
of the form

Q ⊢ Δ, x̄ ∶ Ak

x̄ ▷ k.Q ⊢ Δ ⇑ x̄ ∶˘{k∶Ak} R ⊢ Δ ⇑ x̄ ∶˘{l∶Al}l∈L
x̄ ▷ k.Q + R ⊢ Δ ⇑ x̄ ∶˘{l∶Al}l∈L,k
x̄ ▷ k.Q + R ⊢ Δ, x̄ ∶˘{l∶Al}l∈L,k

By inversion, the typing derivation for the left-hand side of the
reduction is of the form

P ⊢ Γ, x ∶ Ak

x◁ k.P ⊢ Γ, x ∶ ⨁{l∶Al}l∈L,k x̄ ▷ k.Q + R ⊢ Δ, x̄ ∶˘{l∶Al}l∈L,k
x◁ k.P ∥ (x̄ ▷ k.Q + R) ⊢ Γ, x ∶ ⨁{l∶Al}l∈L,k ∥ Δ, x̄ ∶˘{l∶Al}l∈L,k

(νxx̄)(x◁ k.P ∥ (x̄ ▷ k.Q + R)) ⊢ Γ,Δ
The result follows as

P ⊢ Γ, x ∶ Ak Q ⊢ Δ, x̄ ∶ Ak

P ∥ Q ⊢ Γ, x ∶ Ak ∥ Δ, x̄ ∶ Ak

(νxx̄)(P ∥ Q) ⊢ Γ,Δ
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The operational correspondence follows disentanglement, by translating
each summation to a sequence of binary choices. The translation on
processes proceeds as follows:

1. Take themaximum summation context, which is defined by analogy
to the maximum configuration context.

2. Eliminate any superfluous absurd offers, which ensures that any
use of SC-SUMABSURD holds reflexively under the translation.

3. Normalise the structure of the summation to right-branching form.
4. Fix an arbitrary order on all labels and reorder the unary offers

accordingly, which ensures that any use of SC-SUMCOMM and SC-
SUMASSOC holds reflexively under the translation.

5. Translate the summation as a series of binary offers.

The translation on session types proceeds similarly, and the order on
labels ensures that the translation of the session types matches the
translation of the processes.

The translation on processes preserves types—up to the translation on
types—and preserves structural congruence and reduction. However,
the correspondence between the reduction semantics is not one-to-one.
A process that reduces in one step with E-SELECT requires a number of
stepswith E-SELECT1 and E-SELECT2 that isworst-case linear in the number
of alternatives. The worst-case linear increase is a consequence of the
right-branching form, and we can improve to a logarithmic increase by
translating summations as balanced binary trees.

What About Zappers? The exceptional semantics for the absurd offer,
as discussed in § 3.3.1, are compatible with guarded summation. The rule
E-ZAP-KILL works as written, and it is important not to permit any other
actions in the summation.

What About Link? There are no issues with link in HCP with guarded
summation, but there is a choice on how to implement link. We can either
add link as a process or add it as an action:

• As a process. From the perspective of the logic, link should be a
process constructor, since link, like name restriction and parallel
composition, corresponds to a structural rule of the logic, whereas
the actions correspond to logical rules. This prevents us from
treating link together with the other actions. In HCP, where link
is asynchronous and the other actions are synchronous, we are
already required to treat link separately. Hence, for HCP, adding
link as a process constructor is a good fit.

• As an action. On the other hand, when using a synchronous
semantics for link, such as those presented in § 3.3.2, we can treat it
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together with the other actions. Hence, for HCP with a synchronous
link and for HCP with asynchronous actions, adding link as an
action might be a good fit as well, even if it forces us to write
“x↔y.0”.

Processes, Summations, and an Absurd Unit Sangiorgi and Walker
[2003] define processes and summations as separate syntactic sorts

P,Q ⩴ S ∣ P ∥ Q ∣ (νx)P
S,R ⩴ 0 ∣ π.P ∣ S + R

which guarantees that summations are guarded syntactically. There is no
great need for such separation in HCP, as guardedness is guaranteed by
the type system. However, examining Sangiorgi and Walker’s definition
reveals two interesting things.

Firstly, the rule T-FOCUS corresponds to the syntactic embedding of
summations into processes. If we focus the existing typing rules
for actions, the typing judgements divide neatly into separate typing
judgements for processes and summations

P ⊢ 𝒢 process typing
S ⊢ Γ ⇑ x ∶ A summation typing

with the rules for prefixing and the rule T-FOCUS moving back and forth
between summation typing and process typing.

Secondly, Sangiorgi and Walker [2003] define 0 as a summation. Since
summations are processes, it does double duty as both the empty
summation and the empty process, i.e. as both the unit for summation
and parallel composition. In HCP with guarded summation, the absurd
offer x N is the unit for summation, whereas the terminated process 0
is the unit for parallel composition.

3.3.4 Channel or Endpoint Names?
Should names refer to communication channels or to their endpoints?
I already revealed my hand in Chapter 2, where CP’s names refer to
channel endpoints. However, for CP, the choice is not hugely significant.
Case in point, names refer to channels in Wadler’s CP.

Under the restrictive view, channel names are a natural choice. Endpoint
names are incompatible with the restrictive view, as there is no
mechanism to tell us which endpoints are connected to the same channel.
We could introduce such a mechanism. We could use co-names, where
the endpoint name for sending is computed from the endpoint name for
receiving by the overbar function, e.g. if x is the endpoint for receiving,
then x̄ is the endpoint for sending. We could generalise, and compute
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the endpoints for any number of participants in a multiparty session
from one special endpoint name. However, such amechanism invariably
requires one special endpoint name from which to compute the others,
and is there really any difference between such a special endpoint name
and a channel name?

Under the creative view, we have a legitimate choice between channel
and endpoint names. Let us consider our options with a few questions.

How to Connect Two Unconnected Parallel Processes?

Consider the following example:

a⟨c⟩.P ∥ b(y).Q
With channel names, we must rename one of the channels so that their
names coincide, then use a name restriction to bind that name—e.g.
rename b to a, then use the name restriction (νa).

a⟨c⟩.P ∥ b(y).Q to a⟨c⟩.P ∥ a(y).Q to (νa)(a⟨c⟩.P ∥ a(y).Q)
With endpoint names, we only need to use the name restriction (νab).

a⟨c⟩.P ∥ b(y).Q to (νab)(a⟨c⟩.P ∥ b(y).Q)
With channel names, we need renaming to connect the two processes—
an operation in the meta-language, which mutates the process to boot—
but with endpoint names, name restriction internalises the operation of
connection into the object language.

What Is in A Name?

With channel names, some form of role annotation is necessary to ensure
that the various uses of a channel name are coherent.

As discussed, Lπ annotates session types with their role—whether the
corresponding channel is used to send, receive, neither, or both. The
typing rule for parallel composition checks that the various roles are
coherent—i.e. atmost one send and one receive. The typing rule for name
restriction checks that all roles are fulfilled—i.e. there is exactly one send
and one receive.

In Lindley and Morris’ GV, similar role annotations are used. The typing
rule for parallel composition checks that the various roles for one channel
are coherent, and requires all other channels names are unique. It
combines one positive and one negative use of one channel name into
one locked use of that channel—i.e. for exactly one channel name x, x ∶ S
and x ∶ S are combined into x ∶ S#. The typing rule for name restriction
checks that all roles are fulfilled—i.e. that the channel is locked.
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An early version of HCP [Kokke et al., 2019b, with errata] used channel
names and did not require an explicit role annotation. However, the
typing rule for name restriction does require that each name occur at
most twice and with dual types.

With endpoint names, such role annotations are unnecessary, as each
endpoint name is associated with a unique role. The type system checks
that all endpoints are usedwith a coherent set of roles when checking the
corresponding ν-binder.

Do Tensor and Par Correspond to Send and Receive?

Reader familiar with CP may be confused at the assertion that tensor
captures some notion of disjointness, rather than sending. Wadler [2012]
interprets tensor and par as sending and receiving, respectively.

P ⊢𝘊 Γ, y ∶ A Q ⊢𝘊 Δ, x ∶ B T-SENDx[y]. (P ∥ Q) ⊢𝘊 Γ,Δ, x ∶ A⊗ B
P ⊢𝘊 Γ, y ∶ A, x ∶ B T-RECVx(y).P ⊢𝘊 Γ, x ∶ A &B

Carbone et al. [2016, p. 4-5,May one invert output and input?] argue that
the inverse interpretation, where tensor is interpreted as receive and
par is interpreted as send, is nonsense. The argument is that a process
should change its behaviour based on the information it receives, not the
information it sends. That is a fair argument, but itmisses a crucial aspect
of Wadler’s interpretations for tensor and par. The send and receive
actions, x[y] and x(y), implement a restricted form of delegation, but do
not transmit information. They are about plumbing, not what is in the
pipes.6 Hence, the argument does not apply.

The crucial part of the interpretation of tensor/par is not the send/receive
actions, but the disjointness of P ∥ Q and the jointness of P. Given a
channel with endpoints x ∶ A ⊗ B and x̄ ∶ A &B, the process that holds
x̄ determines the order in which the sub-sessions A and B are resolved.
The process that holds xmust guarantee that either order works, and the
manner in which CP guarantees this is by forcing the sub-sessions to be
handled by entirely disjoint processes.

3.3.5 Deep Inference and Display Calculus
Hypersequents add stratified structural connectives. HCLL’s hyper-
environments may contain environments, but its environments may not
contain hyper-environments. (In a sense, HCLL’s structures are restricted
to conjunctive normal form.) As such, we can view HCLL as a stratified

6I’m paraphrasing Robert Atkey, who frequently refers to the function of
multiplicative as plumbing or throat-clearing. For a proper quote: “Multiplicatives
correspond to matters of communication topology, while the additives will correspond
to actual data transfer” [Atkey, 2017].
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variant of the formulations of CLL as deep inference calculi [e.g. Flat
BV, Guglielmi, 2007, p. 51; or LS, Straßburger, 2002] or display calculi
[e.g. Belnap, 1989], where every logical connective has a corresponding
structural connective without any such stratification.

3.3.6 Hypersequent Calculus
The hypersequents used in HCLL are similar to those used by
Avron [1991]. Both are stratified extensions to the structure of the
logic. However, their interpretations are rather different. HCLL’s
hypersequents are linear, multiplicative, and conjunctive, whereas
Avron’s hypersequents are unrestricted and “usually disjunctive” [Avron,
1996, p. 4].

3.3.7 Hypersequents, MIX, and MIX0
The rules for hyper-environments resemble those for MIX and MIX0.

⊢ 𝒢 ⊢ ℋ (∥)⊢ 𝒢 ∥ℋ (∘)⊢ ∘ ⊢ Γ ⊢ Δ MIX⊢ Γ,Δ MIX0⊢ ∅
However, HCLL is a conservative extension of CLL, but MIX and MIX0
alter the logic: MIX is logically equivalent to A ⊗ B ⊸ A &B, and MIX0 is
logically equivalent to 1 ⊸ ⊥. The correspondence between branching
and tensor is illuminating: MIX converts branching (corresponding to ⊗)
into a comma (corresponding to &), andMIX0 converts having no premises
(corresponding to 1) into the empty environment (corresponding to ⊥).
On the contrary, (∥) and (∘) convert structure of the proof tree to structural
connectives with the same logical interpretation.

3.4 Conclusion
In this chapter, I introduced Hypersequent CP with its typing rules,
reduction semantics, label-transition semantics, and their metatheory.
Hypersequent CP is a variant of CP that uses hypersequents to tighten the
correspondence with the π-calculus. I proved preservation (Proposition
3.30) and progress (Proposition 3.35). I proved that CP’s processes are
deadlock-free (Corollary 3.42), and that its canonical forms are adequate
(Corollary 3.50). I proved that HCP’s connection graphs are forests
(Proposition 3.52), and that any process can be disentangled into a
collection of CP processes (Proposition 3.61). I proved harmony between
HCP’s reduction and label-transition semantics (Proposition 3.93). I
defined a pair of inverse translations from CP to HCP (Definition 3.73)
and from HCP to CP (Definition 3.83), and proved that they preserve
types (Proposition 3.75 and Proposition 3.84) and give rise to a sound and
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complete operational correspondence (Proposition 3.77;Proposition 3.87).
Finally, I discussed the relation between HCP and similar logical systems,
and introduced three variants of HCP with an exceptional semantics for
the absurd offer, with synchronous semantics for links, andwith guarded
summation.

In the future, it would be interesting to extend HCP with the extensions
for CP described in previous work. Some of these extensions are
already described in the literature. Montesi and Peressotti [2021]
describe a variant of HCP extendedwith the second-order quantifiers and
exponentials, which are interpreted as polymorphism and replication.
Qian et al. [2021] describe a variant of HCP extended with the
exponentials and DiLL’s co-exponentials, which are interpreted as
replication and client-server interaction. Other extensions, such as
Lindley and Morris’ fixed points, have not yet been adapted to HCP.

Furthermore, it would be interesting to investigate a variant of
Hypersequent CP with logical and structural connectives that capture
sequential composition, such as “before” from Retoré’s Pomset logic
or “seq” from Guglielmi’s BV. Any system with sequential composition
necessarily deviates from the π-calculus, which only has trivial
sequential composition—prefixing a process with an action. However,
general sequential composition is important for programming languages.
The paper that introduced session types, Honda [1993], describes a
type system for a process calculus with general sequential composition.
Honda’s type system is unsound, in the sense that well-typed processes
may deadlock, and additional syntactic constraints are required to
guarantee deadlock freedom. In hindsight, this is unsurprising—Tiu
[2006] proved that Guglielmi’s “seq” cannot be captured by a standard
sequent calculus, and this result is assumed to extend to Retoré’s “before”
and other systems that capture sequential composition. However, the
inference rules of Guglielmi’s BV and the proof nets of Retoré’s Pomset
logic do not easily lend themselves to an interpretation as processes.
The decorated sequent calculus for Pomset logic, introduced by Slavnov
[2019], is an interesting candidate for further study.

3.5 Omitted Proofs
Lemma 3.40. If P is ready, then Dep(P) is essentially acyclic and connected.
Proof. By case analysis on P.

• Case P is of the form x↔y.

𝘝Dep(P) = {x, y}𝘌Dep(P) = {xy}𝘈Dep(P) = ∅
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Hence, Dep(P) is essentially acyclic, as there are no arcs, and
connected, as the two vertices are connected by an edge.

• Case P is of the form x[y].P′, x(y).P′, x[].P′, x().P′, x◁ inl.P′, x◁ inr.P′,
or x ▷ {inl∶ P1; inr∶ P2}.
𝘝Dep(P) = fn(P)𝘌Dep(P) = ∅𝘈Dep(P) = {x⃗y|y ∈ fn(P) ∧ x ≠ y}
Hence, Dep(P) is essentially acyclic, as all arcs are out of x, and
connected, as every other vertex is connected to x.

Proposition 3.41. If P ⊢ 𝒢, then the dependency graph Dep(P) is
essentially acyclic, and there is an isomorphism 𝘧 between the typing
environments in 𝒢 and the components of Dep(P) that preserves fn, i.e.
fn(Γ) = fn(𝘧 (Γ)).
Proof. The process P is of the form 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢). By
induction on 𝒞[⋅] and inversion P and the derivation of P ⊢ 𝒢.
There are four cases:

• Case 𝒞[⋅] is of the form □.

Let 𝘎 be Dep(P). As 𝒞[⋅] is maximal, P is ready. By Lemma 3.40, 𝘎 is
essentially acyclic and connected. As P is ready, 𝒢 is of the form Γ.
Let 𝘧 be the function {Γ ↦ 𝘎}. By Proposition 3.18, fn(Γ) = fn(P). By
definition, 𝘝𝘎 = fn(P). Hence, fn(Γ) = fn(𝘧 (Γ)).

• Case 𝒞[⋅] is of the form 0.

By definition, Dep(P) is the null graph. By inversion on the
derivation P ⊢ 𝒢, 𝒢 is of the form ∘, i.e. there are no typing
environments in𝒢. Let 𝘧 be the empty function∅, which vacuously
preserves fn.

• Case 𝒞[⋅] is of the form (νxx̄)𝒞′[⋅].
By inversion, P is of the form (νxx̄)P′ such that (νxx̄)P′ ⊢ 𝒢′ ∥ Γ,Δ and
P′ ⊢ 𝒢′ ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A.
Let 𝘎 be Dep(P) and 𝘎′ be Dep(P′).
By definition, 𝘝𝘎 = 𝘝𝘎′ , 𝘌𝘎 = 𝘌𝘎′ ∪ {xx̄}, and 𝘈𝘎 = 𝘈𝘎′ .
By induction, 𝘎′ is essentially acyclic, and there is an isomorphism
𝘧 ′ between the components of 𝘎′ and the typing environments in
𝒢′ ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A that preserves fn.

Let 𝘊𝟣 be 𝘧 ′(Γ, x ∶ A) and 𝘊𝟤 be 𝘧 ′(Δ, x̄ ∶ A).
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By definition, 𝘊𝟣 and 𝘊𝟤 are disjoint and essentially acyclic.

Let 𝘊 be the graph formed by connecting 𝘊𝟣 and 𝘊𝟤 with the edge xx̄.

By definition, 𝘊 is connected and a component of 𝘎.
By Lemma A.2, 𝘊 and 𝘎 are essentially acyclic.

Let 𝘧 be the function {Γ,Δ ↦ 𝘊} ∪ 𝘧 ′ ◁− {Γ, x ∶ A,Δ, x̄ ∶ A} (where ◁− is
domain subtraction, see Definition A.4).

The function 𝘧 is an isomorphism that preserves fn, by definition
(for Γ,Δ) and by induction (for the typing environments in 𝒢′).

• Case 𝒞[⋅] is of the form 𝒞1[⋅] ∥ 𝒞2[⋅].
By inversion, P is of the form P1 ∥ P2 such that P1 ∥ P2 ⊢ 𝒢1 ∥ 𝒢2,
P1 ⊢ 𝒢1, and P2 ⊢ 𝒢2.

Let 𝘎 be Dep(P), 𝘎𝟣 be Dep(P1), and 𝘎𝟤 be Dep(P2).
By definition, 𝘝𝘎 = 𝘝𝘎𝟣 ∪ 𝘝𝘎𝟤 , 𝘌𝘎 = 𝘌𝘎𝟣 ∪ 𝘌𝘎𝟤 , and 𝘈𝘎 = 𝘈𝘎𝟣 ∪ 𝘈𝘎𝟤 .
By induction, 𝘎𝟣 and 𝘎𝟤 are essentially acyclic, and there are
isomorphisms 𝘧𝟣 and 𝘧𝟤 between the typing environments in 𝒢1 and𝒢2, respectively, the components of 𝘎𝟣 and 𝘎𝟤, respectively, that
preserve fn.

By T-PAR, 𝘎𝟣 and 𝘎𝟤 are disjoint. Hence, 𝘎 is essentially acyclic.

Let 𝘧 be the function 𝘧𝟣 ∪ 𝘧𝟤.
As union preserves the relevant properties of 𝘧𝟣 and 𝘧𝟤, 𝘧 is
an isomorphism between the components of 𝘎 and the typing
environments in 𝒢 that preserves fn.

Proposition 3.52. If P ⊢ 𝒢, then Con(P) is a forest, and there is an
isomorphism 𝘧 between the typing environments in 𝒢 and the trees of
Con(P) that preserves fn, i.e. fn(Γ) = fn(𝘧 (Γ)).
Proof. The process P = 𝒞n[T1, …,Tn] (for some 𝘯 ≥ 𝟢).
By induction on 𝒞[⋅] and inversion P and the derivation of P ⊢ 𝒢.
There are four cases:

• Case 𝒞[⋅] is of the form □.

Let 𝘎 be Con(P). As 𝒞[⋅] is maximal, P is ready. By definition, 𝘎 is
the singleton graph, which is a tree. As P is ready, 𝒢 is of the form Γ.
Let 𝘧 be the function {Γ ↦ 𝘎}. By Proposition 3.18, fn(Γ) = fn(P). By
definition, 𝘝𝘎 = {P}. Hence, fn(Γ) = fn(𝘧 (Γ)).
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• Case 𝒞[⋅] is of the form 0.
By definition, 𝘎 is the null graph, which is a forest. By inversion
on the derivation P ⊢ 𝒢, 𝒢 is of the form ∘, i.e. there are no typing
environments in𝒢. Let 𝘧 be the empty function∅, which vacuously
preserves fn.

• Case 𝒞[⋅] is of the form (νxx̄)𝒞′[⋅].
By inversion, P is of the form (νxx̄)P′ such that (νxx̄)P′ ⊢ 𝒢′ ∥ Γ,Δ and
P′ ⊢ 𝒢′ ∥ Γ, x ∶ A ∥ Δ, x̄ ∶ A.
Let 𝘎 be Con(P) and 𝘎′ be Con(P′).
By Proposition 3.18 and Lemma 3.22, there exist unique Ti,Tj ∈ 𝘝𝘎′
such that x ∈ fn(Ti) and x̄ ∈ fn(Tj)
By definition, 𝘝𝘎 = 𝘝𝘎′ and ℓ𝘎 = ℓ𝘎′ ∪ {TiTj ↦ (x, x̄)}.
By induction, 𝘎′ is a forest, and there is an isomorphism 𝘧 ′ between
the components of𝘎′ and the typing environments in𝒢′∥Γ, x ∶ A∥Δ, x̄ ∶
A that preserves fn.

Let 𝘛𝟣 be 𝘧 ′(Γ, x ∶ A) and 𝘛𝟤 be 𝘧 ′(Δ, x̄ ∶ A).
By definition, 𝘛𝟣 and 𝘛𝟤 are disjoint trees.
Let 𝘛 be the graph formed by connecting 𝘛𝟣 and 𝘛𝟤 with the edge PiPj.
By Lemma A.1, 𝘛 is a tree. Hence, 𝘎 is a forest.

Let 𝘧 be the function {Γ,Δ ↦ 𝘊} ∪ 𝘧 ′ ◁− {Γ, x ∶ A,Δ, x̄ ∶ A} (where ◁− is
domain subtraction, see Definition A.4).

The function 𝘧 is an isomorphism that preserves fn, by definition
(for Γ,Δ) and by induction (for the typing environments in 𝒢′).

• Case 𝒞[⋅] is of the form 𝒞1[⋅] ∥ 𝒞2[⋅].
By inversion, P is of the form P1 ∥ P2 such that P1 ∥ P2 ⊢ 𝒢1 ∥ 𝒢2,
P1 ⊢ 𝒢1, and P2 ⊢ 𝒢2.

Let 𝘎 be Con(P), 𝘎𝟣 be Con(P1), and 𝘎𝟤 be Con(P2).
By definition, 𝘝𝘎 = 𝘝𝘎𝟣 ∪ 𝘝𝘎𝟤 and ℓ𝘎 = ℓ𝘎𝟣 ∪ ℓ𝘎𝟤 .
By induction, 𝘎𝟣 and 𝘎𝟤 are forests, and there are isomorphisms 𝘧𝟣
and 𝘧𝟤 between the typing environments in 𝒢1 and 𝒢2, respectively,
the trees of 𝘎𝟣 and 𝘎𝟤, respectively, that preserve fn.

By T-PAR, 𝘎𝟣 and 𝘎𝟤 are disjoint. Hence, 𝘎 is a forest.

Let 𝘧 be the function 𝘧𝟣 ∪ 𝘧𝟤.
As union preserves the relevant properties of 𝘧𝟣 and 𝘧𝟤, 𝘧 is
an isomorphism between the components of 𝘎 and the typing
environments in 𝒢 that preserves fn.
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Lemma 3.56. If P ⊢ 𝒢 ∥ Γ, then there exist processes Q and R such that
Q ⊢ 𝒢, R ⊢ Γ, P ≡LS Q ∥ R, and R is in right-branching tree form.

Proof. By Proposition 3.52, Con(P) is a forest and some component 𝘛 is a
tree such that fn(Γ) = fn(𝘝𝘛 ). By induction, guarded by the size of 𝘛 .

• Case |𝘝𝘛| = 𝟣.
There is some thread R such that 𝘝𝘛 = {R}, and some evaluation
context ℰ such that P = ℰ[R]. As 𝘛 is a component of Con(P),
fn(R) ∩ bn(ℰ) = ∅. By Corollary 3.26, P ≡LS ℰ[0] ∥ R. Let Q be ℰ[0].
Recall that R is in right-branching form, as it is ready.

• Case |𝘝𝘛| > 𝟣.
Let Ti be any leaf of 𝘛 . As Ti is a leaf, exactly one free endpoint in Ti is
bound in P. Let us name that endpoint x and its dual x̄. There exist
some ℰ1, ℰ2,ℱi,ℱj, and Pj such that

P ≡LS ℰ1[(νxx̄)(ℰ2[ℱi[Ti] ∥ ℱj[Pj]])] ⟨by Corollary 3.23⟩
≡LS (νxx̄)(ℰ1[ℰ2[ℱi[Ti] ∥ ℱj[Pj]]]) ⟨by Lemma 3.24⟩
≡LS (νxx̄)(ℰ1[ℰ2[ℱi[Ti ∥ ℱj[Pj]]]]) ⟨by Lemma 3.25⟩
≡LS (νxx̄)(Ti ∥ ℰ1[ℰ2[ℱi[ℱj[Pj]]]]) ⟨by Lemma 3.25⟩

Let P′ be ℰ1[ℰ2[ℱi[ℱj[Pj]]]]. By Lemma 3.27, P′ is well-typed.

Let 𝘛 ′ be the tree formed by deleting the vertex Ti and its only edge
from 𝘛 . Clearly, |𝘝𝘛| = |𝘝𝘛′| + 𝟣. Every thread in P is preserved in
P′, except Ti. Therefore, the connection graph Con(P′) is the forest
formed by replacing 𝘛 with 𝘛 ′.
By induction with P′, there exist processes Q and R′ such that P′ ≡LS
Q ∥ R′ and R′ is in right-branching form. Therefore,

P ≡LS (νxx̄)(Ti ∥ ℰ1[ℰ2[ℱi[ℱj[Pj]]]]) ⟨see above⟩
≡LS (νxx̄)(Ti ∥ (Q ∥ R′)) ⟨by induction⟩
≡LS Q ∥ (νxx̄)(Ti ∥ R′) ⟨by Lemma 3.25⟩

Let R be (νxx̄)(Ti ∥ R′). As R′ is in right-branching tree form, R is in
right-branching tree form.

It remains to show that the processesQ and R have the correct types.

For some Γi, Γj, and A, Ti ⊢ Γi, x ∶ A and Pj ⊢ Γj, x̄ ∶ A.
Since Ti is a leaf, the evaluation contexts ℰ1, ℰ2, andℱi must preserve
the contents of its typing environment Γi. In essence, we can assign
ℰ1, ℰ2, andℱi type schemas, rather than types. For some𝒢′,𝒢′

i ,𝒢′
j , Γ‴,
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Γ″, and Γ′ the evaluation contexts ℰ1, ℰ2, and ℱi have the following
type schemas, andℱj has the following type.

∀Δ. ℰ1 ⊢ 𝒢′ ∥ Γ″,Δ → 𝒢 ∥ Γ′,Δ or
∀Δ. ℰ1 ⊢ 𝒢′ ∥ Γ″, x̄ ∶ A ∥ Δ → 𝒢 ∥ Γ′, x̄ ∶ A ∥ Δ
∀Δ. ℰ2 ⊢ 𝒢′

i ∥ 𝒢′
j ∥ Γ‴, x̄ ∶ A ∥ Δ→ 𝒢′ ∥ Γ″, x̄ ∶ A ∥ Δ

∀Δ. ℱi ⊢ Δ → 𝒢′
i ∥ Δ

ℱj ⊢ Γj, x̄ ∶ A → 𝒢′
j ∥ Γ‴, x̄ ∶ A

Hence, Γ = Γ′, Γi and P′ ⊢ 𝒢 ∥ Γ′, x̄ ∶ A ∥ Γi, x ∶ A.
By induction, Q ⊢ 𝒢 and R′ ⊢ Γ′, x̄ ∶ A. Hence, R ⊢ Γ.

Proposition 3.57. If P ⊢ 𝒢, then there exists a process Q, such that P ≡LS
Q, and Q is in right-branching forest form, and there is an isomorphism
𝘧 between the processes in right-branching tree form in Q and the typing
environments in 𝒢 that preserves fn, i.e. fn(Γ) = fn(𝘧 (Γ)).
Proof. By induction on the hyper-environment 𝒢.

• Case 𝒢 is of the form ∘.
By Lemma 3.55, P ≡LS 0. Let Q be 0. The result follows.

• Case 𝒢 is of the form 𝒢 ∥ Γ (reusing 𝒢).
By Lemma 3.56, there exist processes P′ and R such that P′ ⊢ 𝒢, R ⊢ Γ,
P ≡LS P′ ∥ R, and R is in right-branching tree form.

By induction, there exists a process Q′ such that P′ ≡LS Q′ and Q′ is in
right-branching forest form. There are two cases:

– If Q′ = 0, let Q be R. By inversion, 𝒢 = ∘. The result follows, as,
by SC-PARNIL, P ≡LS R, and R is in right-branching forest form.

– Otherwise, let Q be Q′ ∥ R. The result follows, as P ≡LS Q and Q is
in right-branching forest form.

Lemma 3.89. If P ≡ ℓ−→ Q, then P ℓ−→≡ Q.

Proof. Unfolding the compositions of the structural congruence and the
transition relations, the goal is as follows:

P ≡ P′ ∧ P′ ℓ−→ Q ⟹ P ℓ−→ Q′ ∧Q′ ≡ Q

I refer to the subgoals P ℓ−→ Q′ andQ′ ≡ Q as results (1) and (2), respectively.
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By induction on the derivation of the structural congruence P ≡ Q and
inversion on the transition P ℓ−→ P′. The case for reflexivity follows
immediately. The cases for symmetric use of the rules of structural
congruence follow by an analogy to the cases below. The case for
transitivity follows by induction. The case for congruence follows by
induction on the transition.

• Case SC-LINKCOMM.

The structural congruence is of the form:

x↔y ≡ y↔x

By inversion on the transition:

– Subcase ACT-LINK1. Result (1) follows by ACT-LINK2.
– Subcase ACT-LINK2. Result (1) follows by ACT-LINK1.

Result (2) follows by reflexivity.

• Case SC-PARNIL.

The structural congruence is of the form (reusing P):

P ∥ 0 ≡ P

Result (1) follows by STR-CONG with □ ∥ 0.
Result (2) follows by SC-PARNIL.

• Case SC-PARCOMM.

The structural congruence is of the form (reusing P and Q):

P ∥ Q ≡ Q ∥ P
By inversion on the transition:

– Subcase STR-PAR.

Result (1) follows as π ∥ π̄ is unordered.

– Subcase STR-CONG with ℰ ∥ Q.
Result (1) follows by STR-CONG with Q ∥ ℰ.

– Subcase STR-CONG with P ∥ ℰ.
Result (1) follows by STR-CONG with ℰ ∥ P.

Result (2) follows by SC-PARCOMM.

• Case SC-PARASSOC.

The structural congruence is of the form (reusing P and Q):

P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R
By inversion on the transition:
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– Subcase STR-PAR.

Result (1) follows as π ∥ π̄ is unordered.

– Subcase STR-CONG with P ∥ □ then STR-PAR.

Result (1) follows as π ∥ π̄ is unordered.

– Subcase STR-CONG with ℰ ∥ (Q ∥ R).
Result (1) follows by STR-CONG with (ℰ ∥ Q) ∥ R.

– Subcase STR-CONG with P ∥ (ℰ ∥ R).
Result (1) follows by STR-CONG with (P ∥ ℰ) ∥ R.

– Subcase STR-CONG with P ∥ (Q ∥ ℰ).
Result (1) follows by STR-CONG with (P ∥ Q) ∥ ℰ.

Result (2) follows by SC-PARASSOC.

• Case SC-NEWCOMM.

The structural congruence is of the form (reusing P):

(νxx̄)P ≡ (νx̄x)P
By inversion on the transition. In the cases for TAU-LINK, TAU-
SEND-RECV, TAU-CLOSE-WAIT, TAU-SELECT-OFFER1, TAU-SELECT-OFFER2,
result (1) follows as π ∥ π̄ is unordered.

In the cases for TAU-LINK and TAU-CLOSE-WAIT, result (2) follows by
reflexivity. In the cases for TAU-SEND-RECV, TAU-SELECT-OFFER1, TAU-
SELECT-OFFER2, result (2) follows by SC-NEWCOMM.

• Case SC-NEWASSOC.

The structural congruence is of the form (reusing P):

(νxx̄)(νyȳ)P ≡ (νyȳ)(νxx̄)P
By inversion on the transition:

– Subcases TAU-LINK, TAU-SEND-RECV, TAU-CLOSE-WAIT,
TAU-SELECT-OFFER1, or TAU-SELECT-OFFER2 then STR-CONG with
(νyȳ)□.
Result (1) follows by STR-CONG with (νyȳ)□ then TAU-LINK, TAU-
SEND-RECV, TAU-CLOSE-WAIT, TAU-SELECT-OFFER1, or TAU-SELECT-
OFFER2.

In the cases for TAU-LINK and TAU-CLOSE-WAIT, result (2) follows
by reflexivity. In the cases for TAU-SEND-RECV, TAU-SELECT-
OFFER1, TAU-SELECT-OFFER2, result (2) follows by SC-NEWASSOC.
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– Subcases STR-CONG with (νxx̄)□ then TAU-LINK, TAU-SEND-RECV,
TAU-CLOSE-WAIT, TAU-SELECT-OFFER1, or TAU-SELECT-OFFER2.

Result (1) follows by TAU-LINK, TAU-SEND-RECV, TAU-CLOSE-WAIT,
TAU-SELECT-OFFER1, or TAU-SELECT-OFFER2 then STR-CONG with
(νxx̄)□.
In the cases for TAU-LINK and TAU-CLOSE-WAIT, result (2) follows
by reflexivity. In the cases for TAU-SEND-RECV, TAU-SELECT-
OFFER1, TAU-SELECT-OFFER2, result (2) follows by SC-NEWASSOC.

– Subcase STR-CONG with (νxx̄)(νyȳ)□.
Result (1) follows by STR-CONG with (νyȳ)(νxx̄)□.
Result (2) follows by SC-NEWASSOC.

• Case SC-SCOPEEXT.

The structural congruence is of the form (reusing P and Q):

(νxx̄)(P ∥ Q) ≡ P ∥ (νxx̄)Q
By inversion on the transition:

– Subcases TAU-LINK, TAU-SEND-RECV, TAU-CLOSE-WAIT,
TAU-SELECT-OFFER1, or TAU-SELECT-OFFER2 then STR-PAR or
STR-CONG with ℰ ∥ Q.
Impossible. The side condition for SC-SCOPEEXT requires x, x̄ ∉
fn(P), but either x ∈ fn(P) or x̄ ∈ fn(P)must hold.

– Subcases TAU-LINK, TAU-SEND-RECV, TAU-CLOSE-WAIT,
TAU-SELECT-OFFER1, or TAU-SELECT-OFFER2 then STR-CONG with
P ∥ ℰ. Result (1) follows by STR-CONG with P ∥ □, then TAU-LINK,
TAU-SEND-RECV, TAU-CLOSE-WAIT, TAU-SELECT-OFFER1, or
TAU-SELECT-OFFER2, then STR-CONG with ℰ.
In the cases for TAU-LINK and TAU-CLOSE-WAIT, result (2) follows
by reflexivity. In the cases for TAU-SEND-RECV, TAU-SELECT-
OFFER1, TAU-SELECT-OFFER2, result (2) follows by SC-NEWASSOC.

– Subcases STR-CONG with (νxx̄)□ then STR-PAR.

Result (1) follows by STR-PAR then STR-CONG with (νxx̄)□.
Result (2) follows by SC-SCOPEEXT.

– Subcases STR-CONG with (νxx̄)(ℰ ∥ Q)
Result (1) follows by STR-CONG with ℰ ∥ (νxx̄)Q
Result (2) follows by SC-SCOPEEXT.

– Subcases STR-CONG with (νxx̄)(P ∥ ℰ).
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Result (1) follows by STR-CONG with P ∥ (νxx̄)ℰ.
Result (2) follows by SC-SCOPEEXT.



Chapter 4

Hypersequent Good Variation

This chapter presents Hypersequent GV (HGV), concurrent λ-calculus
with session-typed concurrency primitives, which has a tight
correspondence to Hypersequent CP.

Hypersequent GVwas first introduced by Fowler et al. [2021], as a variant
of GV that uses hypersequents for its runtime type system. While CP has
not undergone many significant changes since its publication by Wadler
[2012], GV’s history is much more storied:

• Good Variation was first published under that name by Wadler
[2012], who adapted the LAST calculus of Gay and Vasconcelos
[2010] to fit a correspondence with CP. However, Wadler’s GV
has neither an operational semantics—except implicitly, by its
translation to CP—nor an account of polymorphism or replication.

This work has an error in its translation from GV to CP, which does
not preserve typing in the case for session termination (Theorem 3).

• Lindley and Morris [2014]1 extend GV with operations for
forwarding, polymorphism, and servers and clients, rectify the
error in Wadler’s translation from GV to CP that breaks typing, and
describe the first translation from CP to GV.

This work does not give an operational semantics for GV, and its
translation from GV to CP does not preserve reduction.

• Lindley and Morris [2015] give an operational semantics for GV,
drop polymorphism and servers and clients, refactor GV so that
the concurrency primitives are constant functions rather than term
constructors, and switch to an encoding of the choice operators
following Dardha et al. [2017].

1Lindley and Morris [2014] name their system “Harmonious GV” as the operations
in the their version of GV restore the balance between and CP. Later publications in the
same line of work refer to their system as GV.
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This work has an error in its operational semantics, which does
not satisfy the diamond property in the case for link (Theorem 13),
and in its translation from GV to CP, which does not preserve the
reductions for products and sums2 (Lemma21 and Theorems 22 and
23).

• Lindley and Morris [2016b] present μCP and μGV, which adds fixed
points to both GV and CP. Orthogonally, this work also rectifies the
error in the semantics for link, and adds the direct unit “⊤” and the
direct product “&” [Girard and Lafont, 1987].

This work has the same error in its translation from GV to CP as
Lindley and Morris [2015], which does not preserve the reductions
for products and sums (Theorem 16).

• Lindley andMorris [2017] present FST, which adds record & variant
types with row polymorphism, an account of subkinding for linear
and unrestricted types, asynchrony, and access points, and drops
link, weak explicit substitution, and the correspondence with CP.
This work does not present any of the metatheory of FST.

• Fowler et al. [2019] and Fowler [2019] present EGV, which adds
exceptions and handlers to GV. This work also drops link, weak
explicit substitution, and the correspondence with CP.

• Fowler et al. [2021] present Hypersequent GV, which rectifies a
design flaw that complicates all previous metatheory of GV by
dropping lock typing in favour of hypersequents. Orthogonally, this
work also rectifies the error in the translation from GV to CP, and
presents the first such translation from that both preserves and
reflects reduction. (The extended version of this paper is presented
in Chapter 4.)

In one sense, Hypersequent GV relates to GV as Hypersequent CP relates
to CP. It uses hypersequents to separate name restriction from parallel
composition in its configuration typing. In doing so, it removes lock
typing and makes the structural congruence type preserving, which
significantly simplifies the metatheory of GV.

In another sense, Hypersequent GV is simply GV. Recall that GV separates
its language into a static fragment and a runtime fragment, and the static
fragment—the user-facing programming language—is unchanged from

2Lindley and Morris [2015] use weak explicit substitution in an effort to obtain a
translation from GV to CP that preserves reduction, which works in principle, as the
translation preserves β-reduction. Unfortunately, their implementation of weak explicit
substitution only suspends substitution on λ-abstraction. Hence, the translation does
not preserve reductions that involve the other binders, i.e. those for products and sums.
Consequently, Lemma 21, Theorem 22, and Theorem 23 fail to hold. Presumably, this
is easily solved by either suspending substitution on all binders, or by encoding the
eliminators for products and sums as constants and making λ-abstraction the only
binder.
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GV. Hypersequent CP generalises CP’s process structure from trees to
forests, and likewise Hypersequent GV generalises GV’s configuration
structures from trees to forests. However, reduction from a single term—
a single user program—only ever reaches tree-structured configurations.
That does not mean that we could not use the framework of GV to study
configurations arising frommultiple user programs—we could, although,
since they are disconnected, this is unlikely to provide us any novel
insights.

The bulk of this chapter consists of the paper Separating Sessions
Smoothly by Fowler et al. [2023], hereafter referred to as Paper I.
References made from the main body of this thesis into Paper I will be
prefixed by an “I”, e.g. “Theorem I.3.20”. This chapter proceeds as follows:

• In § 4.1, we provide a legend and an errata for Paper I.

• In § 4.2, we present Hypersequent GV and its metatheory,
together with translations to and from GV, and an operational
correspondence with Hypersequent CP. This section consists
entirely of Paper I, and proceeds as follows:

– In § I.2, we discuss the complications in GV’s metatheory that
arise from the use of lock typing.

– In § I.3, we present HGV.

– In § I.3.1, we present the metatheory for HGV.

Notably, we prove preservation (Theorem I.3.3), the
tree-structure of connections in configurations (Theorem
I.3.14), global progress (Theorem I.3.20), the diamond property
(Theorem I.3.21), and termination (Theorem I.3.22).

– In § I.4, we present the relation between HGV and GV.

Notably, we prove that any GV configuration is typeable in
HGV (Theorem I.4.3), and that any HGV configuration can be
rewritten by structural congruence to obtain a configuration
that is typeable in GV (Corollary I.4.7).

– In § I.5, we present the relation between HGV and HCP.

Notably, we define fine-grain call-by-value HGV (HGV∗, § I.5,
under “HGV∗”), define a naive translation from HGV to HGV∗
(§ I.5, Definition I.5.8) and define a translation from HGV∗ to
HCP (§ I.5, Figure I.8), and prove that the latter translation
preserves types (§ I.5, Lemma I.5.9) and is a sound and complete
operational correspondence (§ I.5, Theorem I.5.11). Finally, we
define a translation from HCP to HGV, by composing existing
translations (§ I.5, under “Translating HCP to HGV”).

– In § I.6, we present extensions of HGV.
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– In § I.7, we discuss the possibility of using hyper-environments
in term typing.

– In § I.8, we discuss the related work.

4.1 Legend and Errata
The conventions and terminology in Paper I are different from those used
in the rest of this thesis.

• The terms and types of bothHypersequent CP and Hypersequent GV
are printed in red and blue, respectively, and are rendered in a font
with serif. The keywords in HGV’s syntax are bolded.

• The names for the rules of structural congruence, reduction, and the
type system differ slightly from those used for HCP in Chapter 3.

• Instead of including a single rule for congruence under evaluation
contexts, the paper includes separate congruence rules for name
restriction and parallel composition (E-RES and E-PAR).

• Instead of the connection graph, the paper uses the “abstract process
structure” (§ I.3.1, Definition I.3.9), which is derived from a hyper-
environment and co-name set, as opposed to the configuration.

• Instead of ready thread, the paper uses the term “blocked thread” (§
I.3.1, Definition I.3.16.)

• The duality for HCP is written as A⟂ rather than A (see Figure I.6).
• The lts for HCP (see Figure I.7) combines a number of action rules
into ACT-PREF, renames ACT-OFFER1 and ACT-OFFER2 to ACT-OFF-INL
and ACT-OFF-INR, respectively, makes the distinction between α-
transition and β-transition explicit in the rules for τ-transition,
rather than a post-facto restriction, replaces the congruence rule
STR-CONGwith individual congruence rules for name restriction and
parallel composition (STR-RES, STR-PAR1, and STR-PAR2), and renames
STR-PAR to STR-SYN.

To the best of my knowledge, there are no significant errors in Paper I,
but there are a small number of typesetting errors:

• The definition of internal and external choice (§ I.3, under “Choice”)
define S⊕S′ and S&S′ in terms of S1 and S2, rather than S and S′. The
correct definitions are:

S⊕ S′ ≜ !1.!(S + S′).end! S & S′ ≜ ?1.?(S + S′).end?

• The defintion of an abstract process structure (§ I.3.1, Definition I.3.9)
uses the function envs without prior definition. The function maps
hyper-environments to sets of environments, andmay be defined as
envs(Γ1 ∥ … ∥ Γn) ≜ {Γ1, … , Γn}.
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• The definition of a ground configuration (§ I.3.1, Definition I.3.19)
states that a configuration C is a ground configuration if ⋅ ⊢ C ∶ T,
amongst other conditions. This is syntactically ill-formed, as T is not
a configuration type, and should be ⋅ ⊢ C ∶ ● T.

• One of TG-CONNECT1 and TG-CONNECT2 can be elided from GV’s
configuration typing rules (Figure I.5) without compromising type
preservation of reduction, since reduction is only defined on bound
endpoints and one can always dualise the type of the bound
endpoints. Having both comes at a cost, as parallel compositions no
longer have unique typing derivations. Fortunately, the problem is
easily addressed by eliding either TG-CONNECT1 or TG-CONNECT2.

The rules TG-CONNECT1 and TG-CONNECT2 were mistakenly
reproduced from Fowler [2019]. In Fowler’s GV, both rules are
needed, since reduction is allowed outside of the scope of a name
restriction, and therefore, it is not possible to dualise the type of
the locked channel without breaking preservation. However, the
version of GV presented in this chapter only permits reduction
under a name restriction.

• The proof of global progress (§ I.3.1, Theorem I.3.20) states that any
ground configuration that cannot be reduced can be written as:

(νx1y1)(○ 𝒜1 ∥ … ∥ (νxnyn)(○ 𝒜n ∥ ● V)…)
This is syntactically ill formed, as 𝒜 denotes an auxiliary thread,
which already includes the thread flag ○. The correct statement is:

(νx1y1)(𝒜1 ∥ … ∥ (νxnyn)(𝒜n ∥ ● V)…)
• The statement of the diamond property (§ I.3.1, Theorem I.3.21) is:

If 𝒢 ⊢ 𝒞 ∶ T, 𝒞⟶𝒟, 𝒞⟶𝒟′, then 𝒟 ≡ 𝒟′.

This does not hold—and, arguably, is not the diamond property—
since it does not permit the result to perform any reductions. Hence,
if the reductions 𝒞 ⟶ 𝒟 and 𝒞 ⟶ 𝒟′ eliminate different redexes,
there is no leeway to eliminate the redex targeted by 𝒞⟶𝒟 in 𝒟′
and vice versa. The correct statement is:

If 𝒢 ⊢ 𝒞 ∶ T and 𝒞⟶𝒟1 and 𝒞⟶𝒟2, then either 𝒟1 ≡ 𝒟2
or there exists some 𝒟3 such that 𝒟1 ⟶𝒟3 and 𝒟2 ⟶𝒟3.

• The definition of flattening (§ I.4, Definition I.4.1) translates the
empty hyper-environment to the empty hyper-environment, i.e.
↓∅ = ∅.
This is incorrect, as the codomain of flattening is HGV typing
environments, and the empty typing environment is denoted by ⋅ .
The correct definition is ↓∅ = ⋅ .



4.2 Paper I: Separating Sessions Smoothly

This section contains the paper with the same title, written in
collaboration with Simon Fowler, Ornela Dardha, Sam Lindley, and J.
Garrett Morris, which was originally published in the journal Logical
Methods in Computer Science, Volume 19, Issue 3, 2023, and is an
extended journal version of the paper with the same title and authors
originally published in the proceedings for the 32nd International
Conference on Concurrency Theory (CONCUR 2021) as part of the Leibniz
International Proceedings in Informatics (LIPIcs) series.

J. Garrett Morris acted as my second Ph.D. supervisor from 2016 to 2017,
and Sam Lindley acted as my second Ph.D. supervisor from 2018 to 2024.

The work presented in the paper was conceived of by all the authors. I
co-developed Hypersequent GV and was primarily responsible for the
correspondence between Hypersequent GV and Hypersequent CP.
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Abstract. This paper introduces Hypersequent GV (HGV), a modular and extensible
core calculus for functional programming with session types that enjoys deadlock free-
dom, confluence, and strong normalisation. HGV exploits hyper-environments, which are
collections of type environments, to ensure that structural congruence is type preserving.
As a consequence we obtain an operational correspondence between HGV and HCP—a
process calculus based on hypersequents and in a propositions-as-types correspondence
with classical linear logic (CLL). Our translations from HGV to HCP and vice-versa both
preserve and reflect reduction. HGV scales smoothly to support Girard’s Mix rule, a crucial
ingredient for channel forwarding and exceptions.

1. Introduction

Session types [Hon93, THK94, HVK98] are types used to model and verify communication
protocols in concurrent and distributed systems: just as data types rule out dividing an
integer by a string, session types rule out sending an unexpected message. Session types
originated in process calculi, but there is a gap between process calculi, which model the
evolving state of concurrent systems, and the descriptions of these systems in mainstream
programming languages. This paper addresses two foundations for session types: (1) a
session-typed concurrent lambda calculus called GV [LM15], intended to be a modular and
extensible basis for functional programming languages with session types; and, (2) a session-
typed process calculus called CP [Wad14], with a propositions-as-types correspondence to
classical linear logic (CLL) [Gir87].

Processes in CP correspond exactly to proofs in CLL and deadlock freedom follows from
cut-elimination for CLL. However, while CP is strongly tied to CLL, at the same time it
departs from the π-calculus. Independent π-calculus features can only appear in combination
in CP: CP combines name restriction with parallel composition ((νx)(P ∥ Q)), corresponding

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(3:3)2023
© S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris
CC⃝ Creative Commons
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to CLL’s cut rule, and combines sending (of bound names only) with parallel composition
(x[y].(P ∥ Q)), corresponding to CLL’s tensor rule. This results in a proliferation of process
constructors and prevents the use of standard techniques from concurrency theory, such
as labelled-transition semantics and bisimulation, since the expected transitions give rise
to ill-typed terms. For example, we cannot write the expected transition rule for output,

x[y].(P ∥ Q)
x[y]−−→ P ∥ Q, since P ∥ Q is not a valid CP process. A similar issue arises when

attempting to design a synchronisation transition rule for bound output (see [KMP19b] for a
detailed discussion). Inspired by Carbone et al. [CMS18] who use hypersequents [Avr91] to
give a logical grounding to choreographic programming languages [Mon13], Hypersequent CP
(HCP) [KMP19a, KMP19b, MP18] restores the independence of these features by factoring
out parallel composition into a standalone construct while retaining the close correspondence
with CLL proofs. HCP typing reasons about collections of processes using collections of
type environments (or hyper-environments).

GV extends linear λ-calculus with constants for session-typed communication. Following
Gay and Vasconcelos [GV10], Lindley and Morris [LM15] describe GV’s semantics by
combining a reduction relation on single terms, following standard λ-calculus rules, and
a reduction relation on concurrent configurations of terms, following standard π-calculus
rules. They give a semantic characterisation of deadlocked processes, an extrinsic [Rey00]
type system for configurations, and show that well-typed configurations are deadlock-free.
There is, however, a large fly in this otherwise smooth ointment: GV’s process equivalence
does not preserve typing. As a result, it is not enough for Lindley and Morris to show
progress and preservation for well-typed configurations; instead, they must show progress
and preservation for all configurations equivalent to well-typed configurations. This not only
complicates the metatheory of GV, but the burden is inherited by any effort to build on
GV’s account of concurrency [FLMD19].

In this paper, we show that using hyper-environments in the typing of configurations
enables a metatheory for GV that, compared to that of Lindley and Morris, is simpler, is
more general, and as a result is easier to use and easier to extend. Hypersequent GV (HGV)
repairs the treatment of process equivalence—equivalent configurations are equivalently
typeable—and avoids the need for formal gimmickry connecting name restriction and parallel
composition. HGV admits standard semantic techniques for concurrent programs: we use
bisimulation to show that our translations both preserve and reflect reduction, whereas
Lindley and Morris resort to weak explicit substitutions [LM99] and only show that their
translations between GV and CP preserve reduction. HGV is also more easily extensible:
we outline three examples, including showing that HGV naturally extends to disconnected
sets of communication processes, without any change to the proof of deadlock freedom, and
that it serves as a simpler foundation for existing work on exceptions in GV [FLMD19].

Contributions. The paper contributes the following:

• Section 3 introduces Hypersequent GV (HGV), a modular and extensible core calculus for
functional programming with session types which uses hyper-environments to ensure that
structural congruence is type preserving.

• Section 4 shows that every well-typed GV configuration is also a well-typed HGV config-
uration, and every tree-structured HGV configuration is equivalent to a well-typed GV
configuration.

• Section 5 gives an operational correspondences between HGV and HCP via translations
in both directions that preserve and reflect reduction.
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• Section 6 demonstrates the extensibility of HGV through: (1) unconnected processes, (2)
a simplified treatment of forwarding, and (3) an improved foundation for exceptions.

Section 2 reviews GV and its metatheory, Section 7 discusses why it is difficult to apply
hyper-environments to term typing, Section 8 discusses related work, and Section 9 concludes
and discusses future work.

This paper is an improved and extended version of a paper published at CONCUR
2021 [FKD+21]. Additional highlights include:

• a more detailed account of process structures;
• a more detailed account of extensions;
• a more detailed account of the metatheory for HCP; and
• a modified formulation of HCP’s labelled transition system and the translation of fork in
Section 5 fixing errors in the operational correspondence result from the CONCUR 2021
paper.

Proofs of all of the technical results are included in the paper.

2. The Equivalence Embroglio

GV programs are deadlock free, which GV ensures by restricting process structures to
trees. A process structure is an undirected graph where nodes represent processes and
edges represent channels shared between the connected nodes. Session-typed programs with
an acyclic process structure are deadlock-free by construction. We illustrate this with a
session-typed vending machine example written in GV.

Example 2.1. Consider the session type of a vending machine below, which sells chocolate
bars and lollipops. If the vending machine is free, the customer can press 1○ to receive a
chocolate bar or 2○ to receive a lollipop. If the vending machine is busy, the session ends.

VendingMachine ≜ ⊕
{

Free : & { 1○ : !ChocolateBar.end!, 2○ : !Lollipop.end!}
Busy : end!

}
The customer’s session type is dual : where the vending machine sends a ChocolateBar, the
customer receives a ChocolateBar, and so forth. Figure 1 shows the vending machine and
customer as a GV program with its process structure.

GV establishes the restriction to tree-structured processes by restricting the primitive
for spawning processes. In GV, fork has type (S ⊸ end!)⊸ S. It takes a closure of type
S ⊸ end! as an argument, creates a channel with endpoints of dual types S and S, spawns
the closure as a new process by supplying one of the endpoints as an argument, and then
returns the other endpoint. In essence, fork is a branching operation on the process structure:
it creates a new node connected to the current node by a single edge. Linearity guarantees
that the tree structure is preserved, even in the presence of higher-order channels.

Lindley and Morris [LM15] introduce a semantics for GV, which evaluates programs
embedded in process configurations, consisting of embedded programs, flagged as main (•)
or child (◦) threads, ν-binders to create new channels, and parallel compositions:

C,D ::= • M | ◦ M | (νx)C | (C ∥ D)

They introduce these process configurations together with a standard structural con-
gruence, which allows, amongst other things, the reordering of processes using commu-
tativity (C ∥ C′ ≡ C′ ∥ C), associativity (C ∥ (C′ ∥ C′′) ≡ (C ∥ C′) ∥ C′′), and scope extrusion
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let vendingMachine = λs.
let s = select Free s in

let s = offer s

{
1○ 7→ send chocolateBar
2○ 7→ send lollipop

}
close s

in let customer = λs.

offer s


Free 7→ let s = select 1○ s in

let (cb, s) = recv s in
wait s; eat cb

Busy 7→ wait s;hungry


in let s = fork (λs.vendingMachine s)
in customer s

(a) Vending machine and customer as a GV program.

vendingMachine

customer

s

s

(b) Process structure of Figure 1a.

Figure 1. Example program with acyclic process structure.

(C ∥ (νx)C′ ≡ (νx)(C ∥ C′) if x /∈ fv(C)). They guarantee acyclicity by defining an extrinsic
type system for configurations. In particular, the type system requires that in every parallel
composition C ∥ D, configurations C and D must have exactly one channel in common, and
that in a name restriction (νx)C, channel x cannot be used until it is shared across a parallel
composition.

These restrictions are sufficient to guarantee deadlock freedom. Unfortunately, they are
not preserved by process equivalence. As Lindley and Morris write, (noting that their name
restrictions bind channels rather than endpoint pairs, and their (νxy) abbreviates (νx)(νy)):

Alas, our notion of typing is not preserved by configuration equivalence. For
example, assume that Γ ⊢ (νxy)(C1 ∥ (C2 ∥ C3)), where x ∈ fv(C1), y ∈
fv(C2), and x, y ∈ fv(C3). We have that C1 ∥ (C2 ∥ C3) ≡ (C1 ∥ C2) ∥ C3,
but Γ ⊬ (νxy)((C1 ∥ C2) ∥ C3), as both x and y must be shared between the
processes C1 ∥ C2 and C3.

As a result, standard notions of progress and preservation are not enough to guarantee
deadlock freedom, as reduction sequences could include equivalence steps from well-typed to
non-well-typed terms. Instead, they must prove a stronger result:

Theorem 3 (Lindley and Morris [LM15]). If Γ ⊢ C, C ≡ C′, and C′ −→ D′, then there exists
D such that D ≡ D′ and Γ ⊢ D.

This is not a one-time cost: languages based on GV must either also give up on type
preservation for structural congruence [FLMD19] or admit deadlocks [ITT+19, TV20].

Note that CP only avoids the same issue through its combined (νx)(P ∥ Q) term;
attempts to split the term into a separate name restriction and parallel composition would
also lose typability of equivalence.

3. Hypersequent GV

We present Hypersequent GV (HGV), a linear λ-calculus extended with session types and
primitives for session-typed communication. HGV shares its syntax and static typing with
GV, but uses hyper-environments for runtime typing to simplify and generalise its semantics.
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Typing rules for terms Γ ⊢ M : T

TM-Var

x : T ⊢ x : T

TM-Const

· ⊢ K : T

TM-Lam
Γ, x : T ⊢ M : U

Γ ⊢ λx.M : T ⊸ U

TM-App
Γ ⊢ M : T ⊸ U ∆ ⊢ N : T

Γ,∆ ⊢ M N : U

TM-Unit

· ⊢ () : 1

TM-LetUnit
Γ ⊢ M : 1 ∆ ⊢ N : T

Γ,∆ ⊢ let () = M in N : T

TM-Pair
Γ ⊢ M : T ∆ ⊢ N : U

Γ,∆ ⊢ (M,N) : T × U

TM-LetPair
Γ ⊢ M : T × T ′ ∆, x : T , y : T ′ ⊢ N : U

Γ,∆ ⊢ let (x, y) = M in N : U

TM-Absurd
Γ ⊢ M : 0

Γ ⊢ absurd M : T

TM-Inl
Γ ⊢ M : T

Γ ⊢ inl M : T + U

TM-Inr
Γ ⊢ M : U

Γ ⊢ inr M : T + U

TM-CaseSum
Γ ⊢ L : T + T ′ ∆, x : T ⊢ M : U ∆, y : T ′ ⊢ N : U

Γ,∆ ⊢ case L {inl x 7→ M ; inr y 7→ N} : U

Type schemas for communication primitives K : T

link : S × S ⊸ end!

fork : (S ⊸ end!)⊸ S
send : T × !T.S ⊸ S
recv : ?T.S ⊸ T × S

wait : end? ⊸ 1

Duality S

!T.S = ?T.S ?T.S = !T.S end! = end? end? = end!

Figure 2. HGV, duality and typing rules for terms.

Types, terms, and static typing. Types (T , U) comprise a unit type (1), an empty type
(0), product types (T × U), sum types (T + U), linear function types (T ⊸ U), and session
types (S).

T ,U ::= 1 | 0 | T × U | T + U | T ⊸ U | S S ::= !T.S | ?T.S | end! | end?

Session types (S) comprise output (!T.S: send a value of type T , then behave like S), input
(?T.S: receive a value of type T , then behave like S), and dual end types (end! and end?).
The dual endpoints restrict process structure to trees [Wad14]; conflating them loosens this
restriction to forests [ALM16]. We let Γ,∆ range over type environments.

The terms and typing rules are given in Figure 2. The linear λ-calculus rules are standard;
communication primitives K are given as constants. Each communication primitive K has a
type schema: link takes a pair of compatible endpoints and forwards all messages between
them; fork takes a function, which is passed one endpoint (of type S) of a fresh channel
yielding a new child thread, and returns the other endpoint (of type S); send takes a pair
of a value and an endpoint, sends the value over the endpoint, and returns an updated
endpoint; recv takes an endpoint, receives a value over the endpoint, and returns the pair
of the received value and an updated endpoint; and wait synchronises on a terminated
endpoint of type end?. Output is dual to input, and end! is dual to end?. Duality is

involutive, i.e., S = S.
We write M ;N for let () = M in N , let x = M in N for (λx.N) M , λ().M for λz.z;M ,

and λ(x, y).M for λz.let (x, y) = z in M . We write K : T for · ⊢ K : T in typing derivations.
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Typing rules for configurations G ⊢ C : R

TC-New
G ∥ Γ, x : S ∥ ∆, y : S ⊢ C : R

G ∥ Γ,∆ ⊢ (νxy)C : R

TC-Par
G ⊢ C : R H ⊢ D : R′

G ∥ H ⊢ C ∥ D : R ⊓R′

TC-Main
Γ ⊢ M : T

Γ ⊢ • M : • T

TC-Child
Γ ⊢ M : end!

Γ ⊢ ◦ M : ◦

TC-Link

x : S, y : S, z : end? ⊢ x
z↔y : ◦

Configuration types

R ::= ◦ | • T

Configuration type combination R ⊓R′

• T ⊓ ◦ = • T ◦ ⊓ • T = • T ◦ ⊓ ◦ = ◦

Figure 3. HGV, typing rules for configurations.

Remark 3.1. We include link because it is convenient for the correspondence with CP,
which interprets CLL’s axiom as forwarding. We can encode link in GV via a type directed
translation akin to CLL’s identity expansion.

Configurations and runtime typing. Process configurations (C,D, E) comprise child

threads (◦ M), the main thread (• M), link threads (x
z↔y), name restrictions ((νxy)C), and

parallel compositions (C ∥ D). We refer to a configuration of the form ◦M or x
z↔y as an

auxiliary thread, and a configuration of the form •M as a main thread. We let A range over
auxiliary threads and T range over all threads (auxiliary or main).

ϕ ::= • | ◦ C,D, E ::= ϕ M | x
z↔y | C ∥ D | (νxy)C

The configuration language is reminiscent of π-calculus processes, but has some non-standard
features. Name restriction uses double binders [Vas12] in which one name is bound to each

endpoint of the channel. Link threads [LM16] handle forwarding. A link thread x
z↔y waits

for the thread connected to z to terminate before forwarding all messages between x and y.
Configuration typing departs from GV [LM15], exploiting hypersequents [Avr91] to

recover modularity and extensibility. Inspired by HCP [MP18, KMP19b, KMP19a], con-
figurations are typed under a hyper-environment, an unordered collection of disjoint type
environments. We let G,H range over hyper-environments, writing ∅ for the empty hyper-
environment, G ∥ Γ for disjoint extension of G with type environment Γ, and G ∥ H for
disjoint concatenation of G and H.

The typing rules for configurations are given in Figure 3. Rules TC-New and TC-Par

are key to deadlock freedom: TC-New joins two disjoint configurations with a new channel,
and merges their type environments; TC-Par combines two disjoint configurations, and
registers their disjointness by separating their type environments in the hyper-environment.
Rules TC-Main, TC-Child, and TC-Link type main, child, and link threads, respectively;
all three require a singleton hyper-environment. A configuration has type ◦ if it has no main
thread, and • T if it has a main thread of type T . The configuration type combination
operator ensures that a well-typed configuration has at most one main thread.

Operational semantics. Figure 4 gives the operational semantics for HGV, presented as
a deterministic reduction relation on terms and a nondeterministic reduction relation on
configurations. HGV values (U , V , W ), evaluation contexts (E), and term reduction rules
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Values and evaluation contexts
Values U, V ,W ::= K | λx.M | () | (V,W ) | inl V | inr V
Evaluation contexts E ::= □

| E M | V E
| let () = E in M
| (E,M) | (V,E) | let (x, y) = E in M
| inl E | inr E | case E {inl x 7→ M ; inr y 7→ N}

Thread contexts F ::= ϕ E

Term reduction M −→M N

E-Lam (λx.M) V −→M M{V/x}
E-Unit let () = () in M −→M M
E-Pair let (x, y) = (V,W ) in M −→M M{V/x,W/y}
E-Inl case inl V {inl x 7→ M ; inr y 7→ N} −→M M{V/x}
E-Inr case inr V {inl x 7→ M ; inr y 7→ N} −→M N{V/y}
E-Lift E[M ] −→M E[N ], if M −→M N

Structural congruence C ≡ D
SC-ParAssoc C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E
SC-NewComm (νxy)(νzw)C ≡ (νzw)(νxy)C
SC-ScopeExt (νxy)(C ∥ D) ≡ C ∥ (νxy)D, if x, y /∈ fv(C)

SC-ParComm C ∥ D ≡ D ∥ C
SC-NewSwap (νxy)C ≡ (νyx)C
SC-LinkComm x

z↔y ≡ y
z↔x

Configuration reduction C −→ D
E-Reify-Fork F [fork V ] −→ (νxx′)(F [x] ∥ ◦ (V x′)), where x, x′ fresh

E-Reify-Link F [link (x, y)] −→ (νzz′)(x
z↔y ∥ F [z′]), where z, z′ fresh

E-Comm-Link (νzz′)(νxx′)(x
z↔y ∥ ◦ z′ ∥ ϕ M) −→ ϕ (M{y/x′})

E-Comm-Send (νxy)(F [send (V, x)] ∥ F ′[recv y]) −→ (νxy)(F [x] ∥ F ′[(V, y)])
E-Comm-Close (νxy)(◦ y ∥ F [wait x]) −→ F [()]

E-Res
C −→ C′

(νxy)C −→ (νxy)C′

E-Par
C −→ C′

C ∥ D −→ C′ ∥ D

E-Equiv
C ≡ C′ C′ −→ D′ D′ ≡ D

C −→ D

E-Lift-M
M −→M M ′

F [M ] −→ F [M ′]

Figure 4. HGV, operational semantics.

(−→M) define a standard call-by-value, left-to-right evaluation strategy. A closed term either
reduces to a value or is blocked on a communication action.

Thread contexts (F ) extend evaluation contexts to threads. The structural congruence
rules are standard apart from SC-LinkComm, which ensures links are undirected, and
SC-NewSwap, which swaps names in double binders.

The configuration reduction relation gives a semantics for HGV’s communication and
concurrency constructs. The first two rules, E-Reify-Fork and E-Reify-Link, create child
and link threads, respectively. The next three rules, E-Comm-Link, E-Comm-Send, and
E-Comm-Close perform communication actions. The final four rules enable reduction under
name restriction and parallel composition, rewriting by structural congruence, and term

reduction in threads. Two rules handle links: E-Reify-Link creates a new link thread x
z↔y

which blocks on z of type end?, one endpoint of a fresh channel. The other endpoint, z′ of
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type end!, is placed in the evaluation context of the parent thread. When z′ terminates a
child thread, E-Comm-Link performs forwarding by substitution.

Remark 3.2. Note that E-Comm-Link does not fire if z′ is returned by a main thread. In
closed configurations, typing ensures that such a configuration cannot arise: intuitively, a
main thread can only obtain endpoints by fork or by receiving an endpoint.

Endpoints generated to communicate with forked threads (i.e., those passed to a child
thread) will always have a session type terminating with end?, and a child thread cannot
transmit an endpoint ending in end!, since the endpoint must be returned. Consequently,
there is no way for a main thread to obtain endpoints with dual session types as required by
the type of link. The case for open configurations is accounted for by our open progress
result (see Section 3.1).

Choice. HGV does not include constructs for internal and external choice (for example,
as shown in the vending machine example in Section 1). Internal and external choice are
instead encoded with sum types and session delegation [Kob03, DGS17]. Prior encodings of
choice in GV [LM15] are asynchronous. Instead, to encode synchronous choice we add a
‘dummy’ synchronisation before exchanging the value of sum type, as follows:

S ⊕ S′ ≜ !1.!(S1 + S2).end!

S & S′ ≜ ?1.?(S1 + S2).end?

⊕{} ≜ !1.!0.end!

&{} ≜ ?1.?0.end?

select ℓ ≜ λx.

(
let x = send ((), x) in
fork (λy.send (ℓ y, x))

)
offer L {inl x 7→ M ; inr y 7→ N}

≜
let ((), z) = recv L in let (w, z) = recv z
in wait z; case w {inl x 7→ M ; inr y 7→ N}

offer L {} ≜
let ((), c) = recv L in let (z, c) = recv c
in wait c;absurd z

3.1. Metatheory. HGV enjoys type preservation, deadlock freedom, confluence, and strong
normalisation.

Preservation. Hyper-environments enable type preservation under structural congruence,
which significantly simplifies the metatheory compared to GV.

Theorem 3.3 (Preservation).

(1) If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
(2) If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Proof. By induction on the derivations of C ≡ D and C −→ D. See Appendix A.

Before moving onto progress, we must introduce some technical machinery to allow us
to reason about the structure of HGV programs.
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Abstract process structures. Unlike in GV, in HGV we cannot rely on the fact that
exactly one channel is split over each parallel composition. Instead, we introduce the notion
of an abstract process structure (APS). Abstract process structures are a crucial ingredient
in showing that HGV configurations can be written in tree canonical form, which helps both
with establishing progress results and also the correspondence between HGV and GV.

We begin by establishing the intuition behind the notion of an APS, and then describe
the formal definitions. An APS is a graph defined over a hyper-environment G and a set of
undirected pairs of co-names (a co-name set) N drawn from the names in G.

The nodes of an APS are the type environments in G. Each edge is labelled by a distinct
co-name pair {x1, x2} ∈ N , such that x1 : S ∈ Γ1 and x2 : S ∈ Γ2.

Example 3.4.

Let G = Γ1 ∥ Γ2 ∥ Γ3, where Γ1 = x : S1, y : S2, Γ2 = x′ : S1, z : T ,

and Γ3 = y′ : S2, and suppose N = {{x, x′}, {y, y′}}. The APS for

G and N is illustrated to the right.

Γ1

Γ2 Γ3

{x, x′} {y, y′}

{{x, x′}, {y, y′}}

Example 3.5.

Let G = Γ1 ∥ Γ2 ∥ Γ3, where Γ1 = x : S1, z
′ : S3, and

Γ2 = x′ : S1, y : S2, and Γ3 = y′ : S2, z : S3, and suppose
N = {{x, x′}, {y, y′}, {z, z′}}. The APS for G and N is illustrated
to the right.

Γ1

Γ2 Γ3

{x, x′}

{y, y′}

{z, z′}

{{x, x′}, {y, y′}, {z, z′}}

Let us now discuss the formal definition of an APS. We begin by recalling the definition
of an undirected edge-labelled multigraph: an undirected graph that allows multiple edges
between vertices.

Definition 3.6 (Undirected Multigraph). An undirected multigraph G is a 3-tuple (V, E , r)
where:

(1) V is a set of vertices
(2) E is a set of edge names
(3) r is a function r : E 7→ {{v, w} : v, w ∈ V} from edge names to an unordered pair of

vertices

Denote the size of a set as |·|. A path is a sequence of edges connecting two vertices.
A multigraph G = (V, E , r) is connected if |V| = 1, or if for every pair of vertices v, w ∈ V
there is a path between v and w. A multigraph is acyclic if no path forms a cycle. A leaf is
a vertex connected to the remainder of a graph by a single edge.

Definition 3.7 (Leaf). Given an undirected multigraph (V, E , r), a vertex v ∈ V is a leaf if
there exists a single e ∈ E such that v ∈ r(e).

In an undirected tree containing at least two vertices, there must be at least two leaves.

Lemma 3.8. If G = (V, E , r) is an undirected tree where |V | ≥ 2, then there exist at least
two leaves in V.
Proof. For G to be an undirected tree where |V | ≥ 2 and have fewer than two leaves, then
there would need to be a cycle, contradicting acyclicity.

With the graph preliminaries in place, we are now ready to introduce the formal definition
of an APS.
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Definition 3.9 (Abstract process structure). The abstract process structure of a hyper-
environment H with respect to a co-name set N = {{x1, y1}, . . . , {xn, yn}} is an undirected
multigraph (V, E , r) defined as follows:

(1) V = envs(H)
(2) E = N
(3) r = ({x, y} 7→ {Γ1,Γ2}) for each {x, y} ∈ N such that Γ1 ∈ envs(H),Γ2 ∈ envs(H), x ∈

fv(Γ1), y ∈ fv(Γ2)

Example 3.10. The formal definition of the APS described in Example 3.4 is defined as:

• V = {Γ1,Γ2,Γ3}
• E = {{x, x′}, {y, y′}}
• r({x, x′}) 7→ {Γ1,Γ2})
r({y, y′}) 7→ {Γ1,Γ3})

Whereas Example 3.4 is a tree, Example 3.5 contains a cycle. Only configurations typeable
under a hyper-environment with a tree structure can be written in tree canonical form.

Definition 3.11 (Tree structure). A hyper-environment H with co-name set N has a tree
structure, written Tree(H,N ), if its APS is connected and acyclic.

An HGV program • M has a single type environment, so is tree-structured; the same
goes for child and link threads. A key feature of HGV is a subformula principle, which states
that all hyper-environments arising in the derivation of an HGV program are tree-structured.
It follows that a configuration resulting from the reduction of an HGV program is also
tree structured. Read bottom-up, TC-New and TC-Par preserve tree structure, which is
illustrated by the following two pictures.

G
N

Γ ∆

N ⊎ {{z, z′}, {x, y}}

{z, z′}

{x, y}

G
N

Γ,∆

{z, z′}

N ⊎ {{z, z′}}

G

H

N1

N2

G

H

N1

N2

N1 ⊎N2 ⊎ {{x, x′}}

{x, x′}

The following lemma states this intuition formally. By analogy to Kleene equality, we

write P ≏⇐⇒ Q, to mean that either P or Q is undefined, or P ⇐⇒ Q.

Lemma 3.12 (Tree structure).

• Tree((H ∥ Γ1, x1 : S ∥ Γ2, x2 : S),N ⊎ {{x1, x2}})
≏⇐⇒ Tree((H ∥ Γ1,Γ2)),N )

• Tree((H1 ∥ Γ1, x1 : S),N1) ∧ Tree((H2 ∥ Γ2, x2 : S),N2)
≏⇐⇒ Tree((H1 ∥ Γ1, x1 : S ∥

H2 ∥ Γ2, x2 : S),N1 ⊎N2 ⊎ {{x1, x2}})

Proof. By the definition of
≏⇐⇒, we need only consider the cases where both sides of the

bi-implication are defined. Both results follow from the observation that adding an edge
between two trees results in a tree, and removing an edge from a tree partitions the tree
into two subtrees.
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Tree canonical form. We now define a canonical form for configurations that captures
the tree structure of an APS. Tree canonical form enables a succinct statement of open
progress (Lemma 3.17) and a means for embedding HGV in GV (Proposition 4.5).

Definition 3.13 (Tree canonical form). A configuration C is in tree canonical form if it can
be written: (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · · ) where xi ∈ fv(Ai) for 1 ≤ i ≤ n.

Every well-typed HGV configuration typeable under a single type environment can be
written in tree canonical form.

Theorem 3.14 (Well-typed configurations in tree canonical forms). If Γ ⊢ C : R, then there
exists some D such that C ≡ D and D is in tree canonical form.

Proof. By induction on the number of ν-binders in C. In the case that n = 0, it must be
the case that Γ ⊢ ϕM : R for some thread M , since parallel composition is only typeable
under a hyper-environment containing two or more type environments. Therefore, C is in
tree canonical form by definition.

In the case that n ≥ 1, by Theorem 3.3, we can rewrite the configuration as:

(νx1y1) · · · (νxnyn)(◦M1 ∥ · · · ∥ ◦Mn ∥ ϕN)

Fix N = {{xi, yi} | 1 ≤ i ≤ n}. By definition, Γ has a tree structure with respect to
an empty co-name set. By repeated applications of TC-New, there exists some G such
that G ⊢ ◦M1 ∥ · · · ∥ ◦Mn ∥ ϕN : T ; by Lemma 3.12 (clause 1, right-to-left), G has a tree
structure.

Construct the APS for G using names N ; by Lemma 3.8, there exist Γ1,Γ2 ∈ envs(H)
such that Γ1 and Γ2 are leaves of the tree and therefore by the definition of the APS contain
precisely one ν-bound name. By TC-Par, there must exist two threads C1, C2 such that
Γ1 ⊢ C1 : R1 and Γ2 ⊢ C2 : R2. By runtime type combination, at least one of R1, R2 must be
◦; without loss of generality assume this is R1. Suppose (again without loss of generality)
that the ν-bound name contained in Γ1 is x1 and L1 = M1.

Let D = (νx2y2) · · · (νxnyn)(◦M2 ∥ · · · ∥ ◦Mn ∥ ϕN). By Theorem 3.3 and the fact
that x1 is the only ν-bound variable in M1, we have that C ≡ (νx1y1)(◦M1 ∥ D). By the
induction hypothesis, there exists some D′ such that D ≡ D′ and D′ is in canonical form.
By construction we have that C ≡ (νx1y1)(◦M1 ∥ D′), which is in tree canonical form as
required.

As hyper-environments capture parallelism, a configuration C typeable under hyper-
environment Γ1 ∥ · · · ∥ Γn is equivalent to n independent parallel processes.

Proposition 3.15 (Independence). If Γ1 ∥ · · · ∥ Γn ⊢ C : R, then there exist R1, . . . , Rn and
D1, . . . ,Dn such that R = R1 ⊓ · · · ⊓Rn and C ≡ D1 ∥ · · · ∥ Dn and Γi ⊢ Di : Ri for each i.

Proof. By induction on the derivation of Γ1 ∥ · · · ∥ Γn ⊢ C : R. The cases for TC-Main,
TC-Child, and TC-Link follow immediately. The cases for TC-New and TC-Par follow
from the IH and structural congruence rules.

It follows from Theorem 3.14 and Proposition 3.15 that any well-typed HGV configuration
can be written as a forest of independent configurations in tree canonical form.
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Progress and Deadlock Freedom. With tree canonical forms defined, we can now state a
progress result. A thread is blocked on an endpoint x if it is ready to perform a communication
action on x.

Definition 3.16 (Blocked thread). We say that thread T is blocked on variable z, written

blocked(T , z), if either: T = ◦ z; T = x
z↔y, for some x, y; or T = F [N ] for some F , where

N is send (V, z), recv z, or wait z.

We let Ψ range over type environments containing only session-typed variables, i.e.,
Ψ ::= · | Ψ, x : S, which lets us reason about configurations that are closed except for
runtime names. Using Lemma 3.17 we obtain open progress for configurations with free
runtime names.

Lemma 3.17 (Open Progress). Suppose Ψ ⊢ C : T where

C = (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · · )

is in tree canonical form. Either C −→ D for some D, or:

(1) For each Ai (1 ≤ i ≤ n), blocked(Ai, z) for some z ∈ {xi} ∪ {yj | 1 ≤ j < i} ∪ fv(Ψ)
(2) Either N is a value or blocked(ϕN, z) for some z ∈ {yi | 1 ≤ i ≤ n} ∪ fv(Ψ)

Proof. Open progress follows as a direct corollary of a slightly more verbose property which
holds on HGV processes, proved by induction on the derivation of an inductive definition of
tree canonical forms. See Appendix A for details.

Closed configurations enjoy a stronger result: if a closed configuration cannot reduce,
then each auxiliary thread must either be a value, or be blocked on its neighbouring endpoint.

Lemma 3.18 (Closed Progress). Suppose Ψ ⊢ C : R where

C = (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · · )

is in tree canonical form. Either C −→ D for some D, or:

(1) For each Aj for 1 ≤ j ≤ n, blocked(Aj , xj)
(2) N is a value

Proof. Since the environment is closed, by Lemma 3.17, for each Aj it must be that
blocked(Aj , z) for some z ∈ {yi | i ∈ 1..j − 1} ∪ {xj}.

Note that if two names x, y are co-names, and one thread is blocked on x, and another
is blocked on y, then due to typing the names must be dual and reduction can occur.

Consider A1. Since the environment is closed, A1 must be blocked on x1. Next, consider
A2; the thread cannot be blocked on y1 as reduction would occur. By the definition of tree
canonical forms, A2 must contain x2 and by the typing rules cannot contain y2, so the thread
must be blocked on x2. The argument extends to the remainder of the configuration.

Finally, for ground configurations, where the main thread does not return a runtime
name or capture a runtime name in a closure, we obtain a yet tighter result, global progress,
which implies deadlock freedom [CDM14].

Definition 3.19 (Ground configuration). A configuration C is a ground configuration if
· ⊢ C : T , C is in canonical form, and T does not contain session types or function types.

Our main progress result states that a ground configuration can reduce, or is a value.
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Typing rules for configurations Γ ⊢GV C : T

TG-New
Γ, ⟨x, y⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νxy)C : R

TG-Connect1

Γ1, x : S ⊢GV C : R
Γ2, y : S ⊢GV D : R′

Γ1,Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓R′

TG-Connect2

Γ1, y : S ⊢GV C : R
Γ2, x : S ⊢GV D : R′

Γ1,Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓R′

TG-Child
Γ ⊢GV M : end!

Γ ⊢GV ◦M : ◦

TG-Main
Γ ⊢GV M : T

Γ ⊢GV •M : • T

TG-Link

x : S, y : S, z : end? ⊢GV x
z↔y : ◦

Figure 5. GV, typing rules for configurations.

Theorem 3.20 (Global progress). Suppose C is a ground configuration. Either there exists
some D such that C −→ D, or C = •V for some value V .

Proof. By Lemma 3.18, either C can reduce, or C can be written:

(νx1y1)(◦A1 ∥ · · · ∥ (νxnyn)(◦An ∥ •V ) · · · )

where blocked(Ai, xi) for each {xi | i ∈ 1..n}.
Since C is ground, fv(V ) = ∅. By definition, tree canonical form ensures that no cycles

are present amongst threads, so no auxiliary thread can be blocked. It follows that if C ̸−→,
then there cannot be any auxiliary threads and thus C = •V for some value V .

Determinism and Strong Normalisation. HGV enjoys a strong form of determinism
known as the diamond property, and due to linearity it enjoys strong normalisation. Unlike
with preservation and progress, the addition of hypersequents does not substantially change
the arguments from [LM15].

Theorem 3.21 (Diamond property). If G ⊢ C : T , C −→ D, and C −→ D′, then D ≡ D′.

Proof. Similar to that of GV [LM15, Fow19]: −→M is deterministic, and due to linearity,
any overlapping reductions are separate and may be performed in either order.

Theorem 3.22 (Termination). If G ⊢ C : T , there are no infinite sequences C −→−→ · · · .

Proof. As with GV [LM15, Fow19], due to linearity, HGV has an elementary strong normal-
isation proof. Let the size of a configuration be the sum of the sizes of all abstract syntax
trees of all terms contained in threads. The size of a configuration is invariant under ≡ and
strictly decreases under −→, so no infinite reduction sequences can exist.

4. Relation between HGV and GV

In this section, we show that well-typed GV configurations are well-typed HGV configurations,
and well-typed HGV configurations with tree structure are well-typed GV configurations.
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GV. HGV and GV share a common term language and reduction semantics, so only differ
in their runtime typing rules. Figure 5 gives the runtime typing rules for GV. We adapt the
rules to use a double-binder formulation to concentrate on the essence of the relationship
with HGV, but it is trivial to translate GV with single binders into GV with double binders.

GV uses a pseudo-type S♯ to type channels. Unlike endpoints, channels cannot appear
in terms. Read bottom-up, rule TG-New types a name restriction (νxy)C, adding ⟨x, y⟩ : S♯

to the type environment, which along with TG-Connect1 and TG-Connect2 ensures that
a session channel of type S will be split into endpoints x and y over a parallel composition.
In turn, this enforces a tree process structure. The remaining typing rules are as in HGV.

A simple embedding of GV into HGV. The simplest embedding of GV in HGV relies
on the observation from Section 2 that each parallel composition splits a single channel. Let
C ∥⟨x,y⟩ D denote two configurations C and D connected by a channel with endpoints x, y.
We can write an arbitrary closed GV configuration in the form:

C1 ∥⟨x1,y1⟩ · · · ∥⟨xn−2,yn−2⟩ Cn−1 ∥⟨xn−1,yn−1⟩ Cn
where each C does not contain a further parallel composition, and any main thread is in Cn.
We can then subsequently embed the configuration in HGV as:

(νx1y1)(C1 ∥ · · · ∥ (νxn−2yn−2)(Cn−2 ∥ (νxn−1yn−1)(Cn−1 ∥ Cn)) · · · )
which is well-typed by construction. As a corollary, every well-typed, closed GV configuration
is equivalent to a well-typed, closed HGV configuration.

A structure-preserving embedding of GV into HGV. Though the simple embedding
of GV into HGV is sound, it does not respect the intention of GV. In fact, we can provide
a stronger result: every well-typed open GV configuration is exactly a well-typed HGV
configuration.

Definition 4.1 (Flattening). Flattening, written ↓ , converts GV type environments and
HGV hyper-environments into HGV environments.

↓ · = ·
↓ (Γ, ⟨x, x′⟩ : S♯) = ↓Γ, x : S, x′ : S
↓ (Γ, x : T ) = ↓Γ, x : T

↓∅ = ∅
↓ (G ∥ Γ) = ↓ G,Γ

Definition 4.2 (Splitting). Splitting converts GV type environments into hyper-environments.

Given channels {⟨xi, x′i⟩ : S
♯
i}i∈1..n in Γ, a hyper-environment G is a splitting of Γ if ↓ G = ↓Γ

and ∃Γ1, . . . ,Γn+1 such that G = Γ1 ∥ · · · ∥ Γn+1, and Tree(G, {{x1, x′1}, . . . , {xn, x′n}}).
A well-typed GV configuration is typeable in HGV under a splitting of its type environment.

Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists
some G such that G is a splitting of Γ and G ⊢ C : R.

Proof. By induction on the derivation of Γ ⊢GV C : T (see Appendix B).

Example 4.4. Consider a configuration where a child thread pings the main thread:

(νxy)(◦ (send (ping , x)) ∥ • (let ((), y) = recv y in wait y))

We can write a GV typing derivation as follows:

x : !1.end!, ping : 1 ⊢GV ◦ (send (ping , x)) : ◦ y : ?1.end? ⊢GV • (let ((), y) = recv y in wait y) : • 1

⟨x, y⟩ : !1.end!
♯, ping : 1 ⊢GV (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : 1

ping : 1 ⊢GV (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : 1
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The corresponding HGV derivation is:

x : !1.end!, ping : 1 ⊢ ◦ (send (ping , x)) : ◦ y : ?1.end? ⊢ • (let ((), y) = recv y in wait y) : • 1

x : !1.end!, ping : 1 ∥ y : ?1.end? ⊢ (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

ping : 1 ⊢ (νxy)(◦(send (ping , x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

Note that x : !1.end!, ping : 1 ∥ y : ?1.end? is a splitting of ⟨x, y⟩ : (!1.end!)
♯, ping : 1.

Translating HGV to GV. As we saw in §2, unlike in HGV, equivalence in GV
is not type-preserving. It follows that HGV types strictly more processes than GV.
Let us revisit Lindley and Morris’ example from §1 (adapted to use double-binders),
where Γ1,Γ2,Γ3 ⊢GV (νxx′)(νyy′)(C ∥ (D ∥ E)) : R1 ⊓R2 ⊓R3 with Γ1, x : S ⊢GV C : R1,

Γ2, y : S′ ⊢GV D : R2, and Γ3, x
′ : S, y′ : S′ ⊢GV E : R3.

The structurally-equivalent term (νxx′)(νyy′)((C ∥ D) ∥ E) is not typeable in GV, since
we cannot split both channels over a single parallel composition:

Γ1,Γ2, x : S ̸⊢GV C ∥ D : R1 ⊓R2 Γ3, x
′ : S, ⟨y, y′⟩ : S′♯ ̸⊢GV E : R3

Γ1,Γ2,Γ3, ⟨x, x′⟩ : S♯, ⟨y, y′⟩ : S′♯ ̸⊢GV (C ∥ D) ∥ E : R1 ⊓R2 ⊓R3

Γ1,Γ2,Γ3, ⟨x, x′⟩ : S♯ ̸⊢GV (νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

Γ1,Γ2,Γ3 ̸⊢GV (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

However, we can type this process in HGV:

Γ1, x : S ⊢ C : R1 Γ2, y : S′ ⊢ D : R2

Γ1, x : S ∥ Γ2, y : S′ ⊢ C ∥ D : R1 ⊓R2 Γ3, x
′ : S, y′ : S′ ⊢ E : R3

Γ1, x : S ∥ Γ2, y : S′ ∥ Γ3, x
′ : S, y′ : S′ ⊢ (C ∥ D) ∥ E : R1 ⊓R2 ⊓R3

Γ1, x : S ∥ Γ2,Γ3, x
′ : S ⊢ (νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

Γ1,Γ2,Γ3 ⊢ (νxx′)(νyy′)((C ∥ D) ∥ E) : R1 ⊓R2 ⊓R3

Note in particular the shaded hyper-environment, which includes hyper-environment separa-
tors to separate endpoints x and x′, as well as y and y′. It follows that, unlike in GV, both
channels can be split over the same parallel composition. Similarly, the hyper-environment
separator allows C and D to be composed without sharing any channels.

Although HGV types more processes, every well-typed HGV configuration typeable
under a singleton hyper-environment Γ is equivalent to a well-typed GV configuration, which
we show using tree canonical forms.

Proposition 4.5. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

Proof. By induction on the derivation of Γ ⊢ C : R, making use of an inductive definition of
tree canonical forms. See Appendix B for details.

Remark 4.6. It is not the case that every HGV configuration typeable under an arbitrary
hyper-environment H is equivalent to a well-typed GV configuration. This is because
open HGV configurations can form forest process structures, whereas (even open) GV
configurations must form a tree process structure.

Since we can write all well-typed HGV configurations in canonical form, and HGV tree
canonical forms are typeable in GV, it follows that every well-typed HGV configuration
typeable under a single type environment is equivalent to a well-typed GV configuration.
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Typing rules for processes P ⊢ G

TP-Link

x↔Ay ⊢ x : A, y : A⊥

TP-New
P ⊢ G ∥ Γ, x : A ∥ ∆, y : A⊥

(νxy)P ⊢ G ∥ Γ,∆

TP-Par
P ⊢ G Q ⊢ H
P ∥ Q ⊢ G ∥ H

TP-Halt

0 ⊢ ∅

TP-Close
P ⊢ ∅

x[].P ⊢ x : 1

TP-Wait
P ⊢ Γ

x().P ⊢ Γ, x : ⊥

TP-Send
P ⊢ Γ, y : A ∥ ∆, x : B

x[y].P ⊢ Γ,∆, x : A⊗B

TP-Recv
P ⊢ Γ, y : A, x : B

x(y).P ⊢ Γ, x : A`B

TP-Offer-Absurd

x ▷ {} ⊢ Γ, x : ⊤

TP-Select-Inl
P ⊢ Γ, x : A

x ◁ inl.P ⊢ Γ, x : A⊕B

TP-Select-Inr
P ⊢ Γ, x : B

x ◁ inr.P ⊢ Γ, x : A⊕B

TP-Offer
P ⊢ Γ, x : A Q ⊢ Γ, x : B

x ▷ {inl : P ; inr : Q} ⊢ Γ, x : A&B

Duality A⊥

(A⊗B)⊥ = A⊥ `B⊥

(A`B)⊥ = A⊥ ⊗B⊥
(1)⊥ = ⊥
(⊥)⊥ = 1

(A⊕B)⊥ = A⊥ &B⊥

(A&B)⊥ = A⊥ ⊕B⊥
(0)⊥ = ⊤
(⊤)⊥ = 0

Figure 6. HCP, duality and typing rules for processes.

Corollary 4.7. If Γ ⊢ C : R, then there exists some D such that C ≡ D and Γ ⊢GV D : R.

5. Relation between HGV and HCP

In this section, we explore two translations, from HGV to HCP and from HCP to HGV,
together with their operational correspondence results.

Hypersequent CP. HCP [MP18, KMP19b] is a session-typed process calculus with a
correspondence to CLL, which exploits hypersequents to fix extensibility and modularity
issues with CP.

Types (A, B) consist of the connectives of linear logic: the multiplicative operators (⊗,
`) and units (1, ⊥) and the additive operators (⊕, &) and units (0, ⊤).

A,B ::= 1 | ⊥ | 0 | ⊤ | A⊗B | A`B | A⊕B | A&B

Type environments (Γ, ∆) associate names with types. Hyper-environments (G, H) are
collections of type environments. The empty type environment and hyper-environment are
written · and ∅, respectively. Names in type and hyper-environments must be unique and
environments may be combined, written Γ,∆ and G ∥ H, only if they are disjoint.

Processes (P , Q) are a variant of the π-calculus with forwarding [San96, Bor98], bound
output [San96], and double binders [Vas12]. The syntax of processes is given by the typing
rules (Figure 6), which are standard for HCP [MP18, KMP19b]: x↔Ay forwards messages
between x and y; (νxy)P creates a channel with endpoints x and y, and continues as P ;
P ∥ Q composes P and Q in parallel; 0 is the terminated process; x[y].P creates a new
channel, outputs one endpoint over x, binds the other to y, and continues as P ; x(y).P
receives a channel endpoint, binds it to y, and continues as P ; x[].P and x().P close x and
continue as P ; x ◁ inl.P and x ◁ inr.P make a binary choice; x ▷ {inl : P ; inr : Q} offers a
binary choice; and x ▷ {} offers a nullary choice. As HCP is synchronous, the only difference
between x[y].P and x(y).P is their typing (and similarly for x[].P and x().P ). We write
unbound send as x⟨y⟩.P (short for x[z].(y↔z ∥ P )), and synchronisation as x̄.P (short for
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Action rules
Act-Pref
π.P

π−→ P

Act-Link1

x↔y
x↔y−→ 0

Act-Link2

x↔y
y↔x−→ 0

Act-Off-Inl

x ▷ {inl : P ; inr : Q} x▷inl−→ P

Act-Off-Inr

x ▷ {inl : P ; inr : Q} x▷inr−→ Q

Communication Rules

Alp-Link
P

x↔z−→ P ′

(νxy)P
α−→ P ′{z/y}

Bet-Send

P
x[x′]∥y(y′)−→ P ′

(νxy)P
β−→ (νxy)(νx′y′)P ′

Bet-Close

P
x[]∥y()−→ P ′

(νxy)P
β−→ P ′

Bet-Inl

P
x◁inl∥y▷inl−→ P ′

(νxy)P
β−→ (νxy)P ′

Bet-Inr

P
x◁inr∥y▷inr−→ P ′

(νxy)P
β−→ (νxy)P ′

Structural Rules
Str-Res

P
ℓ−→ P ′ x, y ̸∈ cn(ℓ)

(νxy)P
ℓ−→ (νxy)P ′

Str-Par1

P
ℓ−→ P ′ bn(ℓ) ∩ fn(Q) = ∅

P ∥ Q
ℓ−→ P ′ ∥ Q

Str-Par2

Q
ℓ−→ Q′ bn(ℓ) ∩ fn(P ) = ∅

P ∥ Q
ℓ−→ P ∥ Q′

Str-Syn

P
ℓ−→ P ′ Q

ℓ′−→ Q′ bn(ℓ) ∩ bn(ℓ′) = ∅

P ∥ Q
l∥l′−→ P ′ ∥ Q′

Figure 7. HCP, label transition semantics.

x[z].(z[].0 ∥ P )) and x.P (short for x(z).z().P ). Duality is standard and is involutive, i.e.,
(A⊥)⊥ = A.

We define a standard structural congruence (≡) similar to that of HGV, i.e., parallel
composition is commutative and associative, we can commute name restrictions, swap the
order of endpoints, swap links, and have scope extrusion (similar to Figure 4). Note that
since we base our formal developments on an LTS semantics, structural congruence is not
required for reduction.

x↔Ay ≡ y↔A⊥
x P ∥ 0 ≡ P P ∥ Q ≡ Q ∥ P P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R

(νxx′)(νyy′)P ≡ (νyy′)(νxx′)P (νxy)P ≡ (νyx)P

(νxy)(P ∥ Q) ≡ P ∥ (νxy)Q if x, y ̸∈ fv(P )

We define the labelled transition system for HCP as a small refinement of the LTS
for the additive-multiplicative fragment of the πLL calculus introduced by Montesi and
Peressotti [MP21], in turn inspired by their previous system CT [MP18]. The LTS is
identical, save for the fact that we distinguish two types of internal actions. Action labels l
represent the actions that a process can fire. Prefixes π are a convenient subset of action
labels which can be written as prefixes to processes, i.e., π.P . Transition labels ℓ include
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action labels and the parallel composition of two action labels, along with internal actions
α, β, and τ . The LTS gives rise to two types of internal action: α represents only the
evaluation of links as renaming, and β represents only communication. Labels τ arise only
due to saturated transition (Definition 5.4) and are not produced by the rules in the LTS.

Prefixes π ::= x[y] | x[] | x(y) | x() | x ◁ inl | x ◁ inr
Action Labels l ::= π | x↔y | x ▷ inl | x ▷ inr
Transition Labels ℓ ::= l | l ∥ l′ | α | β

We let ℓx range over labels on x: x↔y, x[y], x[], etc. Labelled transition
ℓ−→ is defined

in Figure 7. We write
ℓ−→ ℓ′−→ for the composition of

ℓ−→ and
ℓ′−→,

ℓ+−→ for the transitive

closure of
ℓ−→, and

ℓ∗−→ for the reflexive-transitive closure of
ℓ−→. We write bn(ℓ) and fn(ℓ)

for the bound and free names contained in ℓ, respectively. We write cn(ℓ) for all names in ℓ,
i.e., cn(ℓ) = fn(ℓ) ∪ bn(ℓ).

Metatheory. Transitions preserve typeability. Since internal actions occur only under
binders, they are typable under the same hyper-environment.

Theorem 5.1 (Type Preservation). Suppose P ⊢ G and P
ℓ−→ Q.

• If ℓ is internal, then Q ⊢ G.
• If ℓ is not internal, then there exists some H such that Q ⊢ H.

Proof. Following the approach of [KMP19a, MP18, MP21], type preservation is established
by defining proof transformations on typing derivations of each reducing process. The only
difference with respect to [MP18, MP21] arises due to our separate treatment of α and β
actions, which does not materially impact the proof.

Similarly, our LTS for HCP satisfies progress. Following [KMP19a, MP21], the key
intermediate step is to note that for every type environment in a hyper-environment, there
is some free name which can be acted upon. Again, the stratification of internal actions does
not materially impact the proof.

Theorem 5.2 (Progress). If P ⊢ H and P ̸≡ 0, then there exist some ℓ,Q such that

P
ℓ−→ Q.

Behavioural Theory. The behavioural theory for HCP follows Kokke et al. [KMP19a],
except that we distinguish two subrelations of weak bisimilarity, following the subtypes of
internal actions.

Definition 5.3 (Strong bisimulation and strong bisimilarity). A symmetric relation R on

processes is a strong bisimulation if P R Q implies that if P
ℓ−→ P ′, then Q

ℓ−→ Q′ for
some Q′ such that P ′ R Q′. Strong bisimilarity is the largest relation ∼ that is a strong
bisimulation.

Definition 5.4 (Saturated transition). The L-saturated transition relation, for L ⊆ {α, β},
is the smallest relation =⇒L closed under the following rules, with saturated transition labels
ℓ ranging over transition labels and the distinguished label τ :

P
τ

=⇒L P

P
τ

=⇒L P ′ ℓ−→ Q′ τ
=⇒L Q ℓ ∈ L

P
τ

=⇒L Q

P
τ

=⇒L P ′ ℓ−→ Q′ τ
=⇒L Q ℓ /∈ L

P
ℓ

=⇒L Q
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We write =⇒ℓ as shorthand for =⇒{ℓ}, and we write =⇒ as shorthand for =⇒{α,β}.

Definition 5.5 (Weak bisimulation and weak bisimilarity). A symmetric relation R on

processes is an L-bisimulation, for L ⊆ {α, β}, if P R Q implies that if P
ℓ′

=⇒L P ′, then

Q
ℓ′

=⇒L Q′ for some Q′ such that P ′ RQ′. The L-bisimilarity relation is the largest relation
≈L that is an L-bisimulation. We write ≈ as shorthand for ≈{α,β}.

Lemma 5.6. Structural congruence, strong bisimilarity and the various forms of weak
bisimilarity are related as follows:

≡ ⊂ ∼ ∼ ⊂ ≈ ∼ ⊂ ≈α ∼ ⊂ ≈β

Differences with previous version. The LTS in Figure 7 is similar to that in the previous
version of this work [FKD+21], with the exception that we have removed the rules Tau-Alp

and Tau-Bet:

�
�
�

�
��Tau-Alp

P
α−→ P ′

P
τ−→ P ′

�
�

�
�
��Tau-Bet

P
β−→ P ′

P
τ−→ P ′

To see why these rules are problematic, consider processes P = (νxy)(z↔x ∥ y[].0) and
Q = z[].0. Following Definition 5.5, P and Q are α-bisimilar, as P only has the α-transition

P
α−→ Q and Q has no transitions. In the previous version, Tau-Alp gave P the derived

τ -transition P
τ−→ Q, which meant that P ̸≈α Q, as Q ̸ τ=⇒ Q. Therefore Tau-Alp collapses

≈α to ∼ and Tau-Bet collapses ≈β to ∼.
The solution we adopted was to remove Tau-Alp and Tau-Bet from the label transition

relation −→, and instead lift α- and β-transitions to τ -transitions in the definition of
saturated transition1.

Translating HGV to HCP. We factor the translation from HGV to HCP into two
translations: (1) a translation into HGV∗, a fine-grain call-by-value [LPT03] variant of HGV,
which makes control flow explicit; and (2) a translation from HGV∗ to HCP. In so doing, we
can concentrate on the essence of the translations as opposed to concerning ourselves with
administrative reductions.

HGV∗. We define HGV∗ as a refinement of HGV in which any non-trivial term must be
named by a let-binding before being used. While let is syntactic sugar in HGV, it is part of
the core language in HGV∗. Correspondingly, the reduction rule for let follows from the
encoding in HGV, i.e., let x = V in M −→M M{V/x}.

Terms L,M,N ::= V | let x = M in N | V W
| let () = V in M | let (x, y) = V in M
| absurd V | case V {inl x 7→ M ; inr y 7→ N}

Values V ,W ::= x | K | λx.M | () | (V,W ) | inl V | inr V
Evaluation contexts E ::= □ | let x = E in M
Thread contexts F ::= ϕ E

1We thank Marco Peressotti for notifying us of the error and suggesting the fix.
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Remark 5.7. Fine-grain call-by-value λ-calculi typically include an explicit return V
construct to embed values into the term language. As there is no difference between the
shapes of the value and term typing judgements, we allow ourselves to embed values directly
for simplicity.

We can näıvely translate HGV to HGV∗ (L·M) by let-binding each subterm in a value
position, e.g., Linl MM = let z = LMM in inl z.

Definition 5.8 (Näıve translation of HGV to HGV∗).
LxM = x
Lλx.MM = λx.LMM
LL MM = let x = LLM in let y = LMM in x y
L()M = ()
Llet () = L in MM = let z = LLM in let () = z in LMM
L(M,N)M = let x = LMM in let y = LNM in (x, y)
Llet (x, y) = L in MM = let z = LLM in let (x, y) = z in LMM
Linl MM = let z = LMM in inl z
Linr MM = let z = LMM in inr z
Lcase L {inl x 7→ M ; inr y 7→ N}M = let z = LLM in case z {inl x 7→ LMM; inr y 7→ LNM}
Labsurd LM = let z = LLM in absurd z

Standard techniques can be used to avoid administrative redexes [Plo75, DMN07]. We
give a full definition of HGV∗ in Appendix C.

HGV∗ to HCP. The translation from HGV∗ to HCP is given in Figure 8. All control flow
is encapsulated in values and let-bindings. We define a pair of translations on types, T·U and
V·W, such that TTU = VTW⊥. We extend these translations pointwise to type environments
and hyper-environments. We define translations on configurations (J·Kcr), terms (J·Kmr ) and
values (J·Kvr), where r is a fresh name denoting a distinguished output channel.

We translate an HGV sequent G ∥ Γ ⊢ C : T as JCKcr ⊢ TGU ∥ TΓU, r : TTU⊥, where Γ is
the type environment corresponding to the main thread. The translation of computations
includes synchronisation action in order to faithfully simulate a call-by-value reduction
strategy. The (term) translation of a value JV Kmr immediately pings the output channel
r to announce that it is a value. The translation of a let-binding Jlet w = M in NKmr
first evaluates M to a value, which then pings the internal channel x/x′ and unblocks the
continuation x.JNKmr . The translations of main and child threads each make use of an
internal result channel. The translation of a child thread consumes the yielded unit endpoint
once the child thread has terminated. The translation of the main thread forwards the result
value along the external output channel once the main thread has terminated.

There are two changes with respect to the translation of our earlier paper [FKD+21].
First, in the earlier work the translation of the main thread output directly to the external
output channel instead of forwarding via an intermediary as in the current translation. This
change is purely aesthetic. Second, in the earlier work the translation of fork was not
sufficiently concurrent. Correspondingly there was an error in the case of the operational
correspondence proof which is fixed in the current paper.

Lemma 5.9 (Type Preservation).

(1) If Γ ⊢ V : T , then JV Kvr ⊢ TΓU, r : TTU⊥.
(2) If Γ ⊢ M : T , then JMKmr ⊢ TΓU, r : 1⊗ TTU⊥.
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Translation on types TTU and VTW

T!T.SU = TTU⊥ ⊗ TSU
T?T.SU = TTU⊥ ` TSU

Tend!U = 1
Tend?U = ⊥

TTU = VTW⊥,
if T is not a session type

VT × UW = VTW⊗ VUW
VT + UW = VTW⊕ VUW

V1W = 1
V0W = 0

VT ⊸ UW = VTW⊥ ` (1⊗ VUW)
VSW = TSU⊥

Translation on configurations, terms, and values JCKcr, JMKmr , and JV Kvr

J◦ MKcr = (νyy′)(JMKmy ∥ y′.y′[].0)
J• MKcr = (νyy′)(JMKmy ∥ y′.y′↔r)

J(νxx′)CKcr = (νxx′)JCKcr
J C ∥ DKcr = JCKcr ∥ JDKcr

Jx z↔yKcr = z̄.z().x↔y

JxKvr = r↔x
Jλx.MKvr = r(x).JMKmr

J()Kvr = r[].0
J(V,W )Kvr = r[x].(JV Kvx ∥ JW Kvr)

Jinl V Kvr = r ◁ inl.JV Kvr
Jinr V Kvr = r ◁ inr.JV Kvr

JV W Kmr = (νxx′)(νyy′)(y⟨x⟩.r↔y ∥ JV Kvy′ ∥ JW Kvx′)

Jlet () = V in MKmr = (νxx′)(x().JMKmr ∥ JV Kvx′)
Jlet (x, y) = V in MKmr = (νyy′)(y(x).JMKmr ∥ JV Kvy′)

Jcase V {inl x 7→ M ; inr y 7→ N}Kmr = (νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ JV Kvx′)
Jabsurd V Kmr = (νxx′)(x ▷ {} ∥ JV Kvx′)
Jlet x = M in NKmr = (νxx′)(x.JNKmr ∥ JMKmx′)
JV Kmr = r̄.JV Kvr

JlinkKvr = r(y).y(x).r̄.r().x↔y
JforkKvr = (νyy′)(r(x).y⟨x⟩.r̄.r↔y ∥ y′(x).x⟨y′⟩.x.x[].0)
JsendKvr = r(y).y(x).y⟨x⟩.r̄.r↔y
JrecvKvr = r(x).x(y).r̄.r⟨y⟩.r↔x
JwaitKvr = r(x).x().r̄.r[].0

Figure 8. Translation from HGV∗ to HCP.

(3) If G ∥ Γ ⊢ C : T , where Γ is the type environment for the main thread in C, then
JCKcr ⊢ TGU ∥ TΓU, r : TTU⊥.

Lemma 5.10 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a
well-typed value, then (νww′)(JMKmr ∥ JV Kvw′) ≈α JM{V/w}Kmr .

Theorem 5.11 (Operational Correspondence). Suppose C is a well-typed configuration.

(1) (Preservation of reductions) If C −→ C′, then there exists a P such that JCKcr
β+

=⇒α P
and P ≈α JC′Kcr; and

(2) (Reflection of transitions)

• if JCKcr
α−→ P , then P ≈α JCKcr; and

• if JCKcr
β−→ P , then there exists a C′ and a P ′ such that C −→ C′ and P

β∗
=⇒α P ′ and

P ′ ≈α JC′Kcr. Furthermore, C′ is unique up to structural congruence.

The proof is in Appendix C. One might strive for a tighter operational correspondence
here, but our current translation generates multiple administrative β-transitions. The only
term reduction that translates to multiple β-transitions is the one for let-bindings. This is
because we choose to encode synchronisation using two β-transitions. We could adjust the
accounting here by treating synchronisation as a single β-transition or its own special kind of
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administrative transition. Many more administrative reductions arise from the configuration
translation. These are due to a combination of synchronisations and also the fact that we
use constants along with pairs and application for our communication primitives instead of
building-in fully-applied communication primitives.

Translating HCP to HGV. We cannot translate HCP processes to HGV terms directly:
HGV’s term language only supports fork (see Section 7 for further discussion), so there is
no way to translate an individual name restriction or parallel composition. However, we can
still translate HCP into HGV via the composition of known translations.

HCP into CP: We must first reunite each parallel composition with its corresponding
name restriction, i.e., translate to CP using the disentanglement translation shown
by Kokke et al. [KMP19b, Lemma 4.7]. The result is a collection of independent CP
processes.

CP into GV: Next, we can translate each CP process into a GV configuration using (a
variant of) Lindley and Morris’ translation [LM15, Figure 8].

GV into HGV: Finally, we can use our embedding of GV into HGV (Theorem 4.3) to
obtain a collection of well-typed HGV configurations, which can be composed using
TC-Par to result in a single well-typed HGV configuration.

The translation from HCP into CP and the embedding of GV into HGV preserve and
reflect reduction. However, as previously mentioned, Lindley and Morris’s original translation
from CP to GV preserves but does not reflect reduction due to an asynchronous encoding of
choice. By adapting their translation to use a synchronous encoding of choice (Section 3),
we obtain a translation from CP to GV that both preserves and reflects reduction. Thus,
composing all three translations together we obtain a translation from HCP to HGV that
preserves and reflects reduction.

6. Extensions

In this section, we outline three extensions to HGV that exploit generalising the tree structure
of processes to a forest structure. These extensions are of particular interest since HGV
already supports a core aspect of forest structure, enabling its full utilisation merely through
the addition of a structural rule. In contrast, to extend GV with forest structure one must
distinguish two distinct introduction rules for parallel composition [LM15, Fow19]. Other
extensions to GV such as shared channels [LM15], polymorphism [LM17], and recursive
session types [LM16] adapt to HGV almost unchanged.

From trees to forests. The TC-Par rule allows two processes to be composed in parallel
if they are typeable under separate hyper-environments. In a closed program, hyper-
environment separators are introduced by TC-Res, meaning that each process must be
connected by a channel.

The following TC-Mix rule allows two type environments Γ1,Γ2 to be split by a hyper-
environment separator without a channel connecting them, and is inspired by Girard’s
Mix rule [Gir87]; in the concurrent setting, Mix can be interpreted as concurrency without
communication [LM15, ALM16]. TC-Mix admits a much simpler treatment of link and
provides a crucial ingredient for handling exceptional behaviour.
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TC-Mix
G ∥ Γ1 ∥ Γ2 ⊢ C : R

G ∥ Γ1,Γ2 ⊢ C : R

Atkey et al. [ALM16] show that conflating the 1 and ⊥ types in CP (which correspond
respectively to the end! and end? types in GV) is logically equivalent to adding the Mix
rule and a 0-Mix rule (used to type an empty process). It follows that in the presence of
TC-Mix, we use self-dual end type; in the GV setting, by using a self-dual end type, we
decouple closing a channel from process termination. We therefore refine the TC-Child rule
and the type schema for fork to ensure that each child thread returns the unit value, and
replace the wait constant with a close constant which eliminates an endpoint of type end.

fork : (S ⊸ 1)⊸ S close : end⊸ 1

TC-Child
Γ ⊢ M : 1

Γ ⊢ ◦M : ◦

E-Close
(νxy)(E[close x] ∥ E′[close y]) −→ E[()] ∥ E′[()]

Given TC-Mix, we might expect a term-level construct spawn : (1⊸ 1)⊸ 1 which
spawns a parallel thread without a connecting channel. We can encode such a construct
using fork and close (assuming fresh x and y):

spawn M ≜ let x = fork(λy.close y; M) in close x

Assuming the encoded spawn is running in a main thread, after two reduction steps, we
are left with the configuration:

· ⊢ M : 1

· ⊢ ◦M : ◦
TC-Child

· ⊢ M : 1

· ⊢ •() : 1
TC-Main

· ∥ · ⊢ ◦M ∥ •() : 1
TC-Par

· ⊢ ◦M ∥ •() : 1
TC-Mix

Note the essential use of TC-Mix to insert a hyper-environment separator.
The addition of TC-Mix does not affect preservation or progress. The result follows

from routine adaptations of the proof of Theorem 3.3 and Theorem 3.20.
By relaxing the tree process structure restriction using TC-Mix, we can obtain a more

efficient treatment of link, and can support the treatment of exceptions advocated by
Fowler et al. [FLMD19].

A simpler link. The link (x, y) construct forwards messages from x to y and vice-versa.
Consider threads L = F [link (x, y)], M , N , where L connects to M by x and to N by y.

L

M N

{x, x′} {y, y′}
−→

L

M N
{y, y′}

The result of link reduction has forest structure. Well-typed closed programs in both GV
and HGV must always maintain tree structure. Different versions of GV do so in various
unsatisfactory ways: one is pre-emptive blocking [LM15], which breaks confluence; another
is two-stage linking (Figure 4), which defers forwarding via a special link thread [LM16].
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Lindley and Morris [LM15] implement link using the following rule (modified here to
use a double-binder formulation):

(νxx′)(F [link (x, y)] ∥ F ′[M ]) −→ (νxx′)(F [x] ∥ F ′[wait x′;M{y/x′}]) where x′ ∈ fv(M)

The first thread will eventually reduce to ◦x, at which point the second thread will synchronise
to eliminate x and x′ and then evaluate the continuation M with endpoint y substituted for
x′. Unfortunately, this formulation of link preemptively inhibits reduction in the second
thread, since the evaluation rule inserts a blocking wait. The resulting system does not
satisfy the diamond property.

HGV uses the incarnation of link advocated by Lindley and Morris [LM16], where
linking is split into two stages: the first generates a fresh pair of endpoints z, z′ and a

link thread of the form x
z′↔y, and returns z to the calling thread. Once the calling thread

has evaluated to a value (which must by typing be z), then the link substitution can take
place. This formulation recovers confluence, but we still lose a degree of concurrency:
communication on y is blocked until the linking thread has fully evaluated. In an ideal
implementation, the behaviour of the linking thread would be irrelevant to the remainder of
the configuration. The operation requires additional runtime syntax and thus complicates
the metatheory.

The above issues are symptomatic of the fact that the process structure after a link
takes place is a forest rather than a tree. However, with TC-Mix, we can refine the type
schema for link to (S × S)⊸ 1 and we can use the following rule:

(νxx′)(F [link (x, y)] ∥ ϕN) −→ F [()] ∥ ϕN{y/x′}

This formulation enables immediate substitution, maximimising concurrency. A variant
of HGV replacing E-Reify-Link and E-Comm-Link with E-Link-Mix retains HGV’s
metatheory.

Exceptions. In order to support exceptions in the presence of linear endpoints [FLMD19,
MV18] we must have a way of cancelling an endpoint. Mostrous and Vasconcelos [MV18]
describe a process calculus allowing the explicit cancellation of a channel endpoint, ac-
counting for exceptional scenarios such as a client disconnecting, or a thread encountering
an unrecoverable error. Attempting to communicate with a cancelled endpoint raises an
exception. Fowler et al. [FLMD19] extend these ideas to the functional setting, introducing
Exceptional GV (EGV). EGV supports exceptional behaviour by adding three term-level
constructs:

• a new constant, cancel : S ⊸ 1, which allows us to discard an arbitrary session endpoint
with type S

• a construct raise, which raises an exception
• an exception handling construct try L as x in M otherwise N in the style of Benton &
Kennedy [BK01], which attempts possibly-failing computation L, binding the result to x
in success continuation M if successful and evaluating N if an exception is raised
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Cancellation generates a zapper thread ( x) which severs a tree topology into a forest
as in the following example.

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ •(cancel x;wait y))

• (cancel x;wait y)

◦ x′ ◦ y′

−→

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥  x ∥ •(();wait y)

 x

◦ x′

• (();wait y)

◦ y′

The configuration on the left has a tree process structure. However, after reduction, we
obtain the configuration on the right which is clearly a forest and thus needs TC-Mix to be
typeable. We have described a synchronous version of EGV, but extending our treatment to
asynchrony as in the work of [FLMD19] is a routine adaptation.

7. Can we separate fork?

Hyper-environments allow us to cleanly separate name restriction and parallel composition
in process configurations. A natural follow-on question is whether we could use the same
technique at the level of terms in order to split fork into separate constructs for creating
a channel and spawning a process. As tantalising a prospect this is, we argue that the
disadvantages outweigh the benefits.

Suppose we were to extend term typing to allow hyper-environments, G ⊢ M : T ,
and were to introduce terms let ⟨x, x′⟩ = new in M to create a channel and
let ⟨⟩ = spawn M in N to spawn a thread, with the following typing rules:

TM-LetNew
G ∥ Γ1, x : S ∥ Γ2, x

′ : S ⊢ M : T

G ∥ Γ1,Γ2 ⊢ let ⟨x, x′⟩ = new in M : T

TM-LetSpawn
G ⊢ M : end! H ⊢ N : T

G ∥ H ⊢ let ⟨⟩ = spawn M in N : T

These rather ad-hoc rules mirror hypersequent cut and hypersequent composition:
TM-LetNew creates a new channel with endpoints x and x′, and requires them to be
used in separate threads in the continuation M ; and TM-LetSpawn takes a term M , spawns
it as a child thread, and continues as N . Using these rules, we can encode fork M as
let ⟨x, x′⟩ = new in let ⟨⟩ = spawn (M x) in x′.

Where else can we allow hyper-environments? In HCP, we have two options: (1) if
we restrict all logical rules to singleton hypersequents and allow hyper-environments only
in the rules for name restriction and parallel composition, we can use standard sequential
semantics [MP18, KMP19b]; but (2) if we allow hyper-environments in any logical rules,
we must use a semantics which allows the corresponding actions to be delayed [KMP19a].
This is unlikely to be a property of logical rules, but rather due to the fact that the logical
rules correspond exactly to the communication actions—which block reduction—and the
structural rules to name restriction and parallel composition—which do not. Therefore, we
expect the positions where hypersequents can safely occur to follow from the structure of
evaluation contexts and whether any blocking term perform a communication action.

Regardless of our choice, we would be left with restrictions on the syntax of terms that
seem sensible in a process calculus, but are surprising in a λ-calculus. In the strictest variant,
where we disallow hyper-environments in all but the above two rules, uses of TM-LetNew

and TM-LetSpawn may be interleaved, but no other construct may appear between a
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TM-LetNew and its corresponding TM-LetSpawn. Consider the following terms, where M
uses x and y, and N uses x′. Term (7.1) may be well-typed, but (7.2) is always ill-typed:

let y = 1 in let ⟨x, x′⟩ = new in let ⟨⟩ = spawn M in N (7.1)

let ⟨x, x′⟩ = new in let y = 1 in let ⟨⟩ = spawn M in N (7.2)

Note that let ⟨x, x′⟩ = new in M is a single, monolithic term constructor—exactly
what hypersequents were meant to prevent! However, if we attempt to decompose these
constructors, we find that these are not the regular product and unit types.

8. Related work

Session Types and Functional Languages. Session types were originally introduced
in the context of process calculi [Hon93, THK94, HVK98], however they have been vastly
integrated also in functional calculi, a line of work initiated by Gay and collaborators [VRG04,
VGR06, GV10]. This family of calculi builds session types directly into a lambda calculus.
Toninho et al. [TCP13] take an alternative approach, stratifying their system into a session-
typed process calculus and a separate functional calculus. There are many pragmatic
embeddings of session type systems in existing functional programming languages [NT04,
PT08, SE08, IYA10, OY16, KD21a]. A detailed survey is given by Orchard and Yoshida
[OY17].

Propositions as Sessions. When Girard introduced linear logic [Gir87] he suggested a
connection with concurrency. Abramsky [Abr94] and Bellin and Scott [BS94] give embeddings
of linear logic proofs in π-calculus, where cut reduction is simulated by π-calculus reduction.
Both embeddings interpret tensor as parallel composition. The correspondence with π-
calculus is not tight in that these systems allow independent prefixes to be reordered.
Caires and Pfenning [CP10] give a propositions as types correspondence between dual
intuitionistic linear logic and a session-typed π-calculus called πDILL. They interpret tensor
as output. The correspondence with π-calculus is tight in that independent prefixes may not
be reordered. With CP [Wad14], Wadler adapts πDILL to classical linear logic. Aschieri
and Genco [AG20] give an interpretation of classical multiplicative linear logic as concurrent
functional programs. They interpret ` as parallel composition, and the connection to session
types is less direct.

Priority-based Calculi. Systems such as πDILL, CP, and GV (and indeed HCP and
HGV) ensure deadlock freedom by exploiting the type system to statically impose a tree
structure on the communication topology — there can be at most one communication
channel between any two processes. Another line of work explores a more liberal approach to
deadlock freedom enabling some cyclic communication topologies, where deadlock freedom
is guaranteed via priorities, which impose an order on actions. Priorites were introduced
by Kobayashi and Padovani [Kob06, Pad14] and adopted by Dardha and Gay [DG18] in
Priority CP (PCP), and Kokke and Dardha in Priority GV (PGV) [KD21b]. Dezani et
al. [DCdY07] and Vieira and Vasconcelos [VV13] use a partial order on channels to guarantee
deadlock freedom, following Kobayashi’s work [Kob06]. Later on Dezani et al. [DCMYD06]
guarantee progress by allowing only one active session at a time. Carbone et al. [CDM14]
use catalysers to show that progress is a compositional form of lock freedom for standard
typed π calculus. The authors describe how this technique can be used for session typed
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π-calculus by using the the encoding of session types to linear types [DGS17, Dar14, Dar16].
Dardha and Perez [DP22] compare the different calculi and techniques for deadlock freedom
using CP and CLL as a yardstick and showing that the class of processes in CP is strictly
included in the class of processes typed by Kobayashi [Kob06].

Graph-theoretic Approaches. Carbone and Debois [CD10] define a graph-theoretic
approach for a session typed π-calculus. They define an explicit dependency graph defined
inductively on the structure of a process, in contrast to our approach of inducing a graph
on type environments given a co-name set. They ensure progress for processes with acyclic
graphs using a catalyser, which provides a missing counterpart to a process. Jacobs et
al. [JBK22a] also define a graph-theoretic approach to deadlock freedom, but differently from
Carbone and Debois, their work is based on separation logic. A line of work on many-writer,
single-reader process calculi [Pad18, dP18] uses explicit dependency graphs to both ensure
resource separation and guarantee deadlock freedom, however it is not immediate how to
apply this approach to functional calculi.

9. Conclusion and future work

HGV exploits hypersequents to resolve fundamental modularity issues with GV. As a
consequence, we have obtained a tight operational correspondence between HGV and
HCP. HGV is a modular and extensible core calculus for functional programming with
binary session types. In future we intend to apply hypersequents to multiparty versions of
CP [CLM+16] and GV [JBK22b] to exhibit a similarly strong operational correspondence.
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Appendix A. Omitted Proofs for Section 3: Hypersequent GV

In this Appendix we give full definitions and proofs for Section 3.

T-Seq

Γ ⊢ M : 1 ∆ ⊢ N : T

Γ,∆ ⊢ M ;N : T

T-LamUnit
Γ ⊢ M : T

Γ ⊢ λ().M : 1⊸ T

T-LamPair
Γ, x : T , y : T ′ ⊢ M : U

Γ ⊢ λ(x, y).M : T × T ′ ⊸ U

T-Let
Γ ⊢ M : T ∆, x : T ⊢ N : U

Γ,∆ ⊢ let x = M in N : U

T-Select-Inl

· ⊢ select inl : S ⊕ S′ ⊸ S

T-Select-Inr

· ⊢ select inr : S ⊕ S′ ⊸ S′

T-Offer
Γ ⊢ L : S & S′ ∆, x : S ⊢ M : T ∆, y : S′ ⊢ N : T

Γ,∆ ⊢ offer L {inl x 7→ M ; inr y 7→ N} : T

T-Offer-Absurd
Γ ⊢ L : &{}

Γ,∆ ⊢ offer L {} : T

Figure 9. Derived rules for syntactic sugar

A.1. Derived typing rules for syntactic sugar. The main body makes use of syntactic
sugar, and encodings of branching and selection. Figure 9 shows the derived typing rules.

A.2. Preservation Proof. Next, we detail the proof of preservation. We begin with the
usual lemmas to manipulate evaluation contexts, and the usual substitution lemma.

Lemma A.1 (Subterm typeability). Suppose D is a derivation of Γ ⊢ E[M ] : T . Then,
there exist Γ1,Γ2 such that Γ = Γ1,Γ2, a type U , and some subderivation D′ of D concluding
Γ2 ⊢ M : U , where the position of D′ in D coincides with the position of the hole in D.

Proof. By induction on the structure of E.
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Lemma A.2 (Replacement, Evaluation Contexts). If:

• D is a derivation of Γ1,Γ2 ⊢ E[M ] : T
• D′ is a subderivation of D concluding Γ2 ⊢ M : U
• The position of D′ in D corresponds to that of the hole in E
• Γ3 ⊢ N : U
• Γ1,Γ3 is defined

then Γ1,Γ3 ⊢ E[N ] : T .

Proof. By induction on the structure of E.

Lemma A.3 (Substitution). If:

(1) Γ1, x : U ⊢ M : T
(2) Γ2 ⊢ N : U
(3) Γ1,Γ2 is defined

then Γ1,Γ2 ⊢ M{N/x} : T .

Proof. By induction on the derivation of Γ1, x : U ⊢ M : T .

Preservation of typing under term reduction is standard.

Lemma A.4 (Preservation, −→M). If Γ ⊢ M : T and M −→M N , then Γ ⊢ N : T .

Proof. A standard induction on the derivation of −→M.

Runtime type merging is commutative and associative. We make use of these properties
implicitly in the remainder of the proofs.

Lemma A.5.

(1) R1 ⊓R2 ⇐⇒ R2 ⊓R1

(2) R1 ⊓ (R2 ⊓R3) ⇐⇒ (R1 ⊓R2) ⊓R3

Proof. Immediate from the definition of ⊓.

The first more major result is preservation of configuration typing under structural
congruence.

Lemma A.6 (Preservation (≡)). If G ⊢ C : R and C ≡ D, then G ⊢ D : R.

Proof. We consider the cases for the equivalence axioms; the congruence cases are straight-
forward applications of the IH.

Case (SC-ParAssoc).
C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E

G1 ⊢ C : R1

G2 ⊢ D : R2 G3 ⊢ E : R3

G2 ∥ G3 ⊢ D ∥ E : R2 ⊓R3

G1 ∥ G2 ∥ G3 ⊢ C ∥ (D ∥ E) : R1 ⊓R2 ⊓R3 ⇐⇒

G1 ⊢ C : R1 G2 ⊢ D : R2

G1 ∥ G2 ⊢ C ∥ D : R1 ⊓R2 G3 ⊢ E : R3

G1 ∥ G2 ∥ G3 ⊢ (C ∥ D) ∥ E : R1 ⊓R2 ⊓R3

Case (SC-ParComm).
C ∥ D ≡ D ∥ C

G ⊢ C : R1 H ⊢ D : R2

G ∥ H ⊢ C ∥ D : R1 ⊓R2 ⇐⇒
H ⊢ D : U G ⊢ C : T

G ∥ H ⊢ D ∥ C : R1 ⊓R2
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Case (SC-NewComm).
(νxx′)(νyy′)C ≡ (νyy′)(νxx′)C

Two illustrative subcases:

Subcase (1).

G ∥ Γ1, x : S ∥ Γ2, x
′ : S ∥ Γ3, y : S′ ∥ Γ4, y

′ : S′ ⊢ C : R

G ∥ Γ1, x : S ∥ Γ2, x
′ : S ∥ Γ3,Γ4 ⊢ (νyy′)C : R

G ∥ Γ1,Γ2 ∥ Γ3,Γ4 ⊢ (νxx′)(νyy′)C : R
⇐⇒

G ∥ Γ1, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3, x : S ∥ Γ4, x

′ : S ⊢ C : R

G ∥ Γ1, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3,Γ4 ⊢ (νxx′)C : R

G ∥ Γ1,Γ2 ∥ Γ3,Γ4 ⊢ (νyy′)(νxx′)C : R

Subcase (2).

G ∥ Γ1, x : S, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3, x

′ : S ⊢ C : R

G ∥ Γ1,Γ2, x : S ∥ Γ3, x
′ : S ⊢ (νyy′)C : R

G ∥ Γ1,Γ2,Γ3 ⊢ (νxx′)(νyy′)C : R
⇐⇒

G ∥ Γ1, x : S, y : S′ ∥ Γ2, y
′ : S′ ∥ Γ3, x

′ : S ⊢ C : R

G ∥ Γ1,Γ3, y : S′ ∥ Γ2, y
′ : S′ ⊢ (νxx′)C : R

G ∥ Γ1,Γ2,Γ3 ⊢ (νyy′)(νxx′)C : R

Case (SC-NewSwap).
(νxy)C ≡ (νyx)C

Follows immediately since hyper-environments are treated as unordered.

Case (SC-ScopeExt).
C ∥ (νxy)D ≡ (νxy)(C ∥ D)

(where x, y ̸∈ fv(C))

G ⊢ C : R1 H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ D : R2

G ⊢ C : R1 H ∥ Γ1,Γ2 ⊢ (νxy)D : R2

G ∥ H ∥ Γ1,Γ2 ⊢ C ∥ (νxy)D : R1 ⊓R2

⇐⇒
G ⊢ C : R1 H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ D : R2

G ∥ H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ C ∥ D : R1 ⊓R2

G ∥ H ∥ Γ1,Γ2 ⊢ (νxy)(C ∥ D) : R1 ⊓R2

Case (SC-LinkComm).

x
z↔y ≡ y

z↔x

Assumption:

x : S, y : S ⊢ x
z↔y : ◦

By dualising both variables, we have that x : S, y : S. Since duality is an involution, we
can show x : S, y : S ⇐⇒ x : S, y : S.

Thus:
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y : S, x : S ⊢ y
z↔x : ◦

The reasoning for the symmetric case is identical.

The next result shows that configuration typeability is preserved under configuration
reduction. Note that this lemma makes crucial use of Lemma A.6 due to E-Equiv.

Lemma A.7 (Preservation (−→)). If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Proof. By induction on the derivation of C −→ D. Where there is a choice for ϕ, we prove
the case for ϕ = • and expand T [M ] to •(E[M ]) for some evaluation context E; the other
cases are similar.

Case (E-Reify-Fork).
•E[fork V ] −→ (νxy)(•E[x] ∥ ◦V y)

Assumption:

Γ ⊢ E[fork V ] : T

Γ ⊢ •E[fork V ] : T

By Lemma A.1, there exist Γ1,Γ2, S such that Γ = Γ1,Γ2 and Γ1,Γ2 ⊢ E[fork V ] : T
and:

Γ2 ⊢ V : S ⊸ end!

Γ2 ⊢ fork V : S

By Lemma A.2:

Γ1, x : S ⊢ E[x] : T

Γ1, x : S ⊢ •E[x] : T

By TM-App, Γ2, y : S ⊢ V y : end! and so by TC-Child, Γ2, y : S ⊢ V y : ◦
Recomposing:

Γ1, x : S ⊢ E[x] : T

Γ1, x : S ⊢ •E[x] : T

Γ2, y : S ⊢ V y : end!

Γ2, y : S ⊢ ◦(V y) : ◦
Γ1, x : S ∥ Γ2, y : S ⊢ •E[x] ∥ ◦(V y) : T

Γ1,Γ2 ⊢ (νxy)(•E[x] ∥ ◦(V y) : T

as required.

Case (E-Comm-Send).

(νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) −→ (νxy)(•E[x] ∥ ◦E′[(V, y)])

Assumption:

Γ, x : S ⊢ E[send (V, x)] : U

Γ, x : S ⊢ •E[send (V, x)] : U

Γ′, y : S ⊢ E′[recv y] : end!

Γ′, y : S ⊢ ◦E′[recv y] : ◦
Γ, x : S ∥ Γ′, y : S ⊢ •E[send (V, x)] ∥ ◦E′[recv y] : U

Γ,Γ′ ⊢ (νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) : U
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By Lemma A.1, there exist Γ1,Γ2, S such that Γ = Γ1,Γ2, and Γ1,Γ2, x : S ⊢
E[send (V, x)] : U and:

Γ2 ⊢ V : T x : !T.S′ ⊢ x : !T.S′

Γ2, x : !T.S′ ⊢ send (V, x) : S′

With the knowledge that S = !T.S′, we can refine our original derivation:

Γ1,Γ2, x : !T.S′ ⊢ E[send (V, x)] : U

Γ1,Γ2, x : !T.S′ ⊢ •E[send (V, x)] : U

Γ′, y : ?T.S′ ⊢ E′[recv y] : end!

Γ′, y : ?T.S′ ⊢ ◦E′[recv y] : ◦
Γ1,Γ2, x : !T.S′ ∥ Γ′, y : ?T.S′ ⊢ •E[send (V, x)] ∥ ◦E′[recv y] : U

Γ1,Γ2,Γ
′ ⊢ (νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) : U

Again by Lemma A.1, we have that Γ′, y : ?T.S′ ⊢ E′[recv y] : end! and:

y : ?T.S′ ⊢ y : ?T.S′

y : ?T.S′ ⊢ recv y : T × S′

We can show:

Γ2 ⊢ V : T y : S′ ⊢ y : S′

Γ2, y : S′ ⊢ (V, y) : T × S′

By Lemma A.2, we have that Γ2,Γ
′, y : S′ ⊢ E′[(V, y)] : S′.

Recomposing:

Γ1, x : S′ ⊢ E[x] : U

Γ1, x : S′ ⊢ •E[x] : U

Γ2,Γ
′, y : S′ ⊢ E′[(V, y)] : end!

Γ2,Γ
′, y : S′ ⊢ ◦E′[(V, y)] : ◦

Γ1, x : S′ ∥ Γ2,Γ
′, y : S′ ⊢ •E[x] ∥ ◦E′[(V, y)] : U

Γ1,Γ2,Γ
′ ⊢ (νxy)(•E[x] ∥ ◦E′[(V, y)]) : U

as required.

Case (E-Comm-Close).

(νxy)(T [wait x] ∥ ◦y) −→ T [()]

Taking T = •E, assumption:

Γ, x : end? ⊢ E[wait x] : T

Γ, x : end? ⊢ •E[wait x] : T

y : end! ⊢ y : end!

y : end! ⊢ ◦y : ◦
Γ, x : end? ∥ y : end! ⊢ •E[wait x] ∥ ◦y : T

Γ ⊢ (νxy)(•E[wait x] ∥ ◦y) : T
By Lemma A.1, we have that:

x : end? ⊢ x : end?

x : end? ⊢ wait x : 1
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By Lemma A.2, Γ ⊢ E[()] : T .
Recomposing:

Γ ⊢ E[()] : T

Γ ⊢ •E[()] : T

as required.

Case (E-Reify-Link).

F [link (x, y)] −→ (νzz′)(x
z↔y ∥ F [z′])

where z, z′ fresh.
Taking F = •E, we have that:

Γ ⊢ E[link (x, y)] : T

Γ ⊢ •E[link (x, y)] : T

By Lemma A.1, we have that Γ = Γ′, x : S, y : S such that:

x : S ⊢ x : S y : S ⊢ y : S

x : S, y : S ⊢ (x, y) : S × S

x : S, y : S ⊢ link (x, y) : ◦

By Lemma A.2, we have that Γ′, z : end! ⊢ E[z] : T .
Reconstructing:

z : end?, x : S, y : S ⊢ x
z↔y : ◦ Γ′, z : end! ⊢ •E[z] : T

z : end?, x : S, y : S ∥ Γ′, z : end! ⊢ x
z↔y ∥ •E[z] : T

Γ′, x : S, y : S ⊢ (νzz′)(x
z↔y ∥ •E[z]) : T

as required.

Case (E-Comm-Link).

(νzz′)(νxx′)(x
z↔y ∥ ◦z ∥ •M) −→ •(M{y/x})

Assumption:

x : S, y : S, z : end? ⊢ x
z↔y : ◦

z′ : end! ⊢ z : end!

z′ : end! ⊢ ◦z : ◦
Γ, x′ : S ⊢ M : T

Γ, x′ : S ⊢ •M : T

z′ : end! ∥ Γ, x′ : S ⊢ ◦z ∥ •M : T

x : S, y : S, z : end? ∥ z′ : end! ∥ Γ, x′ : S ⊢ x
z↔y ∥ ◦z′ ∥ •M : T

Γ, y : S, z : end? ∥ z′ : end! ⊢ (νxx′)(x
z↔y ∥ ◦z′ ∥ •M) : T

Γ, y : S ⊢ (νzz′)(νxx′)(x
z↔y ∥ ◦z′ ∥ •M) : T

By Lemma A.3, Γ, y′ : S ⊢ M{y/x′} : T , thus:
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Γ, y′ : S ⊢ M{y/x′} : T

Γ, y′ : S ⊢ •M{y/x′} : T

as required.

Case (E-Res).

(νxy)C −→ (νxy)D if C −→ D
Immediate by the IH.

Case (E-Par).

C ∥ D −→ C′ ∥ D if C −→ C′

Immediate by the IH.

Case (E-Equiv).

C −→ D if C ≡ C′, C′ −→ D′, and D′ ≡ D

Assumption: G ⊢ C : R.
By Lemma A.6, G ⊢ C′ : R.
By the IH, G ⊢ D′ : R.
By Lemma A.6, G ⊢ D : R, as required.

Case (E-Lift-M).

ϕM −→ ϕN if M −→M N

Immediate by Lemma A.4.

Theorem 3.3 (Preservation).

(1) If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
(2) If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Proof. A direct corollary of Lemmas A.6 and A.7.

A.3. Progress. Functional reduction satisfies progress: under an environment only con-
taining runtime names, a term will either reduce, be a value, or be ready to perform a
communication action.

Lemma A.8 (Progress, Terms). If Ψ ⊢ M : T , then either M is a value, or there exists
some N such that M −→M N , or M can be written E[N ] for some
N ∈ {fork V , send (V,W ), recv V ,wait V , link (V,W )}.

Proof. A standard induction on the derivation of Ψ ⊢ M : T .

Note that tree canonical forms can be defined inductively:

F ::= ϕM | (νxy)(A ∥ F)

We assume the same requirement for configurations F as the non-inductive definition of
tree canonical forms: i.e., that for a configuration (νxy)(A ∥ F), that x ∈ fv(A).

Lemma 3.17 follows as a direct corollary of a slightly more verbose property, which
follows from the inductive definition of TCFs.
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Definition A.9 (Open progress). Suppose Ψ ⊢ F : R, where F ̸−→. We say that F satisfies
open progress if:

(1) C = (νxx′)(A ∥ F ′), where:
(a) There exist Ψ1,Ψ2 such that Ψ = Ψ1,Ψ2

(b) Ψ1, x:S ⊢ A : ◦ for some session type S, and blocked(A, y) for some y ∈ fv(Ψ1, x:S)
(c) Ψ2, x

′:S ⊢ D : R, where F ′ satisfies open progress
(2) F = ϕM , and either M is a value, or blocked(ϕM, x) for some x ∈ fv(Ψ).

Lemma A.10 (Open progress). If Ψ ⊢ F : R and F ̸−→, then F satisfies open progress.

Proof. By induction on the derivation of G ⊢ F : R. By the definition of canonical forms, it
must be the case that C is of the form (νxy)(A ∥ F ′) or •M .

We show the case where C = (νxy)(◦M ∥ F ′); the cases for A = x
z↔x′ and C = •M

follow similar reasoning.
Assumption:

Ψ1, x : S ⊢ A : ◦ Ψ2, y : S ⊢ F ′ : R

Ψ1, x : S ∥ Ψ2, y : S ⊢ A ∥ F ′ : R

Ψ1,Ψ2 ⊢ (νxy)(◦M ∥ F ′) : R

In both cases, by the induction hypothesis, Ψ2, y : S ⊢ F ′ : T satisfies open progress.

Subcase (A = ◦M). By Lemma A.8, either M is a value, or M can be written E[N ] for
some communication and concurrency construct N ∈ {fork V, send (V,W ), recv V,wait V,
link (V,W )}.

Otherwise, M is a communication or concurrency construct. If N = fork V , then
reduction could occur by E-Reify-Fork. If N = link (V,W ), then by the type schema for
link, we have that link (V,W ) must be of the form link (z, z′) for z, z′ ∈ fv(Ψ, x : S) and
could reduce by E-Reify-Link.

Otherwise, it must be the case that blocked(◦M, z) for some z ∈ fv(Ψ1, x : S).
Thus, (νxy)(◦M ∥ D) satisfies open progress, as required.

Subcase (A = z2
z1↔z3). We have that z1, z2, z3 ∈ fv(Ψ1, x : S), and the thread must be

blocked by definition.

Appendix B. Omitted Proofs for section 4: Relation between HGV and GV

Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists
some G such that G is a splitting of Γ and G ⊢ C : R.

Proof. By induction on the derivation of Γ ⊢ C : R.

Case (TG-New). Assumption:

Γ, ⟨y, y′⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νyy′)C : R
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Suppose Γ = ⟨x1, x′1⟩ : S
♯
1, . . . , ⟨xn, x′n⟩ : S

♯
n (for clarity, without loss of generality, we

assume the absence of non-session variables. As these are simply split between environments,
they can be added orthogonally).

By the IH, we have that there exists some hyper-environment G such that G ⊢ C : R,
where G is a splitting of Γ, ⟨y, y′⟩ : S♯.

Since G is a splitting of C, we know that y : S ∈ G and y′ : S ∈ G, and that G has a tree
structure with respect to names {{x1, x′1}, . . . , {xn, x′n}, {y, y′}}.

Since G has a tree structure, by definition we have that G = G′ ∥ Γ1, y : S ∥ Γ2, y
′ : S for

some G′,Γ1,Γ2, where G′ has a tree structure.
By Lemma 3.12 (clause 1, left-to-right), G′ ∥ Γ1,Γ2 has a tree structure with respect to

names {{x1, x′1}, . . . , {xn, x′n}}.
Thus, we can show:

G′ ∥ Γ1, y : S ∥ Γ2, y
′ : S ⊢ C : R

G′ ∥ Γ1,Γ2 ⊢ (νyy′)C : R

where G′ ∥ Γ1,Γ2 has a tree structure with respect to names {{x1, x′1}, . . . , {xn, x′n}}
and is therefore a splitting of Γ, as required.

Case (TG-Connect1). Assumption:

Γ1, y : S ⊢GV C : R1 Γ2, y
′ : S ⊢GV D : R2

Γ1,Γ2, ⟨y, y′⟩ : S♯ ⊢GV C ∥ D : R1 ⊓R2

Suppose Γ1 = ⟨x1, x′1⟩ : S
♯
1, . . . , ⟨xm, x′m⟩ : S♯

m and Γ2 = ⟨xm+1, x
′
m+1⟩ : S

♯
m+1, . . . , ⟨xn, x′n⟩ :

S♯
n.

By the IH, there exist hyper-environments G,H such that:

(1) G is a splitting of Γ1, y : S
(2) H is a splitting of Γ2, y

′ : S
(3) G ⊢GV C : R1

(4) H ⊢GV D : R2

By the definition of splittings, G and H can be written G = G′ ∥ Γ′
1, y : S and

H = H′ ∥ Γ′
2, y

′ : S for some Γ′
1,Γ

′
2. Furthermore, G has a tree structure with respect

to {{x1, x′1}, . . . , {xm, x′m}} and H has a tree structure with respect to
{{xm+1, x

′
m+1}, . . . , {xn, x′n}}.

By Lemma 3.12 (clause 2, left-to-right), G′ ∥ Γ′
1, y : S ∥ H′ ∥ Γ′

2, y
′ : S has a tree

structure with respect to {{x1, x′1}, . . . , {xn, x′n}, {y, y′}} and therefore G ∥ H is a splitting
of Γ1,Γ2, ⟨y, y′⟩ : S♯.

Recomposing in HGV:

G ⊢ C : R1 H ⊢ D : R2

G ∥ H ⊢ C ∥ D : R1 ⊓R2

as required.

Case (TG-Connect2). Similar to TG-Connect1.
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Case (TG-Child). Assumption:

Γ ⊢ M : end!

Γ ⊢GV ◦M : ◦

Since we mandated that variables of type S♯ cannot appear in terms, there are no names
of type S♯ in Γ. Therefore, the singleton hyper-environment Γ is a valid splitting, and so we
can conclude by TC-Child in HGV.

Case (TG-Main). Similar to TG-Child.

Proposition 4.5. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

Proof. By induction on the number of ν-bound names.
In the case that n = 0, the result follows immediately by TG-Child or TG-Main.
In the case that n ≥ 1, we have that Γ = Γ1,Γ2 for some Γ1,Γ2 and:

Γ1, x : S ⊢ ◦L : ◦ Γ2, y : S ⊢ D : R

Γ1, x : S ∥ Γ2, y : S ⊢ ◦L ∥ D : R

Γ1,Γ2 ⊢ (νxy)(◦L ∥ D) : R

such that D is in tree canonical form. That Γ1, x : S ⊢ ◦L : ◦ follows by the definition
of tree canonical forms, since x ∈ fv(L).

By the IH, Γ2, y : S ⊢ D : R in GV.
Thus, we can write:

Γ1, x : S ⊢ ◦L : ◦ Γ2, y : S ⊢ D : R

Γ1,Γ2, ⟨x, y⟩ : S♯ ⊢ ◦L ∥ D : R

Γ1,Γ2 ⊢ (νxy)(◦L ∥ D) : R

as required.

Appendix C. Omitted Proofs for section 5: Relation between HGV and CP

C.1. Full definition of HGV∗.
Syntax.

Terms L,M,N ::= V | let x = M in N | V W
| let () = V in M | let (x, y) = V in M
| absurd V | case V {inl x 7→ M ; inr y 7→ N}

Values V ,W ::= x | K | λx.M | () | (V,W ) | inl V | inr V
Evaluation contexts E ::= □ | let x = E in M
Thread contexts F ::= ϕ E

Typing rules for values Γ ⊢ V : T
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TV*-Var

x : T ⊢ x : T

TV*-Const

· ⊢ K : T

TV*-Lam
Γ, x : T ⊢ M : U

Γ ⊢ λx.M : T ⊸ U

TV*-Unit

· ⊢ () : 1

TV*-Pair
Γ ⊢ V : T ∆ ⊢ W : U

Γ,∆ ⊢ (V,W ) : T × U

TV*-Absurd
Γ ⊢ V : 0

Γ ⊢ absurd V : T

TV*-Inl
Γ ⊢ V : T

Γ ⊢ inl V : T + U

TV*-Inr
Γ ⊢ V : U

Γ ⊢ inr V : T + U

Typing rules for terms Γ ⊢ M : T

TM*-App
Γ ⊢ V : T ⊸ U ∆ ⊢ W : T

Γ,∆ ⊢ V W : U

TM*-Let
Γ ⊢ M : T ∆, x : T ⊢ N : U

Γ,∆ ⊢ let x = M in N : U

TM*-LetUnit
Γ ⊢ V : 1 ∆ ⊢ M : T

Γ,∆ ⊢ let () = V in M : T

TM*-LetPair
Γ ⊢ V : T × T ′ ∆, x : T , y : T ′ ⊢ M : U

Γ,∆ ⊢ let (x, y) = V in M : U

TM*-CaseSum
Γ ⊢ V : T + T ′

∆, x : T ⊢ M : U ∆, y : T ′ ⊢ N : U

Γ,∆ ⊢ case V {inl x 7→ M ; inr y 7→ N} : U

The typing of constants is the same as for HGV.

Operational Semantics. The operational semantics for HGV∗ is the same as for HGV
(Figure 4), with the addition of the following explicit rule for let:

E-Let let x = V in M −→ M{V/x}
Similarly, HGV∗ directly inherits HGV’s runtime typing.

C.2. Translating HGV∗ to HCP. The translation is guaranteed to have only internal
(i.e., α or β) transitions and transitions on the dedicated output channel. More specifically:

Lemma C.1.

• If JCKcr
ℓ−→, then ℓ ∈ {α, β} or ℓ = ℓr.

• If JMKmr
ℓ−→ and M is a non-value, then ℓ ∈ {α, β}.

• If V is a value, then JV Kmr
ℓr−→.

• If JV Kvr
ℓ−→ then ℓ ∈ {α, β}.

Proof. By induction on the structure of M .

We do not use the above lemma directly, but it is a useful sanity check.

Definition C.2 (process contexts). A process context P [ ] is a process with a single hole,
denoted □. We extend the typing rules, LTS and typing rules to process contexts. We
write P [ ] ⊢ G/H to mean that P [ ] is typed under hyper-environment H expecting a process
typed under G, i.e., if Q ⊢ G then P [Q] ⊢ H.

Definition C.3. A process P is blocked on x if it only has transitions P
ℓx−→.

Lemma C.4. If P [ ] is a process context with z, w,w′ ̸∈ cn(P [ ]), and Q is a process blocked
on w′, then (νww′)(P [z↔w] ∥ Q) ≈α P [Q{z/w′}].
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Proof. By induction on the process context P [ ].

Case (□).
(νww′)(z↔w ∥ Q)

α−→ Q{z/w′}
∼ Q{z/w′} (by reflexivity)

Case ((νxy)P [ ]).

(νww′)((νxy)(P [z↔w]) ∥ Q)
∼ (νxy)(νww′)(P [z↔w] ∥ Q) (by Lemma 5.6)

≈α (νxy)(P [Q{z/w′}]) (by Lemma 5.6 and IH)

Case (P [ ] ∥ R).

(νww′)(P [z↔w] ∥ R ∥ Q)
∼ (νww′)(P [z↔w] ∥ Q) ∥ R (by Lemma 5.6)

≈α P [Q{z/w′}] ∥ R (by Lemma 5.6 and IH)

Case (R ∥ P [ ]).

(νww′)(R ∥ P [z↔w] ∥ Q)
∼ R ∥ (νww′)(P [z↔w] ∥ Q) (by Lemma 5.6)

≈α R ∥ P [Q{z/w′}] (by Lemma 5.6 and IH)

Case (π.P [ ]). Since Q is blocked on w′, the process (νww′)(π.P [z↔w] ∥ Q) has only one
transition,

(νww′)(π.P [z↔w] ∥ Q)
π−→ (νww′)(P [z↔w] ∥ Q).

The process π.P [Q{z/w′}] has only one transition, also with label π,

π.P [Q{z/w′}] π−→ P [Q{z/w′}].
The resulting processes are bisimilar by the induction hypothesis.

Case (x ▷ {inl : P [ ]; inr : P ′[ ]}). Since Q is blocked on w′, the process
(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q) has only two transitions,

(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q)
x▷inl−→ (νww′)(P [z↔w] ∥ Q)

and

(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q)
x▷inr−→ (νww′)(P ′[z↔w] ∥ Q).

The process x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} has only two transitions, also with
labels x ▷ inl and x ▷ inr,

x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} x▷inl−→ P [Q{z/w′}]
and

x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} x▷inr−→ P ′[Q{z/w′}].
The resulting processes are bisimilar by the induction hypothesis.

Lemma 5.10 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a
well-typed value, then (νww′)(JMKmr ∥ JV Kvw′) ≈α JM{V/w}Kmr .

Proof. Immediately from Lemma C.4.

Lemma 5.9 (Type Preservation).



Vol. 19:3 SEPARATING SESSIONS SMOOTHLY 3:43

(1) If Γ ⊢ V : T , then JV Kvr ⊢ TΓU, r : TTU⊥.
(2) If Γ ⊢ M : T , then JMKmr ⊢ TΓU, r : 1⊗ TTU⊥.
(3) If G ∥ Γ ⊢ C : T , where Γ is the type environment for the main thread in C, then

JCKcr ⊢ TGU ∥ TΓU, r : TTU⊥.

Proof. Part 1.

• Case (x). We have x : T ⊢ x : T and JxKvr = r↔x. We can derive:

x↔r ⊢ x : TAU, r : TAU⊥

• Case (K). We have one case for each communication primitive.
– Subcase link. We have link : S × S ⊸ end!, where

TS × S⊥ ⊸ end!U⊥ = VS × S⊥ ⊸ end!W

= VS × S⊥W⊥ ` (1⊗ Vend!W)

= (VSW⊥ ` VSW)` (1⊗⊥)

and JlinkKvr = r(y).y(x).r̄.r().x↔y. We can derive:

x↔y ⊢ x : VSW⊥, y : VSW
r().x↔y ⊢ x : VSW⊥, y : VSW, r : ⊥

r̄.r().x↔y ⊢ x : VSW⊥, y : VSW, r : 1⊗⊥
y(x).r̄.r().x↔y ⊢ y : VSW⊥ ` VSW, r : 1⊗⊥

r(y).y(x).r̄.r().x↔y ⊢ r : (VSW⊥ ` VSW)` (1⊗⊥)

– Subcase fork: We have fork : (S ⊸ end!)⊸ S where

T(S ⊸ end!)⊸ S⊥U⊥ = V(S ⊸ end!)⊸ S⊥W

= VS ⊸ end!W⊥ ` (1⊗ VS⊥W)

= (VSW⊥ ` (1⊗ Vend!W))⊥ ` (1⊗ TSU)

= (TSU⊥ ⊗ (⊥` 1))` (1⊗ TSU)

and JforkKvr = (νyy′)(r(x).y⟨x⟩.r̄.r↔y ∥ y′(x).x⟨y′⟩.x.x[].0). We derive:

r↔y ⊢ y : TSU⊥, r : TSU
r̄.r↔y ⊢ y : TSU⊥, r : 1⊗ TSU

y⟨x⟩.r̄.r↔y ⊢ y : (TSU` (1⊗⊥))⊗ TSU⊥, x : (TSU⊥ ⊗ (⊥` 1)), r : (1⊗ TSU)
(r(x).y⟨x⟩.r̄.r↔y) ⊢ y : (TSU` (1⊗⊥))⊗ TSU⊥, r : (TSU⊥ ⊗ (⊥` 1))` (1⊗ TSU) D
(r(x).y⟨x⟩.r̄.r↔y ∥ y′(x).x⟨y′⟩.x.x[].0) ⊢ y : T , r : (TSU⊥ ⊗ (⊥` 1))` (1⊗ TSU) ∥ y′ : T⊥

(νyy′)(r(x).y⟨x⟩.r̄.r↔y ∥ y′(x).x⟨y′⟩.x.x[].0) ⊢ r : (TSU⊥ ⊗ (⊥` 1))` (1⊗ TSU)

where

T = (TSU` (1⊗⊥))⊗ TSU⊥

T⊥ = (TSU⊥ ⊗ (⊥` 1))` TSU
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and D is the derivation

0 ⊢ ∅
x[].0 ⊢ x : 1

x.x[].0 ⊢ x : (⊥` 1)

x⟨y′⟩.x.x[].0 ⊢ x : (TSU⊥ ⊗ (⊥` 1)), y′ : TSU
y′(x).x⟨y′⟩.x.x[].0 ⊢ y′ : (TSU⊥ ⊗ (⊥` 1))` TSU

– Subcase send: We have send : T × !T.S ⊸ S where

TT × !T.S ⊸ SU⊥ = VT × !T.S ⊸ SW

= VT × !T.SW⊥ ` (1⊗ VSW)

= (VTW⊥ ` T!T.SU)` (1⊗ VSW)

= (VTW⊥ ` (VTW⊗ TSU))` (1⊗ TSU⊥)

and JsendKvr = r(y).y(x).y⟨x⟩.r̄.r↔y. We derive:

r↔y ⊢ y : TSU, r : TSU⊥

r̄.r↔y ⊢ y : TSU, r : (1⊗ TSU⊥)
y⟨x⟩.r̄.r↔y ⊢ x : VTW⊥, y : (VTW⊗ TSU), r : (1⊗ TSU⊥)

y(x).y⟨x⟩.r̄.r↔y ⊢ y : (VTW⊥ ` (VTW⊗ TSU)), r : (1⊗ TSU⊥)
r(y).y(x).y⟨x⟩.r̄.r↔y ⊢ r : (VTW⊥ ` (VTW⊗ TSU))` (1⊗ TSU⊥)

– Subcase recv: We have recv : ?T.S ⊸ T × S where

T?T.S ⊸ T × SU⊥ = V?T.S ⊸ T × SW

= V?T.SW⊥ ` (1⊗ VT × SW)

= (VTW⊥ ` VSW⊥)` (1⊗ (VTW⊗ VSW))

and JrecvKvr = r(x).x(y).r̄.r⟨y⟩.r↔x. We derive:

r↔x ⊢ x : VSW⊥, r : VSW
r⟨y⟩.r↔x ⊢ y : VTW⊥, x : VSW⊥, r : VTW⊗ VSW

r̄.r⟨y⟩.r↔x ⊢ y : VTW⊥, x : VSW⊥, r : (1⊗ (VTW⊗ VSW))
x(y).r̄.r⟨y⟩.r↔x ⊢ x : (VTW⊥ ` VSW⊥), r : (1⊗ (VTW⊗ VSW))

r(x).x(y).r̄.r⟨y⟩.r↔x ⊢ r : (VTW⊥ ` VSW⊥)` (1⊗ (VTW⊗ VSW))

– Subcase wait: We have wait : end? ⊸ 1 where

Tend? ⊸ 1U⊥ = Vend? ⊸ 1W

= Vend?W⊥ ` (1⊗ V1W)
= ⊥` (1⊗ 1)
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and JwaitKvr = r(x).x().r̄.r[].0. We derive

0 ⊢ ∅
r[].0 ⊢ r : 1

r̄.r[].0 ⊢ r : 1⊗ 1

x().r̄.r[].0 ⊢ x : ⊥, r : 1⊗ 1

r(x).x().r̄.r[].0 ⊢ r : ⊥` (1⊗ 1)

• Case (λx.M). We assume JMKmr : TΓU, x : TTU, r : 1⊗ TUU⊥ and derive

JMKmr ⊢ TΓU, x : TTU, r : 1⊗ VUW
r(x).JMKmr ⊢ TΓU, r : TTU` (1⊗ VUW)

• Case (()). We derive:

0 ⊢ ∅
x[].0 ⊢ x : 1

• Case (inl W ). We assume JW Kvr : TΓU, r : TTU⊥ and derive

JW Kvr ⊢ TΓU, r : TTU⊥

r ◁ inl.JW Kvr ⊢ TΓU, r : VTW⊕ VUW

• Case ((V,W )). We assume JV Kvx : TΓU, x : TTU⊥, JW Kvr : T∆U, r : TUU⊥, and derive

JV Kvx ⊢ TΓU, x : VTW JW Kvr ⊢ T∆U, r : VUW
JV Kvx ∥ JW Kvr ⊢ TΓU, x : VTW ∥ T∆U, r : VUW

r[x].(JV Kvx ∥ JW Kvr) ⊢ TΓU,T∆U, r : VTW⊗ VUW

Part 2.

• Case (V W ). We assume JV Kvy′ : TΓU, y
′ : VTW⊥ ` (1⊗ VUW) and JW Kvx′ : T∆U, x′ : VTW

and derive

r↔y ⊢ y : VTW ⊗ (⊥ ` VUW⊥
), r : 1 ⊗ VUW

y⟨x⟩.r↔y ⊢ x : VTW⊥
, y : VTW ⊗ (⊥ ` VUW⊥

), r : 1 ⊗ VUW D
y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′ ⊢ x : VTW⊥

, y : VTW ⊗ (⊥ ` VUW⊥
), r : 1 ⊗ VUW ∥ TΓU, y′

: VTW⊥ ` (1 ⊗ VUW) ∥ T∆U, x′
: VTW

(νyy
′
)(y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′ ) ⊢ x : VTW⊥

, r : 1 ⊗ VUW ∥ TΓU, T∆U, x′
: VTW

(νxx
′
)(νyy

′
)(y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′ ) ⊢ TΓU, T∆U, r : 1 ⊗ VUW

where D is the derivation

JV Kvy′ ⊢ TΓU, y′ : VTW⊥ ` (1⊗ VUW) JW Kvx′ ⊢ T∆U, x′ : VTW

JV Kvy′ ∥ JW Kvx′ ⊢ TΓU, y′ : VTW⊥ ` (1⊗ VUW) ∥ T∆U, x′ : VTW

• Case (let (x, y) = V in M).
We assume JV Kvy′ : TΓU, y

′ : VTW⊗ VT ′W and JMKmr : T∆U, x : VTW⊥, y : VT ′W⊥, r : 1⊗ TUU⊥

and derive

JMKmr ⊢ T∆U, x : VTW⊥, y : VT ′W⊥, r : 1⊗ TUU⊥

y(x).JMKmr ⊢ T∆U, y : VTW⊥ ` VT ′W⊥, r : 1⊗ TUU⊥ JV Kvy′ ⊢ TΓU, y′ : VTW⊗ VT ′W

y(x).JMKmr ∥ JV Kvy′ ⊢ T∆U, y : VTW⊥ ` VT ′W⊥, r : 1⊗ TUU⊥ ∥ TΓU, y′ : VTW⊗ VT ′W

(νyy′)(y(x).JMKmr ∥ JV Kvy′) ⊢ TΓU, T∆U, r : 1⊗ TUU⊥
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• Case (absurd V ). We assume JV Kvx′ : TΓU, x′ : 0, and derive:

x ▷ {} ⊢ r : 1⊗ TTU⊥, x : ⊤ JV Kvx′ ⊢ TΓU, x′ : 0
x ▷ {} ∥ JV Kvx′ ⊢ r : 1⊗ TTU⊥, x : ⊤ ∥ TΓU, x′ : 0

(νxx′)(x ▷ {} ∥ JV Kvx′) ⊢ TΓU, r : 1⊗ TTU⊥

• Case (let x = M in N).
We assume JMKmx′ : TΓU, x′ : 1⊗ VTW and JNKmr : T∆U, x : VTW⊥, r : VUW and derive

JNKmr ⊢ T∆U, x : VTW⊥, r : VUW
x.JNKmr ⊢ T∆U, x : ⊥` VTW⊥, r : VUW JMKmx′ ⊢ TΓU, x′ : 1⊗ VTW
x.JNKmr ∥ JMKmx′ ⊢ T∆U, x : ⊥` VTW⊥, r : VUW ∥ TΓU, x′ : 1⊗ VTW

(νxx′)(x.JNKmr ∥ JMKmx′) ⊢ TΓU, T∆U, r : VUW

• Case (V ). We assume JV Kvr : TΓU, r : VTW and derive

JV Kvr ⊢ TΓU, r : VTW
r̄.JV Kvr ⊢ TΓU, r : 1⊗ VTW

Part 3. The cases are all by immediate induction.

Lemma C.5. Let F be an HGV∗ evaluation context and r a result endpoint. Then there
exists a process context JF Kfr and a result endpoint v = hr(F , r) for the hole such that for all
M we have that JF [M ]Kcr = JF Kfr[JMKmv ].

Proof. By induction on the structure of F .

In the above lemma, if F is the empty context then v = r. Otherwise v is a variable
bound by the process context JF Kfr.

Lemma C.6 (Operational Correspondence, Terms). If M is a well-typed term:

(1) If M −→M M ′, then there exists a P such that JMKmr
β+

=⇒α P and P ≈α JM ′Kmr ; and
(2) if JMKmr

β−→ P , then there exists an M ′ and a P ′ such that M −→M M ′ and P
β∗
=⇒α P ′

and P ′ ≈α JM ′Kmr .

Proof.

(1) By induction on the reduction M −→M M ′.

Case (E-Lam).

(λx.M) V M{V/x}

(νxx′)(νyy′)(y⟨x⟩.r↔y ∥ y′(x).JMKmy′ ∥ JV Kvx′)

(νxx′)(νyy′)(r↔y ∥ JMKmy′ ∥ JV Kvx′)

(νxx′)(JMKmr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kmr

J·Kmrβ−→ α−→

α−→
≈α (by Lemma 5.10)
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Case (E-Unit).

let () = () in M M

(νxx′)(x().JMKmr ∥ x′[].0)

JMKr ∥ 0 JMKmr

−→M

J·Kr

J·Kr

β−→
∼

Case (E-Pair).

let (x, y) = (V,W ) in M M{V/x}{W/y}

(νyy′)(y(x).JMKmr ∥ y′[x′].(JV Kvx′ ∥ JW Kvy′))

(νyy′)(νxx′)(JMKr ∥ JV Kvx′ ∥ JW Kvy′) JM{V/x}{W/y}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (E-Inl).

case inl V {inl x 7→ M ; inr y 7→ N} M{V/x}

(νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ x′ ◁ inl.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (E-Inr). As E-Inl.

Case (E-Let).

let x = V in M M{V/x}

(νxx′)(x.JMKmr ∥ x̄′.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→ β−→
≈α (by Lemma 5.10)

Case (E-Lift). The induction hypothesis yields the reasoning steps depicted by the first
diagram, which we use, together with HGV’s E-Lift and HCP’s Str-Res and Str-Par2,
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to justify the second diagram:

M M ′

JMKmr JM ′Kmr

−→M

J·Kmr J·Kmr
β+

=⇒α≈α

let x = E[M ] in N let x = E[M ′] in N

(νxx′)(x.JNKmr ∥ JMKmx′) (νxx′)(x.JNKmr ∥ JM ′Kmx′)

−→M

J·Kr J·Kr
β+

=⇒α≈α

(2) By induction on M .

Case (U V ). There are two well-typed cases for U : either U = z for some z; or U = λx.M

for some x andM . If U = z, we have (νxx′)(νyy′)(y⟨x⟩.r↔y ∥ z↔y′ ∥ JV Kvx′) ̸ β−→, which
contradicts our premise. Therefore, U = λx.M . The only possible β-transition is the
one in the following diagram:

(λx.M) V M{V/x}

(νxx′)(νyy′)(y⟨x⟩.r↔y ∥ y′(x).JMKmy′ ∥ JV Kvx′)

(νxx′)(νyy′)(r↔y ∥ JMKmy′ ∥ JV Kvx′)

(νxx′)(JMKmr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kmr

J·Kmrβ−→ α−→

α−→
≈α (by Lemma 5.10)

Hence, M ′ = M{V/x}.
Case (let () = U in M). There are two well-typed cases for U : either U = z for some

z; or U = (). If U = z, we have (νxx′)(x().JMKmr ∥ x′↔z) ̸ β−→, which contradicts our
premise. Therefore, U = (). The only possible β-transition is the one in the following
diagram:

let () = () in M M

(νxx′)(x().JMKmr ∥ x′[].0)

JMKr ∥ 0 JMKmr

−→M

J·Kr

J·Kr

β−→
∼

Hence, M ′ = M .

Case (let (x, y) = U in M). There are two well-typed cases for U : either U = z for some

z, or U = (V,W ). If U = z, we have (νyy′)(y(x).JMKmr ∥ y′↔z) ̸ β−→, which contradicts
our premise. Therefore, U = (V,W ). The only possible β-transition is the one in the



Vol. 19:3 SEPARATING SESSIONS SMOOTHLY 3:49

following diagram:

let (x, y) = (V,W ) in M M{V/x}{W/y}

(νyy′)(y(x).JMKmr ∥ y′[x′].(JV Kvx′ ∥ JW Kvy′))

(νyy′)(νxx′)(JMKr ∥ JV Kvx′ ∥ JW Kvy′) JM{V/x}{W/y}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (case U {inl x 7→ M ; inr x 7→ N}). There are two well-typed cases
for U : either U = z for some z; or U = inl V . If U = z, we have

(νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ x′↔z) ̸ β−→, which contradicts our premise.
Therefore, U = inl V . The only possible β-transition is the one in the following diagram:

case inl V {inl x 7→ M ; inr y 7→ N} M{V/x}

(νxx′)(x ▷ {inl : JMKmr ; inr : JN{x/y}Kmr } ∥ x′ ◁ inl.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.10)

Case (absurd U). There is only one well-typed case for U : U = z for some z. However,

(νxx′)(x ▷ {} ∥ x′↔z) ̸ β−→, which contradicts our premise.

Case (let x = M in N). There are two possible cases: either M = V ; or JMKmx′
β−→ P

for some P . If M is a value, the only possible β-transition is the one in the following
diagram:

let x = V in M M{V/x}

(νxx′)(x.JMKmr ∥ x̄′.JV Kvx′)

(νxx′)(JMKr ∥ JV Kvx′) JM{V/x}Kmr

−→M

J·Kr

J·Kr

β−→ β−→
≈α (by Lemma 5.10)

Otherwise, if JMKmx′
β−→ P for some P , the induction hypothesis gives us an M ′ such

that M −→M M ′ and P ≈ JM ′Kmr . We apply HGV’s E-Lift and HCP’s Str-Res and
Str-Par2.

Case (V ). We have r̄.JV Kvr ̸ β−→, which contradicts our premise.

Theorem 5.11 (Operational Correspondence). Suppose C is a well-typed configuration.

(1) (Preservation of reductions) If C −→ C′, then there exists a P such that JCKcr
β+

=⇒α P
and P ≈α JC′Kcr; and

(2) (Reflection of transitions)

• if JCKcr
α−→ P , then P ≈α JCKcr; and
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• if JCKcr
β−→ P , then there exists a C′ and a P ′ such that C −→ C′ and P

β∗
=⇒α P ′ and

P ′ ≈α JC′Kcr. Furthermore, C′ is unique up to structural congruence.

Proof.

(1) By induction on the reduction C −→ C′. We implicitly make use of Lemma C.5 throughout
the proof in order to recast the translation of a plugged evaluation context JF [M ]Kcr into
the plugging of the translated evaluation context with the translation of the plugged
term JF Kfr[JMKmv ] where v = hr(F, r).

Case (E-Reify-Fork).

F [fork V ] (νxx′)(F [x] ∥ ◦ V x′)

JF Kfr[(νzz′)(νyy′)


y⟨z⟩.v↔y ∥

(νxx′)

(
y′(w).x⟨w⟩.ȳ′.y′↔x ∥
x′(w).w⟨x′⟩.w.w[].0

)
∥

JV Kv
z′

]

JF Kfr[(νzz′)

(νxx′)

(
v̄.v↔x ∥
z⟨x′⟩.z.z[].0

)
∥

JV Kv
z′

] (νxx′)


JF Kfr[v̄.v↔x] ∥

(νyy′)

(νww′)(νzz′)

z⟨w⟩.y↔z ∥
JV Kv

z′ ∥
w′↔x′

 ∥

y′.y′[].0




−→

J·Kcr

J·Kcr

β−→ β−→ α−→

≈α

The endpoint v = hr(F, r). The final two terms are bisimilar by Lemma C.4.

Case (E-Reify-Link).

◦ E[link (x, y)] (νzz′)(x
z↔y ∥ ◦ E[z′])

(νaa′)(JEKmr [(νzz′)(νww′)(w⟨z⟩.v↔w ∥ w′(t).t(s).w̄′.w′().s↔t ∥ z′⟨x⟩.y↔z′ ∥ ā′.a′[].0))]

(νaa′)(JEKmr [v̄.v().x↔y] ∥ ā′.a′[].0) (νzz′)(z̄.z().x↔y ∥ (νaa′)(JE[v↔z′]Kma ∥ ā′.a′[].0))

−→

J·Kcr

β−→ β−→ α−→ α−→ J·Kcr

≈α

The endpoint v = hr(F, r).

Case (E-Comm-Link).

(νzz′)(νxx′)(x
z↔y ∥ ◦ z′ ∥ ϕ M) ϕ (M{y/x′})

(νzz′)(νxx′)(z̄.z().x↔y ∥ (νww′)(z′↔w ∥ w′.w′[].0) ∥ Jϕ MKcr)

Jϕ MKcr{y/x′} Jϕ M{y/x′}Kcr

−→

J·Kcr

J·Kcr

α−→,
β−→×3

≈α
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Case (E-Comm-Send).

(νxx′)(F [send (V, x)] ∥ F ′[recv x′]) (νxx′)(F [x] ∥ F ′[(V, x′)])

(νxx′)

(
JF Kfr[(νyy′)(νzz′)(z⟨y⟩.u↔z ∥ z′(t).t(s).t⟨s⟩.z̄′.z′↔t ∥ y′[w].(JV Kvw ∥ x↔y′))] ∥
JF ′Kcr[(νyy′)(νzz′)(z⟨y⟩.v↔z ∥ z′(s).s(t).z̄′.z′⟨t⟩.z′↔s ∥ x′↔y′)]

)

(νxx′)(JF Kfr[(x⟨w⟩.ū.x↔u ∥ JV Kvw)] ∥ JF ′Kcr[x′(t).v̄.v⟨t⟩.v↔x′])

(νxx′)(JF Kfr[ū.x↔u] ∥ JF ′Kcr[v̄.v[w].(JV Kvw ∥ v↔x′)])

(νxx′)(JF Kfr[(ū.u↔x ∥ JV Kvw)] ∥ JF ′Kcr[v̄.v⟨w⟩.v↔x′])

−→

J·Kcr

β−→×5,
α−→×2

J·Kcr

β

≈α

The endpoint u = hr(F, r) and the endpoint v = hr(F ′, r).

Case (E-Comm-Close).

(νxx)(◦ x ∥ F [wait x′]) F [()]

(νxx)

(
(νyy′)(ȳ.x↔y ∥ y′.y′[].0) ∥
JF Kfr[(νzz′)(νww′)(w⟨z⟩.v↔w ∥ w′(s).s().w̄′.w′[].0 ∥ x′↔z′)]

)

JF Kfr[v̄.v[].0] JF Kfr[v̄.v[].0]

−→

J·Kcr

J·Kcr

β−→×3,
α−→×3,

β−→
=

The endpoint v = hr(F, r).

Case (E-Res).

(νxy)C (νxy)C′

(νxy)JCKcr (νxy)JC′Kcr

−→

J·Kcr J·Kcr
β+

=⇒α≈α(IH)

Case (E-Par).

C ∥ D C′ ∥ D

JCKcr ∥ JDKcr

JC′Kcr ∥ JDKcr JC′ ∥ DKcr

−→

J·Kcr

J·Kcr

β+

=⇒α≈α(IH)

=
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Case (E-Equiv).

C C′ D′ E

JCKcr

JC′Kcr

JD′Kcr JEKcr

≡

J·Kcr

−→ ≡

J·Kcr≈α(Lemma 5.6)

β+

=⇒α≈α(IH)
≈α(Lemma 5.6)

Case (E-Lift-M). The cases for ϕ = • and ϕ = ◦ are similar; here we show the case for
•.

•M •N

JMKmr JNKmr

−→

J·Kcr J·Kcr
β+

=⇒α≈α(Lemma C.6)

(2) Reflection of α-transitions is trivial as α-transition is included in α-bisimulation. Re-
flection of β-transitions is by induction on C; as with Lemma C.6, the only well-typed
β-transitions that can occur for each case are those specified in the simulation case.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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4.3 Discussion
This section proceeds as follows:

• In § 4.3.1, I present an alternative formulation of GV that uses cuts,
rather than lock typing, and argue this significantly simplifies the
metatheory of GV.

• In § 4.3.2, I discuss the relation between GV with cuts, lock typing,
and hypersequents.

4.3.1 Cooking GV With Cut
In Lindley and Morris’ GV, name restriction and parallel composition are
separate configuration constructs. However, as discussed, this breaks
type preservation for the structural congruence, which significantly
complicates the metatheory.

This section presents an alternative formulation of GV, which we refer
to as “GV with Cut” or GVCut, which more closely corresponds to CP.
While this version is not preferable to Hypersequent GV, presented
in this chapter, it represents my view of how GV should have been
formulated prior to the introduction of hypersequents, and is helpful
when examining Lindley and Morris’ lock typing.

In this section, the terms and types of GVCut are printed in pink and green,
respectively, and both are rendered in a sans-serif font, and any relations,
such as typing and reduction, are marked by a subscript “GVC”.

To construct GVCut, we replace name restriction and parallel composition
with a cut. For configuration typing, we replace the rules TG-NEW, TG-
CONNECT1, and TG-CONNECT2 with the rule TG-CUT.

C,D ⩴ (νxx̄)C
∣ C ∥ D
∣ (νxx̄)(C ∥ D)

TG-CUT
Γ, x ∶ S ⊢𝘎𝘝𝘊 C ∶ R Δ, x̄ ∶ S ⊢𝘎𝘝𝘊 D ∶ R′

Γ,Δ ⊢𝘎𝘝𝘊 (νxx̄)(C ∥ D) ∶ R ⊓ R′

For the structural congruence, we replace the rules SC-PARASSOC, SC-
PARCOMM, SC-NEWASSOC, SC-NEWSWAP, and SC-SCOPEEXT with the rules
SC-CUTCOMM and SC-CUTASSOC.

(νxx̄)(C1 ∥ C2) ≡𝘎𝘝𝘊 (νx̄x)(C2 ∥ C1) SC-CUTCOMM
(νxx̄)((νyȳ)(C1 ∥ C2) ∥ C3) ≡𝘎𝘝𝘊 (νyȳ)((νxx̄)(C1 ∥ C3) ∥ C2) SC-CUTASSOC

where x ∉ C2 and y ∉ C3

In GVCut, the structural congruence preserves types. Much like the rules
themselves, the proof is nearly identical to the proof of preservation for
CP’s structural congruence, and is left as an exercise.

Lemma 4.1. If Γ ⊢𝘎𝘝𝘊 C ∶ R and C ≡𝘎𝘝𝘊 D, then Γ ⊢𝘎𝘝𝘊 D ∶ R.
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Since GVCut’s structural congruence preserves types, it can be harmlessly
embedded into the reduction relation, as per EG-EQUIV.

EG-EQUIV
C ≡𝘎𝘝𝘊 C′ C′ ⟶𝘎𝘝𝘊 D′ D′ ≡𝘎𝘝𝘊 D

C⟶𝘎𝘝𝘊 D

This small change tightens GVCut’s correspondence with CP and
considerably simplifies its metatheory, as there is no longer any need to
prove preservation up to equivalence [e.g. Fowler, 2019, Theorem 2,
pp. 40–43].

4.3.2 Lock Types, Cuts, and Hypersequents
This section discusses the differences between GV with lock types, cuts,
and hypersequents, and argues that, while lock types and hypersequents
both permit the syntax for configurations to separate name restriction
from parallel composition, lock types are, in effect, more complicated
cuts, whereas hypersequents capture parallelism.

We compare the configuration typing rules for GV (Figure I.5), GVCut (§
4.3.1), andHGV (Figure I.3). In this section, the terms and types of both GV
and GVCut are printed in pink and green, respectively, both are rendered
in a sans-serif font, and any relations, such as typing and reduction, are
marked by subscript “GV” and “GVC”, respectively.

Let us begin with an observation. Both GV and HGV use the exact
same syntax for configurations, but the translation from HGV to GV (in
§ I.4, under ”Translating HGV to GV”) shows a gap between the two
systems. Every GV configuration is typeable in HGV, but there are HGV
configurations that are not typeable in GV.

What is the relation between GV’s configurations and GVCut’s
configurations? As we will see, GV’s parallel composition is, in essence, a
cut, and therefore the two are identical.

Let us begin by discussing GV’s lock types in slightlymore detail. GV splits
cut into name restriction and parallel composition:

C,D ⩴ …
∣ (νxx̄)(C ∥ D) cut
∣ (νxx̄)C name restriction
∣ C ∥ D parallel composition

As naively decomposing cuts would break GV’s tree connection structure
and,more importantly, deadlock freedom, GV ensures these properties by
lock typing. It extends runtime typing environments with locked channel
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type assignments.3
Γ ⩴ ⋯ ∣ Γ, ⟨x, x̄⟩ ∶ S#

The special type assignment “⟨x, x̄⟩ ∶ S#” represents a channel with
endpoints x and x̄ which has been created, but has not yet been split
across a parallel composition. Hence, it is locked.

When a locked channel is split across a parallel composition, it becomes
unlocked, and the endpoints become available for use. Each parallel
composition must split exactly one locked channel. This is guaranteed
by the typing rules for name restriction and parallel composition,
reproduced below from Figure I.5 (eliding the superfluous TG-CONNECT2).

TG-NEW
Γ, ⟨x, x̄⟩ ∶ S# ⊢𝘎𝘝 C ∶ R

Γ ⊢𝘎𝘝 (νxx̄)C ∶ R

TG-CONNECT1
Γ, x ∶ S ⊢𝘎𝘝 C ∶ R Δ, x̄ ∶ S ⊢𝘎𝘝 D ∶ R′

Γ,Δ, ⟨x, x̄⟩ ∶ S# ⊢𝘎𝘝 C ∥ D ∶ R ⊓ R′

The rule TG-NEW creates a locked channel. The rule TG-CONNECT1 splits a
locked channel across a parallel composition. As the typing environments
for term typing cannot contain locked channels, every locked channel
must be split across some parallel composition.

There is a tension between the structural congruence and the typing
rules. The typing rules require that each parallel composition splits
exactly one locked channel, but the structural congruence—specifically,
SC-PARASSOC—does not respect this invariant. Hence, GV’s structural
congruence does not preserve types. For instance, the following
configuration is well-typed:

Γ1, x ∶ S ⊢𝘎𝘝 C1 ∶ R1

Γ2, y ∶ S′ ⊢𝘎𝘝 C2 ∶ R2 Γ3, x̄ ∶ S, ȳ ∶ S′ ⊢𝘎𝘝 C3 ∶ R3

Γ2,Γ3, x̄ ∶ S, ⟨y, ȳ⟩ ∶ S′ ⊢𝘎𝘝 C2 ∥ C3 ∶ R2 ⊓ R3

Γ1,Γ2,Γ3, ⟨x, x̄⟩ ∶ S, ⟨y, ȳ⟩ ∶ S′ ⊢𝘎𝘝 C1 ∥ (C2 ∥ C3) ∶ R1 ⊓ R2 ⊓ R3

Γ1,Γ2,Γ3, ⟨x, x̄⟩ ∶ S ⊢𝘎𝘝 (νyȳ)(C1 ∥ (C2 ∥ C3)) ∶ R1 ⊓ R2 ⊓ R3

Γ1,Γ2,Γ3 ⊢𝘎𝘝 (νxx̄)(νyȳ)(C1 ∥ (C2 ∥ C3)) ∶ R1 ⊓ R2 ⊓ R3

However, by SC-PARASSOC

(νxx̄)(νyȳ)(C1 ∥ (C2 ∥ C3)) ≡𝘎𝘝 (νxx̄)(νyȳ)((C1 ∥ C2) ∥ C3)
The configuration on the right-hand side is not typeable, as the left-most
parallel composition splitsno locked channels, and the right-most parallel
composition splits two locked channels.

Consequently, GV, as well as a significant portion of work based
on Lindley and Morris’ GV, proves some variation of the following

3Technically, the presentation of GV in § 4.2 adds S# as a runtime session type, rather
than as part of a special type assignment. Nonetheless, the two presentations are
equivalent. Lock types cannot occur in user programs, and so cannot occur as part of
any other type. Hence, they already occur only as the top-most connective in a type
assignment.
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proposition, which states that if we break typing before some reduction,
we can restore it afterwards.

Proposition 4.2. If Γ ⊢𝘎𝘝 C ∶ R and C ≡𝘎𝘝 C′ and C′ ⟶𝘎𝘝 D′, then there
exists some D such that D′ ≡𝘎𝘝 D and Γ ⊢𝘎𝘝 D ∶ R.
Proof. See Fowler [2019, pp. 41-43, Theorem 2]. Fowler’s proof is for a
variant of GV without link or link threads, but the only rule of structural
congruence that breaks typing is SC-PARASSOC. Hence, the proof of
Theorem 2 trivially extends to the system with link and link threads.
Fowler’s proof is stronger, as it restores typing before and after the
reduction.

GV’s parallel composition is covertly a cut, albeit one that leaves the
channel implicit.4 Like cut, parallel composition must split exactly one
channel, and, while cut restricts a channel by removing its endpoints
from the typing environment, parallel composition restricts a channel
by locking its endpoints. This is just as effective, since there is no way
to use the endpoints of a locked channel. The locking mechanism keeps
the endpoints around for the sole purpose of being removed by name
restriction, which only adds unnecessary complexity.

To formalise this fact, we define a translation on configuration typing
derivations from GV to GVCut, written J⋅K𝘎𝘝𝘊 , which removes all lock types
from typing environments, removes all name restrictions, and replaces
parallel compositions with cuts. All uses of the rule TG-NEW are removed:uv 𝛿

Γ, ⟨x, x̄⟩ ∶ S# ⊢𝘎𝘝 C ∶ R TG-NEWΓ ⊢𝘎𝘝 (νxx̄)C ∶ R

}~
𝘎𝘝𝘊

≜ J𝛿K𝘎𝘝𝘊
Γ ⊢𝘎𝘝𝘊 C ∶ R

Each use of the rule TG-CONNECT1 is replacedwith a use of the rule TG-CUT:uwv 𝛿𝟣
Γ, x ∶ S ⊢𝘎𝘝 C ∶ R

𝛿𝟤
Δ, x̄ ∶ S ⊢𝘎𝘝 D ∶ R′

TG-CONNECT1Γ,Δ, ⟨x, x̄⟩ ∶ S# ⊢𝘎𝘝 C ∥ D ∶ R ⊓ R′

}�~
𝘎𝘝𝘊≜

J𝛿𝟣K𝘎𝘝𝘊
Γ, x ∶ S ⊢𝘎𝘝𝘊 C ∶ R

J𝛿𝟤K𝘎𝘝𝘊
Δ, x̄ ∶ S ⊢𝘎𝘝𝘊 D ∶ R′

TG-CUTΓ,Δ ⊢𝘎𝘝𝘊 (νxx̄)(C ∥ D) ∶ R ⊓ R′

The translation acts as the identity on threads, terms, and types. We
believe that the translation preserves reduction, but proving this matter

4Tellingly, Lindley and Morris [2015, § 3.3] write “∥𝘹” when they need the channel
name.
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would be tedious and not worthwhile. The intuition is that, under
the translation J⋅K𝘎𝘝𝘊 , any use of SC-LINKCOMM is preserved, any use
of SC-PARCOMM becomes SC-CUTCOMM, and all uses of SC-NEWASSOC,
SC-NEWSWAP, or SC-SCOPEEXT become reflexivity. The tedious part
is the proof that all type breaking uses of SC-PARASSOC are repaired
in such a way that the source and target can be proven equivalent
using SC-CUTASSOC. The structure of this proof depends heavily on the
computational content of the proof that repairs ill-typed configurations.

4.4 Conclusion
In this chapter, we introduced Hypersequent GV, as well as GV, with their
typing rules, reduction semantics, and their metatheory. Hypersequent
GV rectifies a design flaw that complicates all previous metatheory of
GV by dropping lock typing in favour of hypersequents. For HGV, we
proved preservation (Theorem I.3.3), the tree-structure of connections
in configurations (Theorem I.3.14), global progress (Theorem I.3.20), the
diamond property (Theorem I.3.21), and termination (Theorem I.3.22). We
related HGV to GV by means of a translation from GV to HGV (Theorem
I.4.3) and a translation from HGV to GV (Corollary I.4.7). We related HGV
to HCP bymeans of two translations, which translate HGV to HCP via fine-
grain call-by-value HGV, and proved that the latter translation preserves
types (Lemma I.5.9), and that it gives rise to a sound and complete
operational correspondence (Theorem I.5.11). Finally, I introduced a
variant of GV which uses cuts, instead of lock typing, and compared
Hypersequent GV to GV with lock typing and GV with cuts.

In the future, it would be interesting to extend Hypersequent GV with
the extensions for GV described in previous work, such as unlimited
types [Lindley andMorris, 2015], fixedpoints [Lindley andMorris, 2016b],
polymorphism [Lindley and Morris, 2017], and exceptions [Fowler et al.,
2019]. Furthermore, it would be interesting to describe the construction
of GV compositionally, as the combination of a process calculus and a
λ-calculus.
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Chapter 5

Priority Classical Processes &
Priority Good Variation

This chapter presents both Priority CP (PCP) and Priority GV (PGV),
variants of CP and GV that use priorities [Kobayashi, 2006, Padovani,
2014]. PCP is a session-typed process calculus, based on CP, which was
introduced by Dardha and Gay [2018]. PGV is a session-typed functional
language, based on GV, which was introduced by Kokke and Dardha
[2021a].

Priorities are an extra-logical mechanism for guaranteeing deadlock
freedom, which arose from research on typed π-calculus rather than
logic. In a system using priorities, each session type constructor—
or, equivalently each communication action—is annotated with some
priority, which the type system uses to ensure deadlock freedom. Let us
consider two intuitions for the mechanism by which priorities work.

Concretely, priorities are natural numbers that represent the time at
which some communication happens, i.e. for the process x[y]. z(w).P, we
might assign the action x[y] priority 𝟣, because it happens at time 𝟣, and
z(w) priority 𝟤, since it necessarily happens at some later time. Type
checking requires that the priority assignment reflects this dependency,
and that dual actions take place at the same time. In a session-typed
system, this suffices to rule out deadlocks, as there are no valid priority
assignments for deadlocking processes. For instance, for the process

(νxx̄)(νyȳ)(x(). y[].0 ∥ ȳ(). x̄[].0)

there exists no valid priority assignment, since, by duality, x() must
happen at the same time as x̄[], and y()must happen at the same time as
ȳ[], but, by dependency, x()must happen before y[], and ȳ()must happen
before x̄[]. Represented visually, we can see that the these requirements

237
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are essentially cyclic:

x() y[]

ȳ() x̄[]

=
=

<

<

Programs are annotated with a lower and and upper priority bound,
which represent the time at which the program begins to communicate,
and the time it finishes. Each priority bound is either a concrete priority,
or ⊤, or ⊥, where the latter two are the supremum and infimum,
respectively, i.e. ⊤ is greater than any priority, and ⊥ is smaller than
any priority. The supremum and infimum are useful in a variety of
circumstances. For instance, a program that does not communicate is
assigned the lower bound ⊤ and the upper bound ⊥, i.e. it never begins
communicating, and has already finished. Alternatively, ⊥ and ⊤may be
used as lower and upper bounds, respectively, to represent unknowns.
For instance, a program that loops might not have a concrete upper
bound, and can be assigned upper bound⊤, to mean that we do not know
if or when it finishes communicating.

Abstractly, we can view priority metavariables as names for actions.
(Here, we say prioritymetavariables, rather than priorities, to emphasize
that we are referring to the names, rather than the concrete numbers
with which they will be instantiated.) Type checking imposes equality
and inequality constraints on priority metavariables, which define the
deep dependency graph by analogy to the shallow dependency graph as
defined for, e.g. HCP in § 3.2.4. For instance, the visual representation of
constraints, shown above, is isomorphic to the dependency graph for the
same process. If the deep dependency graph is essentially acyclic, there
exists a topological sort of the prioritymetavariables, whichwe can use to
instantiate them with concrete priorities. This is the mechanism behind
priority inference, which we discuss in § 5.3.2.

Generally, priority type systems place the priority annotations on session
type connectives, rather than actions, since it makes it easier to integrate
priorities into type checking. (This is what the type systems for PCP
and PGV, presented in § 5.2, do as well.) Explicitly tracking both the
priority lower and upper bounds can be quite syntactically burdensome,
but there are several tricks to ease this:

• In general, the lower bound can be under-approximated by taking
the smallest priority of all endpoints in the typing environment,
since a program cannot start communicating earlier than its
endpoints permit.

• In systems such as the π-calculus, we do not need to track the upper
bound. When composing two programs in sequence, wemust check
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that the first program finishes communicating before the second
program starts. However, the only kind of sequential composition
in the π-calculus is prefixing a process with an action. In this case,
we must check that the action finishes before the process starts.
Hence, weonly need to check that the priority of the action is smaller
than the lower bound of the process.

• Finally, if we must track both the lower and the upper bound, we
can slightly ease the burden of syntax by tracking pairs of lower
and upper bounds instead. Since pairs of priority bounds form a
lattice, this lets us track both bounds while only manipulating a
single value.

One of the benefits of GV is that it closely resembles the manner in
which concurrency is exposed to the user in programming languages,
which makes it easy to implement the deadlock-free session-typed
communication offered by GV as a library, especially in a host language
that supports linear types. Less so for Priority GV, as presented in §
5.2, since priority typing requires more of the type system. Fortunately,
session-typed communication can be reflected into a monad, in the sense
of the monadic reflection of an effect, following Filinski [1994], and
priority typing can be reflected into a parametrisedmonad, parametrised
by pairs of lower and upper priority bounds, following Atkey [2009]. We
explore the monadic reflection of priorities in § 6.2.

The version of PCP introduced in this chapter is different from the version
introduced by Dardha and Gay [2018].

• We drop the commuting conversions. Hence, it bears the same
relation to Dardha and Gay’s PCP as the version of CP in Chapter 2
does toWadler’s CP. Notably, Dardha and Gay’s PCP is non-confluent
for the same reason Wadler’s CP is non-confluent (see § 2.3).

• We simplify variant select and offer to binary select and offer, and
reintroduce a separate construct for the absurd offer.

• We allow arbitrary process continuations in the close construct,
rather than forcing the process to terminate.

• We restrict ourselves to studying the multiplicative additive core,
and omit the exponentials, as is done in most of this thesis. (Neither
publication includes the second order quantifiers.)

• We add the additive units, which are omitted in Dardha and
Gay [2018], and use the ‘inert’ semantics for the absurd offer, as
discussed in § 2.1.6. (Since the priority constraints encode the
blocking behaviour of actions, using the exceptional semantics, as
discussed in § 3.3.1, requires a different typing rule for the absurd
offer.)

While Dardha and Gay [2018] introduce PCP as an extension of CP, it does
not formally extend CP, as there are CP processes that are not typeable in
PCP. We discuss the relation between CP and PCP in detail in § 5.3.1.



240 Chapter 5. Priority Classical Processes & Priority Good Variation

The bulk of the chapter consists of the paper Prioritise the Best Variation
by Kokke and Dardha [2023], hereafter referred to as Paper II. References
made from the main body of this thesis into Paper II will be prefixed by
an “II”, e.g. “Theorem II.3.13”. This chapter proceeds as follows:

• In § 5.1, we provide a legend and an errata for Paper II.

• In § 5.2, we present Priority GV and Priority CP, their metatheories,
and the correspondence between Priority GV and Priority CP. This
section consists entirely of Paper II, and proceeds as follows:

– In § II.2, we introduce PGV.

– In § II.3, we present the metatheory for PGV.

Notably, we prove preservation (referred to as subject reduction,
§ II.3.1, Theorem II.3.5) and global progress (§ II.3.2, Theorem
II.3.14).

– In § II.4, we revisit PCP and its metatheory, and prove a sound
and complete operational correspondence between PCP and
PGV.

The version of PCP presented in this section differs from
Dardha and Gay’s PCP, as discussed previously, as it drops
commuting conversions, allows arbitrary process
continuations after a close action, and does not include the
exponentials. Notably, we prove progress (§ II.4.5, Theorem
II.4.4), define a translation from PCP into PGV (§ II.4.6), and
prove that the translation preserves types (§ II.4.6, Theorem
II.4.6), and gives rise to a complete (§ II.4.6, Theorem II.4.7) and
sound (§ II.4.6, Theorem II.4.10) operational correspondence.

– In § II.5, we discuss an example program.

– In § II.6, we discuss related work.

• In § 5.3, we discuss PCP in further detail:

– In § 5.3.1, we discuss the relation between PCP and CP.
– In § 5.3.2, we introduce priority inference for PCP.

5.1 Legend and Errata
The conventions and terminology in Paper II are different from those
used in the rest of this thesis.

• The terms, types, and priorities of both Priority CP and Priority GV
are printed in red, blue, and green, respectively, and are rendered
in an italicised or bolded font with serif.
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• The names for the rules of structural congruence, reduction, and the
type system differ slightly from those used for HGV in Chapter 4 and
for HCP in Chapter 3.

• The following changes relate to the presentation of PCP:

– Duality is written as A⟂ instead of A.
– The absurd offer is written as x ▷ {} instead of x N.
– Reduction is not definitionally closed under evaluation
contexts, as by E-CONG. Instead, there are separate congruence
rules for name restriction and parallel composition (E-LIFTRES
and E-LIFTPAR).

– A ready process is called an “action” and a process ready to
act on some endpoint is said to “act on” that endpoint (§ II.4.5,
Definition II.4.1).

– There is no proof of Progress analogous to Proposition 3.35.
Instead, the paper proves Closed Progress (§ II.4.5, Theorem
II.4.4).

– There is no definition of canonical form analogous to Definition
3.33, which includes both normal andneutral forms. (The latter
is not needed for Closed Progress. Hence, 0 suffices.)
Unfortunately, the paper uses the name “canonical form” to
refer to a form that serves the same purpose as the maximum
configuration context or right-branching form, i.e. the form

(νx1x̄1)⋯ (νxnx̄n)(P1 ∥ ⋯ ∥ Pm)
where each process Pi (for 𝟣 ≤ 𝘪 ≤ 𝘮) is ready (§ II.4.5, Definition
II.4.2).

• The following changes relate to the presentation of PGV:

– Configuration typing does not use configuration types, as in
Chapter 4, but omits the type of the value returned by the
configuration, as, e.g. in Lindley and Morris [2015] (see Figure
II.2).

There are minor errors in Paper II:

• The text states that “Priority GV is more flexible than GV” and “more
expressive thanGV” (§ II.2), which is not true, aswe discuss in § 5.3.1.

• The text states that “PLL [Priority Linear Logic] is an extension of
CLL” (§ II.4.4), which—when taken as a statement about proofs—is
not true, as we discuss in § 5.3.1. The next sentence, which states
that “PCP is not in correspondence with CLL” implies the previous
statement concerns provability, rather than proofs, and while this
is not known to be false, it remains unproven.

• The defintion of normal form (§ II.3.2, Definition I.3.11) reads “a
configuration 𝒞 is in normal form if it is of the form

(νx1x′1)…(νxnx′n)(○M1 ∥ … ∥ ○Mm ∥ ●V)
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where each Mi is ready to act on xi.” Instead, the final part of the
phrase should read “where eachMi (for 𝟣 ≤ 𝘪 ≤ 𝘮) is ready to act on
some xj (for 𝟣 ≤ 𝘫 ≤ 𝘯) or some free channel endpoint.”

• Closed Progress (Theorem II.4.4) is stated using equality rather than
structural congruence. The correct statement is:

If P ⊢ ∅, then either P ≡ Q or there exists a Q such that P⟹ Q

• In the proof for Lemma II.4.8, the cases for x◁ inl.P and x◁ inr.P
erroneously list the premise and conclusion of the reduction asLx[y].PM𝘔 and Lx[y].PM𝘊 , rather than Lx◁ inl.PM𝘔 and Lx◁ inl.PM𝘊 , andLx◁ inl.PM𝘔 and Lx◁ inr.PM𝘊 , respectively. The intermediate steps are
correct.



5.2 Paper II: Prioritise the Best Variation

This section contains the paper with the same title, written in
collaboration with Ornela Dardha, which was originally published in the
journal Logical Methods in Computer Science, Volume 19, Issue 4, 2023,
which is an extended journal version of the paper with the same title and
authors originally published in the proceedings for the 41st International
Conference on Formal Techniques for Distributed Objects, Components,
and Systems (FORTE 2021) as part of the Lecture Notes in Computer
Science (LNCS) series.

The work presented in the paper was conceived of by all the authors. I
co-developed Priority GV and was primarily responsible for the initial
draft of its theory andmetatheory. I adapted the changes to the reduction
semantics of Priority CP from my previous work on CP.
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Abstract. Binary session types guarantee communication safety and session fidelity, but
alone they cannot rule out deadlocks arising from the interleaving of different sessions.

In Classical Processes (CP) [Wad14]—a process calculus based on classical linear logic—
deadlock freedom is guaranteed by combining channel creation and parallel composition
under the same logical cut rule. Similarly, in Good Variation (GV) [Wad15, LM15]—a linear
concurrent λ-calculus—deadlock freedom is guaranteed by combining channel creation and
thread spawning under the same operation, called fork.

In both CP and GV, deadlock freedom is achieved at the expense of expressivity, as
the only processes allowed are tree-structured. This is true more broadly than for CP and
GV, and it holds for all works in the research line based on Curry-Howard correspondences
between linear logic and session types, starting with Caires and Pfenning [CP10]. To
overcome the limitations of tree-structured processes, Dardha and Gay [DG18a] define
Priority CP (PCP), which allows cyclic-structured processes and restores deadlock freedom
by using priorities, in line with Kobayashi and Padovani [Kob06, Pad14].

Following PCP, we present Priority GV (PGV), a variant of GV which decouples channel
creation from thread spawning. Consequently, we type cyclic-structured processes and
restore deadlock freedom by using priorities. We show that our type system is sound by
proving subject reduction and progress. We define an encoding from PCP to PGV and
prove that the encoding preserves typing and is sound and complete with respect to the
operational semantics.

1. Introduction

Session types [Hon93, THK94, HVK98] are a type formalism that ensures communication
channels are used according to their protocols, much like, e.g., data types ensure that functions
are used according to their signature. Session types have been studied in many settings. Most
notably, they have been defined for the π-calculus [Hon93, THK94, HVK98], a foundational
calculus for communication and concurrency, and the concurrent λ-calculi [GV10], including
the main focus of our paper: Good Variation [Wad15, LM15, GV].

Key words and phrases: session types, π-calculus, functional programming, deadlock freedom, GV, CP.
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GV is a concurrent λ-calculus with binary session types, where each channel is shared
between exactly two processes. Binary session types guarantee two crucial properties:
communication safety—e.g., if the protocol says to transmit an integer, you transmit an
integer—and session fidelity—e.g., if the protocol says send, you send. A third crucial
property is deadlock freedom, which ensures that processes do not have cyclic dependencies—
e.g., when two processes wait for each other to send a value. Binary session types alone are
insufficient to rule out deadlocks arising from interleaved sessions, but several additional
techniques have been developed to guarantee deadlock freedom in session-typed π-calculus
and concurrent λ-calculus.

In the π-calculus literature, there have been several developments of Curry-Howard
correspondences between session-typed π-calculus and linear logic [Gir87]: Caires and
Pfenning’s πDILL [CP10] corresponds to dual intuitionistic linear logic [Bar96], and Wadler’s
Classical Processes [Wad14, CP] corresponds to classical linear logic [Gir87, CLL]. Both
calculi guarantee deadlock freedom, which they achieve by the combination of binary session
types with a restriction on the way processes can be connected by channels: two processes
can share at most one channel, and, more generally, information transmitted between any
two processes must pass through one unique series of channels and intermediate processes.
We refer to such processes as tree-structured, because the communication graph—where
the vertices are ready processes and two vertices are connected by an edge if and only if
the corresponding processes share a channel—is a tree. For πDILL, CP, and GV, tree-
structure follows from a syntactic restriction: the combination of name restriction and
parallel composition into a single syntactic construct, corresponding to the logical cut.

There are many downsides to combining name restriction and parallel composition, such
as lack of modularity, difficulty typing structural congruence and formulating label-transition
semantics. GV, specifically, struggles with a complicated metatheory due to the mismatch
between its term language—where restriction and parallel composition are combined—and
its configuration language—where they are not. There have been various approaches to de-
coupling restriction and parallel composition. Hypersequent CP [MP18, KMP19a, KMP19b,
HCP], Hypersequent GV [FKD+21], and Linear Compositional Choreographies [CMS18]
decouple them, but maintain the tree-structure of processes and a correspondence to linear
logic, e.g., while the typing rules for HCP are no longer exactly the proof rules for CLL, every
typing derivations in HCP is isomorphic a proof in CLL, and vice versa. Priority CP [DG18b,
PCP] weakens the correspondence to CLL. PCP is a non-conservative extension of CLL:
every proof in CLL can be translated to a typing derivation in PCP [DP22], but PCP can
prove strictly more theorems, including (partial) bijections between several CLL connectives.
In exchange, PCP has a much more expressive language which allows cyclic-structured
processes. PCP decouples CP’s cut rule into two separate constructs: one for parallel
composition via a mix rule, and one for name restriction via a cycle rule. To restore deadlock
freedom, PCP uses priorities [Kob06, Pad14]. Priorities encode the order of actions and
rule out bad cyclic interleavings. Dardha and Gay [DG18b] prove cycle-elimination for PCP,
adapting the cut-elimination proof for classical linear logic, and deadlock freedom follows as
a corollary.

CP and GV are related via a pair of translations which satisfy simulation [LM16], and
which can be tweaked to satisfy operational correspondence. The two calculi share the same
strong guarantees. GV achieves deadlock freedom via a similar syntactic restriction: it
combines channel creation and thread spawning into a single operation, called “fork”, which
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is related to the cut construct in CP. Unfortunately, as with CP, this syntactic restriction
has its downsides.

Our aim is to develop a more expressive version of GV while maintaining deadlock
freedom. While process calculi have their advantages, e.g., their succinctness compared to
concurrent λ-calculi, we chose to work with GV for several reasons. In general, concurrent
λ-calculi support higher-order functions, and have a capability for abstraction not usually
present in process calculi. Within a concurrent λ-calculus, one can derive extensions of the
communication capabilities of the language via well-understood extensions of the functional
fragment, e.g., we can derive internal/external choice from sum types. Concurrent λ-calculi,
among other languages, maintain a clear separation between the program which the user
writes and the configurations which represent the state of the system as it evaluates the
program. However, our main motivation is that results obtained for λ-calculi transfer
more easily to real-world functional programming languages. Case in point: we easily
adapted the type system of PGV to Linear Haskell [BBN+18], which gives us a library for
deadlock-free session-typed programming [KD21a]. The benefit of working specifically with
GV, as opposed to other concurrent λ-calculi, is its relation to CP [Wad14], and its formal
properties, including deadlock freedom.

We thus pose our research question for GV:

RQ: Can we design a more expressive GV which guarantees deadlock freedom for
cyclic-structured processes?

We follow the line of work from CP to Priority CP, and present Priority GV (PGV),
a variant of GV which decouples channel creation from thread spawning, thus allowing
cyclic-structured processes, but which nonetheless guarantees deadlock freedom via priorities.
This closes the circle of the connection between CP and GV [Wad14], and their priority-based
versions, PCP [DG18b] and PGV. We cannot straightforwardly adapt the priority typing
from PCP to PGV, as PGV adds higher-order functions. Instead, the priority typing for
PGV follow the work by Padovani and Novara [PN15].

We make the following main contributions:

(1) Priority GV. We present Priority GV (§. 2, PGV), a session-typed functional language
with priorities, and prove subject reduction (Theorem 3.5) and progress (Theorem 3.13).

We addresses several problems in the original GV language, most notably:
(a) PGV does not require the pseudo-type S♯;
(b) Structural congruence is type preserving.
PGV answers our research question positively as it allows cyclic-structured binary
session-typed processes that are deadlock free.

(2) Translation from PCP to PGV. We present a sound and complete encoding of
PCP [DG18b] in PGV (§. 4). We prove the encoding preserves typing (Theorem 4.6)
and satisfies operational correspondence (Theorem 4.7 and Theorem 4.10).

To obtain a tight correspondence, we update PCP, moving away from commuting
conversions and reduction as cut elimination towards reduction based on structural
congruence, as it is standard in process calculi.

This paper is an improved and extended version of a paper published at FORTE 2021
international conference [KD21b]. We present detailed examples and complete proofs of our
technical results.
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Example 2.1.

let (x, x′) = new () in
let (y, y′) = new () in

spawn

λ().
let ((), x′) = recv x′ in
let y = send ((), y) in
wait x′; close y

 ;

let x= send ((), x) in

let ((), y′) = recv y′ in

close x;wait y′

Example 2.2.

let (x, x′) = new () in
let (y, y′) = new () in

spawn

λ().
let ((), x′) = recv x′ in
let y = send ((), y) in
wait x′; close y

 ;

let ((), y′) = recv y′ in

let x= send ((), x) in

close x;wait y′

2. Priority GV

We present Priority GV (PGV), a session-typed functional language based on GV [Wad15,
LM15] which uses priorities à la Kobayashi and Padovani [Kob06, PN15] to enforce deadlock
freedom. Priority GV is more flexible than GV because it allows processes to share more
than one communication channel.

We illustrate this with two programs in PGV, Example 2.1 and Example 2.2. Each
program contains two processes—the main process, and the child process created by spawn—
which communicate using two channels. The child process receives a unit over the channel
x/x′, and then sends a unit over the channel y/y′. The main process does one of two things:

(a) in Example 2.1, it sends a unit over the channel x/x′, and then waits to receive a unit
over the channel y/y′;

(b) in Example 2.2, it does these in the opposite order, which results in a deadlock.

PGV is more expressive than GV: Example 2.1 is typeable and guaranteed to be deadlock-free
in PGV, but is not typeable in GV [Wad14] and not guaranteed deadlock-free in GV’s
predecessor [GV10]. We believe PGV is a non-conservative extension of GV, as CP can be
embedded in a Kobayashi-style system [DP18].

2.1. Syntax of Types and Terms.

Session types. Session types (S) are defined by the following grammar:

S ::= !oT.S | ?oT.S | endo
! | endo

?

Session types !oT.S and ?oT.S describe the endpoints of a channel over which we send or
receive a value of type T , and then proceed as S. Types endo

! and endo
? describe endpoints

of a channel whose communication has finished, and over which we must synchronise before
closing the channel. Each connective in a session type is annotated with a priority o ∈ N.

Types. Types (T , U) are defined by the following grammar:

T ,U ::= T × U | 1 | T + U | 0 | T ⊸p,q U | S

Types T × U , 1, T + U , and 0 are the standard linear λ-calculus product type, unit
type, sum type, and empty type. Type T ⊸p,q U is the standard linear function type,
annotated with priority bounds p, q ∈ N ∪ {⊥,⊤}. Every session type is also a type. Given a
function with type T ⊸p,q U , p is a lower bound on the priorities of the endpoints captured
by the body of the function, and q is an upper bound on the priority of the communications
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that take place as a result of applying the function. The type of pure functions T ⊸ U , i.e.,
those which perform no communications, is syntactic sugar for T ⊸⊤,⊥U . The lower bound
for a pure function is ⊤ as pure functions never start communicating. For similar reasons,
the upper bound for a pure function is ⊥.

We postulate that the only function types—and, consequently, sequents—that are
inhabited in PGV are pure functions and functions T ⊸p,q U for which p < q.

Typing Environments. Typing environments Γ, ∆, Θ associate types to names. Environments
are linear, so two environments can only be combined as Γ,∆ if their names are distinct,
i.e., fv(Γ) ∩ fv(∆) = ∅.

Γ,∆ ::= ∅ | Γ, x : T

Type Duality. Duality plays a crucial role in session types. The two endpoints of a channel
are assigned dual types, ensuring that, for instance, whenever one program sends a value on
a channel, the program on the other end is waiting to receive. Each session type S has a
dual, written S. Duality is an involutive function which preserves priorities:

!oT.S = ?oT.S ?oT.S = !oT.S endo
! = endo

? endo
? = endo

!

Priorities. Function pr(·) returns the smallest priority of a session type. The type system
guarantees that the top-most connective always holds the smallest priority, so we simply
return the priority of the top-most connective:

pr(!oT.S) = o pr(?oT.S) = o pr(endo
! ) = o pr(endo

?) = o

We extend the function pr(·) to types and typing contexts by returning the smallest
priority in the type or context, or ⊤ if there is no priority. We use ⊓ and ⊔ to denote the
minimum and maximum, respectively:

pr(T × U) = pr(T ) ⊓ pr(U)
pr(T + U) = pr(T ) ⊓ pr(U)
pr(T ⊸p,q U) = p
pr(Γ, x : A) = pr(Γ) ⊓ pr(A)

pr(1) = ⊤
pr(0) = ⊤
pr(S) = pr(S)
pr(∅) = ⊤

Terms. Terms (L, M , N) are defined by the following grammar:

L,M,N ::= x | K | λx.M | M N
| () | M ;N | (M,N) | let (x, y) =M in N
| inl M | inr M | case L {inl x 7→ M ; inr y 7→ N} | absurd M

K ::= link | new | spawn | send | recv | close | wait

Let x, y, z, and w range over variable names. Occasionally, we use a, b, c, and d.
The term language is the standard linear λ-calculus with products, sums, and their units,
extended with constants K for the communication primitives.

Constants are best understood in conjunction with their typing and reduction rules
in Figs. 1 and 2.

Briefly, link links two endpoints together, forwarding messages from one to the other,
new creates a new channel and returns a pair of its endpoints, and spawn spawns off its
argument as a new thread.
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The send and recv functions send and receive values on a channel. However, since the
typing rules for PGV ensure the linear usage of endpoints, they also return a new copy of
the endpoint to continue the session.

The close and wait functions close a channel.
We use syntactic sugar to make terms more readable: we write let x=M in N in place

of (λx.N) M , λ().M in place of λz.z;M , and λ(x, y).M in place of λz.let (x, y) = z in M .
We can recover GV’s fork as λx.let (y, z) = new () in spawn (λ().x y); z.

Internal and External Choice. Typically, session-typed languages feature constructs for
internal and external choice. In GV, these can be defined in terms of the core language, by
sending or receiving a value of a sum type [LM15]. We use the following syntactic sugar for
internal (S ⊕o S′) and external (S &o S′) choice and their units:

S ⊕o S′ ≜ !o(S + S′).endo+1
!

S &o S′ ≜ ?o(S + S′).endo+1
?

⊕o{} ≜ !o0.endo+1
!

&o{} ≜ ?o0.endo+1
?

As the syntax for units suggests, these are the binary and nullary forms of the more
common n-ary choice constructs ⊕o{li : Si}i∈I and &o{li : Si}i∈I , which one may obtain
generalising the sum types to variant types. For simplicity, we present only the binary and
nullary forms.

Similarly, we use syntactic sugar for the term forms of choice, which combine sending
and receiving with the introduction and elimination forms for the sum and empty types.
There are two constructs for binary internal choice, expressed using the meta-variable ℓ
which ranges over {inl, inr}. As there is no introduction for the empty type, there is no
construct for nullary internal choice:

select ℓ ≜ λx.let (y, z) = new in close (send (ℓ y, x)); z

offer L {inl x 7→ M ; inr y 7→ N} ≜
let (z, w) = recv L in wait w; case z {inl x 7→ M ; inr y 7→ N}

offer L {} ≜ let (z, w) = recv L in wait w;absurd z

2.2. Operational Semantics.

Configurations. Priority GV terms are evaluated as part of a configuration of processes.
Configurations are defined by the following grammar:

ϕ ::= • | ◦ C,D, E ::= ϕ M | C ∥ D | (νxx′)C
Configurations (C, D, E) consist of threads ϕ M , parallel compositions C ∥ D, and name

restrictions (νxx′)C. To preserve the functional nature of PGV, where programs return a
single value, we use flags (ϕ) to differentiate between the main thread, marked •, and child
threads created by spawn, marked ◦. Only the main thread returns a value. We determine
the flag of a configuration by combining the flags of all threads in that configuration:

•+ ◦ = • ◦+ • = • ◦+ ◦ = ◦ (•+ • is undefined)

To distinguish between the use of ◦ to mark child threads [LM15] and the use of the
meta-variable o for priorities [DG18b], they are typeset in a different font and colour.
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Values. Values (V , W ), evaluation contexts (E), thread evaluation contexts (F), and
configuration contexts (G) are defined by the following grammars:

V ,W ::= x | K | λx.M | () | (V,W ) | inl V | inr V
E ::= □ | E M | V E

| E;N | (E,M) | (V,E) | let (x, y) = E in M
| inl E | inr E | case E {inl x 7→ M ; inr y 7→ N} | absurd E

F ::= ϕ E
G ::= □ | G ∥ C | (νxy)G

Values are the subset of terms which cannot reduce further. Evaluation contexts are one-hole
term contexts, i.e., terms with exactly one hole, written □. We write E[M ] for the evaluation
context E with its hole replaced by the term M . Evaluation contexts are specifically those
one-hole term contexts under which term reduction can take place. Thread contexts are a
convenient way to lift the notion of evaluation contexts to threads. We write F [M ] for the
thread context F with its hole replaced by the term M . Configuration contexts are one-hole
configuration contexts, i.e., configurations with exactly one hole, written □. Specifically,
configuration contexts are those one-hole term contexts under which configuration reduction
can take place. The definition for G only gives the case in which the hole is in the left-most
parallel process, i.e., it only defines G ∥ C and not C ∥ G. The latter is not needed, as ∥ is
symmetric under structural congruence, though it would be harmless to add. We write G[C]
for the evaluation context G with its hole replaced by the term C.

Reduction Relation. We factor the reduction relation of PGV into a deterministic reduction
on terms (−→M ) and a non-deterministic reduction on configurations (−→C), see Fig. 1.
We write −→+

M and −→+
C for the transitive closures, and −→⋆

M and −→⋆
C for the reflexive-

transitive closures.
Term reduction is the standard call-by-value, left-to-right evaluation for GV, and only

deviates from reduction for the linear λ-calculus in that it reduces terms to values or ready
terms waiting to perform a communication action.

Configuration reduction resembles evaluation for a process calculus: E-Link, E-Send, and
E-Close perform communications, E-LiftC allows reduction under configuration contexts,
and E-LiftSC embeds a structural congruence ≡. The remaining rules mediate between the
process calculus and the functional language: E-New and E-Spawn evaluate the new and
spawn constructs, creating the equivalent configuration constructs, and E-LiftM embeds
term reduction.

Structural congruence satisfies the following axioms: SC-LinkSwap allows swapping
channels in the link process. SC-ResLink allows restriction to be applied to link which is
structurally equivalent to the terminated process, thus allowing elimination of unnecessary
restrictions. SC-ResSwap allows swapping channels and SC-ResComm states that restriction
is commutative. SC-ResExt is the standard scope extrusion rule. Rules SC-ParNil,
SC-ParComm and SC-ParAssoc state that parallel composition uses the terminated process
as the neutral element; it is commutative and associative.

While our configuration reduction is based on the standard evaluation for GV, the
increased expressiveness of PGV allows us to simplify the relation on two counts.

(i) We decompose the fork construct . In GV, fork creates a new channel, spawns a child
thread, and, when the child thread finishes, it closes the channel to its parent. In PGV,
these are three separate operations: new, spawn, and close. We no longer require
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Term reduction.

E-Lam (λx.M) V −→M M{V/x}
E-Unit ();M −→M M
E-Pair let (x, y) = (V,W ) in M −→M M{V/x}{W/y}
E-Inl case inl V {inl x 7→ M ; inr y 7→ N} −→M M{V/x}
E-Inr case inr V {inl x 7→ M ; inr y 7→ N} −→M N{V/y}

E-Lift
M −→M M ′

E[M ] −→M E[M ′]

Structural congruence.

SC-LinkSwap F [link (x, y)] ≡ F [link (y, x)]
SC-ResLink (νxy)(ϕ link (x, y)) ≡ ϕ ()
SC-ResSwap (νxy)C ≡ (νyx)C
SC-ResComm (νxy)(νzw)C ≡ (νzw)(νxy)C, if {x, y} ∩ {z, w} = ∅
SC-ResExt (νxy)(C ∥ D) ≡ C ∥ (νxy)D, if x, y /∈ fv(C)
SC-ParNil C ∥ ◦() ≡ C
SC-ParComm C ∥ D ≡ D ∥ C
SC-ParAssoc C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E

Configuration reduction.

E-Link (νxy)(F [link (w, x)] ∥ C) −→C F [()] ∥ C{w/y}
E-New F [new ()] −→C (νxy)(F [(x, y)]), if x, y /∈ fv(F)
E-Spawn F [(spawn V )] −→C F [()] ∥ ◦ V ()
E-Send (νxy)(F [send (V, x)] ∥ F ′[recv y]) −→C (νxy)(F [x] ∥ F ′[(V, y)])
E-Close (νxy)(F [wait x] ∥ F ′[close y]) −→C F [()] ∥ F ′[()]

E-LiftC
C −→C C′

G[C] −→C G[C′]

E-LiftM
M −→M M ′

F [M ] −→M F [M ′]

E-LiftSC
C ≡ C′ C′ −→C D′ D′ ≡ D

C −→C D

Figure 1: Operational Semantics for PGV.

that every child thread finishes by returning a terminated channel. Consequently, we
also simplify the evaluation of the link construct.

Intuitively, evaluating link causes a substitution: if we have a channel bound as
(νxy), then link (w, x) replaces all occurrences of y by w. However, in GV, link is
required to return a terminated channel, which means that the semantics for link must
create a fresh channel of type end!/end?. The endpoint of type end! is returned by
the link construct, and a wait on the other endpoint guards the actual substitution.
In PGV, evaluating link simply causes a substitution.

(ii) Our structural congruence is type preserving . Consequently, we can embed it directly
into the reduction relation. In GV, this is not the case, and subject reduction relies
on proving that if the result of rewriting via ≡ followed by reducing via −→C is an
ill-typed configuration, we can rewrite it to a well-typed configuration via ≡.
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Static Typing Rules.

T-Var

x : T ⊢⊥ x : T

T-Const

∅ ⊢⊥K : T

T-Lam
Γ, x : T ⊢q M : U

Γ ⊢⊥ λx.M : T ⊸pr(Γ),q U

T-App

Γ ⊢p M : T ⊸p′,q′ U ∆ ⊢q N : T p < pr(∆) q < p′

Γ,∆ ⊢p⊔q⊔q′ M N : U

T-Unit

∅ ⊢⊥ () : 1

T-LetUnit
Γ ⊢p M : 1 ∆ ⊢q N : T p < pr(∆)

Γ,∆ ⊢p⊔q M ;N : T

T-Pair
Γ ⊢p M : T ∆ ⊢q N : U p < pr(∆)

Γ,∆ ⊢p⊔q (M,N) : T × U

T-LetPair
Γ ⊢p M : T × T ′ ∆, x : T , y : T ′ ⊢q N : U p < pr(∆, T , T ′)

Γ,∆ ⊢p⊔q let (x, y) =M in N : U

T-Inl
Γ ⊢p M : T pr(T ) = pr(U)

Γ ⊢p inl M : T + U

T-Inr
Γ ⊢p M : U pr(T ) = pr(U)

Γ ⊢p inr M : T + U

T-CaseSum
Γ ⊢p L : T + T ′ ∆, x : T ⊢q M : U ∆, y : T ′ ⊢q N : U p < pr(∆)

Γ,∆ ⊢p⊔q case L {inl x 7→ M ; inr y 7→ N} : U

T-Absurd
Γ ⊢p M : 0

Γ,∆ ⊢p absurd M : T

Type Schemas for Constants.

link : S × S ⊸ 1 new : 1⊸ S × S spawn : (1⊸p,q 1)⊸ 1

send : T × !oT.S ⊸⊤,o S recv : ?oT.S ⊸⊤,o T × S

close : endo
! ⊸

⊤,o 1 wait : endo
? ⊸

⊤,o 1

Runtime Typing Rules.

T-Main
Γ ⊢p M : T

Γ ⊢• • M

T-Child
Γ ⊢p M : 1

Γ ⊢◦ ◦ M

T-Res
Γ, x : S, y : S ⊢ϕ C

Γ ⊢ϕ (νxy)C

T-Par

Γ ⊢ϕ C ∆ ⊢ϕ′ D
Γ,∆ ⊢ϕ+ϕ′ C ∥ D

Figure 2: Typing Rules for PGV.
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2.3. Typing Rules.

Terms Typing. Typing rules for terms are at the top of Fig. 2. Terms are typed by a
judgement Γ ⊢p M : T stating that “a term M has type T and an upper bound on its priority
p under the typing environment Γ”. Typing for the linear λ-calculus is standard. Linearity
is ensured by splitting environments on branching rules, requiring that the environment in
the variable rule consists of just the variable, and the environment in the constant and unit
rules are empty. Constants K are typed using type schemas, which hold for any concrete
assignment of types and priorities to their meta-variables. Instantiated type schemas are
embedded into typing derivations using T-Const in Fig. 2, e.g., the type schema for send
can be instantiated with o = 2, T = 1, and S = 0, and embedded using T-Const to give
the following typing derivation:

send : 1× !21.0⊸⊤,2 0

The typing rules treat all variables as linear resources, even those of non-linear types such
as 1, though they can easily be extended to allow values with unrestricted usage [Wad14].

The only non-standard feature of the typing rules is the priority annotations. Priorities
are based on obligations/capabilities used by Kobayashi [Kob06], and simplified to single
priorities following Padovani [Pad14]. The integration of priorities into GV is adapted from
Padovani and Novara [PN15]. Paraphrasing Dardha and Gay [DG18b], priorities obey the
following two laws:

(i) an action with lower priority happens before an action with higher priority; and
(ii) communication requires equal priorities for dual actions.

In PGV, we keep track of a lower and upper bound on the priorities of a term, i.e., while
evaluating the term, when it starts communicating, and when it finishes, respectively. The
upper bound is written on the sequent and the lower bound is approximated from the typing
environment, e.g., for Γ ⊢p M : T the upper bound is p and the lower bound is at least
pr(Γ). The latter is correct because a term cannot communicate at a priority earlier than the
earliest priority amongst the channels it has access to. It is an approximation on function
terms, as these can “skip” communication by returning the corresponding channel unused.
However, linearity prevents such functions from being used in well typed configurations:
once the unused channel’s priority has passed, it can no longer be used.

Typing rules for sequential constructs enforce sequentiality, e.g., the typing for M ;N
has a side condition which requires that the upper bound of M is smaller than the lower
bound of N , i.e., M finishes before N starts. The typing rule for new ensures that both
endpoints of a channel share the same priorities. Together, these two constraints guarantee
deadlock freedom.

To illustrate this, let’s go back to the deadlocked program in Example 2.2. Crucially, it
composes the terms below in parallel. While each of these terms itself is well typed, they
impose opposite conditions on the priorities, so connecting x to x′ and y to y′ using T-Res

is ill-typed, as there is no assignment to o and o′ that can satsify both o < o′ and o′ < o.
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(We omit the priorities on end! and end?.)

y′ : ?o
′
1.end? ⊢o′ recv y′ : 1× end?

x : !o1.end!, y
′ : end? ⊢p let x= send ((), x) in . . . : 1 o′ < o

x : !o1.end!, y
′ : ?o

′
1.end? ⊢p let ((), y′) = recv y′ in let x= send ((), x) in . . . : 1

x′ : ?o1.end? ⊢o recv x′ : 1× end?

y : !o
′
1.end!, x

′ : end? ⊢q let y = send ((), y) in . . . : 1 o < o′

y : !o
′
1.end!, x

′ : ?o1.end? ⊢q let ((), x′) = recv x′ in let y = send ((), y) in . . . : 1

Closures suspend communication, so T-Lam stores the priority bounds of the function
body on the function type, and T-App restores them. For instance, λx.send (x, y) is assigned
the type A⊸o,o S, i.e., a function which, when applied, starts and finishes communicating
at priority o.

send : T × !oT.S ⊸⊤,o S

x : T ⊢⊥ x : T x : T , y : !oT.S ⊢⊥ y : !oT.S

x : T , y : !oT.S ⊢⊥ (x, y) : T × !oT.S

x : T , y : !oT.S ⊢o send (x, y) : S

y : !oT.S ⊢⊥ λx.send (x, y) : T ⊸o,o S

For simplicity, we assume priority annotations are not inferred, but provided as an
input to type checking. However, for any term, priorities can be inferred, e.g., by using the
topological ordering of the directed graph where the vertices are the priority meta-variables
and the edges are the inequality constraints between the priority meta-variables in the typing
derivation.

Configurations Typing. Typing rules for configurations are at the bottom of Fig. 2. Configu-
rations are typed by a judgement Γ ⊢ϕ C stating that “a configuration C with flag ϕ is well
typed under typing environment Γ”. Configuration typing is based on the standard typing
for GV. Terms are embedded either as main or as child threads. The priority bound from
the term typing is discarded, as configurations contain no further blocking actions. Main
threads are allowed to return a value, whereas child threads are required to return the unit
value. Sequents are annotated with a flag ϕ, which ensures that there is at most one main
thread.

While our configuration typing is based on the standard typing for GV, it differs on two
counts:

(i) we require that child threads return the unit value, as opposed to a terminated channel;
and

(ii) we simplify typing for parallel composition.

In order to guarantee deadlock freedom, in GV each parallel composition must split
exactly one channel of the channel pseudo-type S♯ into two endpoints of type S and S.
Consequently, associativity of parallel composition does not preserve typing. In PGV, we
guarantee deadlock freedom using priorities, which removes the need for the channel pseudo-
type S♯, and simplifies typing for parallel composition, while restoring type preservation for
the structural congruence.
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T-LamUnit
Γ ⊢q M : T

Γ ⊢⊥ λ().M : 1⊸pr(Γ),q T ≜

z : 1 ⊢⊥ z : 1 Γ ⊢q M : T

Γ, z : 1 ⊢q z;M : T

Γ ⊢⊥ λz.z;M : 1⊸pr(Γ),q T

T-LamPair
Γ, x : T , y : T ′ ⊢q M : U

Γ ⊢⊥ λ(x, y).M : T × T ′ ⊸pr(Γ),q U ≜

z : T × T ′ ⊢⊥ z : T × T ′ Γ, x : T , y : T ′ ⊢q M : U

Γ, z : T × T ′ ⊢q let (x, y) = z in M : T

Γ ⊢⊥ λz.let (x, y) = z in M : T × T ′ ⊸pr(Γ),q U

T-Let
Γ ⊢p M : T ∆, x : T ⊢q N : U p < pr(∆)

Γ,∆ ⊢p⊔q let x=M in N : U ≜

∆, x : T ⊢q N : U

∆ ⊢⊥ λx.N : T ⊸pr(∆),q U Γ ⊢p M : T p < pr(∆)

Γ,∆ ⊢q⊔p (λx.N) M : U

T-Fork

∅ ⊢⊥ fork : (S ⊸p,q 1)⊸ S ≜

(a) ∅ ⊢⊥ () : 1

∅ ⊢⊥ new () : S × S

(b)

x : S ⊸p,q 1 ⊢⊥ x : S ⊸p,q 1 y : S ⊢⊥ y : S

x : S ⊸p,q 1, y : S ⊢q x y : 1

x : S ⊸p,q 1, y : S ⊢⊥ λ().x y : 1⊸p,q 1

x : S ⊸p,q 1, y : S ⊢⊥ spawn (λ().x y) : 1 z : S ⊢⊥ z : S

x : S ⊸p,q 1, y : S, z : S ⊢⊥ spawn (λ().x y); z : S

x : S ⊸p,q 1 ⊢⊥ let (y, z) = new () in spawn (λ().x y); z : S

∅ ⊢⊥ λx.let (y, z) = new () in spawn (λ().x y); z : (S ⊸p,q 1)⊸ S

(a) = new : 1⊸ S × S (b) = spawn : (1⊸p,q 1)⊸ 1

Figure 3: Typing Rules for Syntactic Sugar for PGV (T-LamUnit, T-LamPair, T-Let, and
T-Fork).
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T-Select-Inl
pr(S) = pr(S′)

∅ ⊢⊥ select inl : S ⊕o S′ ⊸⊤,o S ≜

(a) ∅ ⊢ () : 1

∅ ⊢ new () : S × S

(b)

(c)

y : S ⊢ y : S

y : S ⊢ inl y : S + S′ x : S ⊕o S′ ⊢ x : S ⊕o S′

x : S ⊕o S′, y : S ⊢ (inl y, x) : (S + S′)× (S ⊕o S′)

x : S ⊕o S′, y : S ⊢ send (inl y, x) : endo+1
!

x : S ⊕o S′, y : S ⊢ close (send (inl y, x)) : 1

z : S ⊢ z : S

x : S ⊕o S′, y : S, z : S ⊢ close (send (inl y, x)); z : S

x : S ⊕o S′ ⊢ let (y, z) = new () in close (send (inl y, x)); z : S

∅ ⊢ λx.let (y, z) = new () in close (send (inl y, x)); z : S ⊕o S′ ⊸⊤,o S

(a) = new : 1⊸⊤,o S × S (b) = close : endo+1
! ⊸⊤,o+1 1

(c) = send : (S + S′)× (S ⊕o S′)⊸⊤,o endo+1
!

T-Select-Inr
pr(S) = pr(S′)

∅ ⊢⊥ select inr : S ⊕o S′ ⊸⊤,o S′ ≜

(a) ∅ ⊢ () : 1

∅ ⊢ new () : S′ × S′

(b)

(c)

y : S′ ⊢ y : S′

y : S′ ⊢ inr y : S + S′ x : S ⊕o S′ ⊢ x : S ⊕o S′

x : S ⊕o S′, y : S′ ⊢ (inr y, x) : (S + S′)× (S ⊕o S′)

x : S ⊕o S′, y : S′ ⊢ send (inr y, x) : endo+1
!

x : S ⊕o S′, y : S′ ⊢ close (send (inr y, x)) : 1

z : S′ ⊢ z : S′

x : S ⊕o S′, y : S′, z : S′ ⊢ close (send (inr y, x)); z : S′

x : S ⊕o S′ ⊢ let (y, z) = new () in close (send (inr y, x)); z : S′

∅ ⊢ λx.let (y, z) = new () in close (send (inr y, x)); z : S ⊕o S′ ⊸⊤,o S′

(a) = new : 1⊸⊤,o S′ × S′ (b) = close : endo+1
! ⊸⊤,o+1 1

(c) = send : (S + S′)× (S ⊕o S′)⊸⊤,o endo+1
!

Figure 4: Typing Rules for Syntactic Sugar for PGV (T-Select-Inl and T-Select-Inr).
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T-Offer
Γ ⊢p L : S &o S′ ∆, x : S ⊢q M : T ∆, y : S′ ⊢q N : T o ⊔ p < pr(∆, S, S′)

Γ,∆ ⊢o⊔p⊔q offer L {inl x 7→ M ; inr y 7→ N} : T ≜

(c)

(b) w : endo+1
? ⊢⊥w : endo+1

?

w : endo+1
? ⊢o wait w : 1

z : S + S′ ⊢⊥ z : S + S′ ∆, x : S ⊢q M : T ∆, y : S′ ⊢q N : T

∆, z : S + S′ ⊢q case z {inl x 7→ M ; inr y 7→ N} : T o < pr(∆, S + S′)

∆, z : S + S′, w : endo+1
? ⊢o⊔q wait w; case z {inl x 7→ M ; inr y 7→ N} : T

(a) Γ ⊢p L : ?o(S + S′).endo+1
?

Γ ⊢o⊔p recv L : (S + S′)× endo+1
? (c) o ⊔ p < pr(∆)

Γ,∆ ⊢o⊔p⊔q let (z, w) = recv L in wait w; case z {inl x 7→ M ; inr y 7→ N} : T

(a) = recv : ?o(S + S′).endo+1
? ⊸⊤,o (S + S′)× endo+1

? (b) = wait : endo+1
? ⊸⊤,o 1

T-Offer-Absurd
Γ ⊢p L : &o{} o ⊔ p < pr(∆)

Γ,∆ ⊢o⊔p offer L {} : T ≜

(a) Γ ⊢p L : ?o0.endo+1
?

Γ ⊢o⊔p recv L : 0× endo+1
?

(b) w : endo+1
? ⊢⊥w : endo+1

?

w : endo+1
? ⊢o wait w : 1

z : 0 ⊢⊥ z : 0

∆, z : 0 ⊢⊥ absurd z : T o < pr(∆)

∆, z : 0, w : endo+1
? ⊢o wait w;absurd z : T o ⊔ p < pr(∆)

Γ,∆ ⊢o⊔p let (z, w) = recv L in wait w;absurd z : T

(a) = recv : ?o0.endo+1
? ⊸⊤,o 0× endo+1

? (b) = wait : endo+1
? ⊸⊤,o 1

Figure 5: Typing Rules for Syntactic Sugar for PGV (T-Offer and T-Offer-Absurd).

Syntactic Sugar Typing. The following typing rules given in Figs. 3 to 5, cover syntactic
sugar typing for PGV.

3. Technical Developments

3.1. Subject Reduction. Unlike with previous versions of GV, structural congruence,
term reduction, and configuration reduction are all type preserving.
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Wemust show that substitution preserves priority constraints. For this, we prove Lemma 3.1,
which shows that values have finished all their communication, and that any priorities in
the type of the value come from the typing environment.

Lemma 3.1. If Γ ⊢p V : T , then p = ⊥, and pr(Γ) = pr(T ).

Proof. By induction on the derivation of Γ ⊢o V : T .

Case T-Var. Immediately.

x : T ⊢⊥ x : T

Case T-Const. Immediately.

∅ ⊢⊥K : T

Case T-Lam. Immediately.

Γ, x : T ⊢q M : U

Γ ⊢⊥ λx.M : T ⊸pr(Γ),q U

Case T-Unit. Immediately.

∅ ⊢⊥ () : 1

Case T-Pair. The induction hypotheses give us p = q = ⊥, hence p ⊔ q = ⊥, and pr(Γ) =
pr(T ) and pr(∆) = pr(U), hence pr(Γ,∆) = pr(Γ) ⊓ pr(∆) = pr(T ) ⊓ pr(U) = pr(T × U).

Γ ⊢p V : T ∆ ⊢q W : U p < pr(∆)

Γ,∆ ⊢p⊔q (V,W ) : T × U

Case T-Inl. The induction hypothesis gives us p = ⊥, and pr(Γ) = pr (T ). We know
pr(T ) = pr(U), hence pr(Γ) = pr(T + U).

Γ ⊢p V : T pr(T ) = pr(U)

Γ ⊢p inl V : T + U

Case T-Inr. The induction hypothesis gives us p = ⊥, and pr(Γ) = pr (U). We know
pr(T ) = pr(U), hence pr(Γ) = pr(T + U).

Γ ⊢p V : U pr(T ) = pr(U)

Γ ⊢p inr V : T + U

Lemma 3.2. If Γ, x : U ′ ⊢p M : T and Θ ⊢q V : U ′, then Γ,Θ ⊢p M{V/x} : T .

Proof. By induction on the derivation of Γ, x : U ′ ⊢p M : T .

Case T-Var. By Lemma 3.1, q = ⊥.

x : U ′ ⊢⊥ x : U ′ {V /x}−−−→ Θ ⊢⊥ V : U ′
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Case T-Lam. By Lemma 3.1, pr(Θ) = pr(U ′), hence pr(Γ,Θ) = pr(Γ, U ′).

Γ, x : U ′, y : T ⊢q M : U

Γ, x : U ′ ⊢⊥ λy.M : T ⊸pr(Γ,U ′),q U
{V /x}−−−→

Γ,Θ, y : T ⊢q M{V/x} : U

Γ,Θ ⊢⊥ λy.M{V/x} : T ⊸pr(Γ,Θ),q U

Case T-App. There are two subcases:

Subcase x ∈ M . Immediately, from the induction hypothesis.

Γ, x : U ′ ⊢p M : T ⊸p′,q′ U ∆ ⊢q N : T p < pr(∆) q < p′

Γ,∆, x : U ′ ⊢p⊔q⊔q′ M N : U
{V /x}−−−→

Γ,Θ ⊢p M{V/x} : T ⊸p′,q′ U ∆ ⊢q N : T p < pr(∆) q < p′

Γ,∆,Θ ⊢p⊔q⊔q′ (M{V/x}) N : U

Subcase x ∈ N . By Lemma 3.1, pr(Θ) = pr(U ′), hence pr(∆,Θ) = pr(∆, U ′).

Γ ⊢p M : T ⊸p′,q′ U ∆, x : U ′ ⊢q N : T p < pr(∆, U ′) q < p′

Γ,∆, x : U ′ ⊢p⊔q⊔q′ M N : U
{V /x}−−−→

Γ ⊢p M : T ⊸p′,q′ U ∆,Θ ⊢q N{V/x} : T p < pr(∆,Θ) q < p′

Γ,∆,Θ ⊢p⊔q⊔q′ M (N{V/x}) : U

Case T-LetUnit. There are two subcases:

Subcase x ∈ M . Immediately, from the induction hypothesis.

Γ, x : U ′ ⊢p M : 1 ∆ ⊢q N : T p < pr(∆)

Γ,∆, x : U ′ ⊢p⊔q M ;N : T
{V /x}−−−→

Γ,Θ ⊢p M{V/x} : 1 ∆ ⊢q N : T p < pr(∆)

Γ,∆,Θ ⊢p⊔q M{V/x};N : T

Subcase x ∈ N . By Lemma 3.1, pr(Θ) = pr(U ′), hence pr(∆,Θ) = pr(∆, U ′).

Γ ⊢p M : 1 ∆, x : U ′ ⊢q N : T p < pr(∆, U ′)

Γ,∆, x : U ′ ⊢p⊔q M ;N : T
{V /x}−−−→

Γ ⊢p M : 1 ∆,Θ ⊢q N{V/x} : T p < pr(∆,Θ)

Γ,∆,Θ ⊢p⊔q M ;N{V/x} : T

Case T-Pair. There are two subcases:
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Subcase x ∈ M . Immediately, from the induction hypothesis.

Γ, x : U ′ ⊢p M : T ∆ ⊢q N : U p < pr(∆, U ′)

Γ,∆, x : U ′ ⊢p⊔q (M,N) : T × U
{V /x}−−−→

Γ,Θ ⊢p M{V/x} : T ∆ ⊢q N : U p < pr(∆,Θ)

Γ,∆,Θ ⊢p⊔q (M{V/x}, N) : T × U

Subcase x ∈ N . By Lemma 3.1, pr(Θ) = pr(U ′), hence pr(∆,Θ) = pr(∆, U ′).

Γ ⊢p M : T ∆, x : U ′ ⊢q N : U p < pr(∆, U ′)

Γ,∆, x : U ′ ⊢p⊔q (M,N) : T × U
{V /x}−−−→

Γ ⊢p M : T ∆,Θ ⊢q N{V/x} : U p < pr(∆,Θ)

Γ,∆,Θ ⊢p⊔q (M,N{V/x}) : T × U

Case T-LetPair. There are two subcases:

Subcase x ∈ M . Immediately, from the induction hypothesis.

Γ, x : U ′ ⊢p M : T × T ′ ∆, y : T , z : T ′ ⊢q N : U p < pr(∆, T , T ′)

Γ,∆, x : U ′ ⊢p⊔q let (y, z) =M in N : U
{V /x}−−−→

Γ,Θ ⊢p M{V/x} : T × T ′ ∆, y : T , z : T ′ ⊢q N : U p < pr(∆, T , T ′)

Γ,∆,Θ ⊢p⊔q let (y, z) =M{V/x} in N : U

Subcase x ∈ N . By Lemma 3.1, pr(Θ) = pr(U ′), hence pr(∆,Θ, T , T ′) = pr(∆, U ′, T , T ′).

Γ ⊢p M : T × T ′ ∆, x : U ′, y : T , z : T ′ ⊢q N : U p < pr(∆, U ′, T , T ′)

Γ,∆, x : U ′ ⊢p⊔q let (y, z) =M in N : U
{V /x}−−−→

Γ ⊢p M : T × T ′ ∆,Θ, y : T , z : T ′ ⊢q N{V/x} : U p < pr(∆,Θ, T , T ′)

Γ,∆,Θ ⊢p⊔q let (y, z) =M in N{V/x} : U

Case T-Absurd.

Γ, x : U ′ ⊢p M : 0

Γ,∆, x : U ′ ⊢p absurd M : T
{V /x}−−−→

Γ,Θ ⊢p M{V/x} : 0

Γ,∆,Θ ⊢p absurd M{V/x} : T

Case T-Inl.

Γ, x : U ′ ⊢p M : T pr(T ) = pr(U)

Γ, x : U ′ ⊢p inl M : T + U
{V /x}−−−→

Γ,Θ ⊢p M{V/x} : T pr(T ) = pr(U)

Γ,Θ ⊢p inl M{V/x} : T + U

Case T-Inr.

Γ, x : U ′ ⊢p M : U pr(T ) = pr(U)

Γ, x : U ′ ⊢p inr M : T + U
{V /x}−−−→

Γ,Θ ⊢p M{V/x} : U pr(T ) = pr(U)

Γ,Θ ⊢p inr M{V/x} : T + U

Case T-CaseSum. There are two subcases:
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Subcase x ∈ L. Immediately, from the induction hypothesis.

Γ, x : U ′ ⊢p L : T + T ′ ∆, y : T ⊢q M : U ∆, z : T ′ ⊢q N : U p < pr(∆)

Γ,∆, x : U ′ ⊢p⊔q case L {inl y 7→ M ; inr z 7→ N} : U
{V /x}−−−→

Γ,Θ ⊢p L{V/x} : T + T ′ ∆, y : T ⊢q M : U ∆, z : T ′ ⊢q N : U p < pr(∆)

Γ,∆,Θ ⊢p⊔q case L{V/x} {inl y 7→ M ; inr z 7→ N} : U

Subcase x ∈ M and x ∈ N . By Lemma 3.1, pr(Θ) = pr(U ′), hence pr(∆,Θ, T ) =
pr(∆, U ′, T ) and pr(∆,Θ, T ′) = pr(∆, U ′, T ′).

Γ ⊢p L : T + T ′

∆, x : U ′, y : T ⊢q M : U ∆, x : U ′, z : T ′ ⊢q N : U p < pr(∆, U ′)

Γ,∆, x : U ′ ⊢p⊔q case L {inl y 7→ M ; inr z 7→ N} : U
{V /x}−−−→

Γ ⊢p L : T + T ′

∆,Θ, y : T ⊢q M{V/x} : U ∆,Θ, z : T ′ ⊢q N{V/x} : U p < pr(∆,Θ)

Γ,∆,Θ ⊢p⊔q case L {inl y 7→ M{V/x}; inr z 7→ N{V/x}} : U

We omit the cases where x ̸∈ M , as they are straightforward.

Lemma 3.3. If Γ ⊢p M : T and M −→M M ′, then Γ ⊢p M ′ : T .

Proof. The proof closely follows the standard proof of subject reduction for the simply-typed
linear λ-calculus, as the constants are uninterpreted by the term reduction (−→M ) and
priority constraints are maintained consequence of § 3.1.
By induction on the derivation of M −→M M ′.

Case E-Lam. By Lemma 3.2.

Γ, x : T ⊢p M : U

Γ ⊢⊥ λx.M : T ⊸pr(Γ),p U ∆ ⊢⊥ V : T

Γ,∆ ⊢p (λx.M) V : U −→M Γ,∆ ⊢p M{V/x} : U

Case E-Unit. By Lemma 3.2.

∅ ⊢⊥ () : 1 Γ ⊢p M : T

Γ ⊢p ();M : T −→M Γ ⊢p M : T

Case E-Pair. By Lemma 3.2.

Γ ⊢⊥ V : T ∆ ⊢⊥W : T ′

Γ,∆ ⊢⊥ (V,W ) : T × T ′ Θ, x : T , y : T ′ ⊢p M : U

Γ,∆,Θ ⊢ let (x, y) = (V,W ) in M : U

−→
M

Γ,∆,Θ ⊢p M{V/x}{W/y} : U
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Case E-Inl. By Lemma 3.2.

Γ ⊢⊥ V : T

Γ ⊢⊥ inl V : T + T ′ ∆, x : T ⊢p M : U ∆, y : T ′ ⊢p N : U

Γ,∆ ⊢p case inl V {inl x 7→ M ; inr y 7→ N} : U

−→
M

Γ,∆ ⊢p M{V/x} : U

Case E-Inr. By Lemma 3.2.

Γ ⊢⊥ V : T ′

Γ ⊢⊥ inr V : T + T ′ ∆, x : T ⊢p M : U ∆, y : T ′ ⊢p N : U

Γ,∆ ⊢p case inr V {inl x 7→ M ; inr y 7→ N} : U

−→
M

Γ,∆ ⊢p N{V/y} : U

Case E-Lift. Immediately by induction on the evaluation context E.

Lemma 3.4. If Γ ⊢ϕ C and C ≡ C′, then Γ ⊢ϕ C′.

Proof. By induction on the derivation of C ≡ C′.

Case SC-LinkSwap.

link : S × S ⊸ 1

x : S ⊢⊥ x : S y : S ⊢⊥ y : S

x : S, y : S ⊢⊥ (x, y) : S × S

x : S, y : S ⊢⊥ link (x, y) : 1
···

Γ, x : S, y : S ⊢ϕ F [link (x, y)]

≡

link : S × S ⊸ 1

y : S ⊢⊥ y : S x : S ⊢⊥ x : S

x : S, y : S ⊢⊥ (y, x) : S × S

x : S, y : S ⊢⊥ link (y, x) : 1
···

Γ, x : S, y : S ⊢ϕ F [link (y, x)]
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Case SC-ResLink.

link : S × S ⊸ 1

x : S ⊢⊥ x : S y : S ⊢⊥ y : S

x : S, y : S ⊢⊥ (x, y) : S × S

x : S, y : S ⊢⊥ link (x, y) : 1

x : S, y : S ⊢ϕ ϕ link (x, y)

∅ ⊢ϕ (νxy)(ϕ link (x, y)) ≡
∅ ⊢ϕ () : 1

∅ ⊢ϕ ϕ ()

Case SC-ResSwap.

Γ, x : S, y : S ⊢ϕ C
Γ ⊢ϕ (νxy)C ≡

Γ, x : S, y : S ⊢ϕ C
Γ ⊢ϕ (νyx)C

Case SC-ResComm.

Γ, x : S, y : S, z : S′, w : S′ ⊢ϕ C
Γ, x : S, y : S ⊢ϕ (νzw)C

Γ ⊢ϕ (νxy)(νzw)C ≡

Γ, x : S, y : S, z : S′, w : S′ ⊢ϕ C
Γ, z : S′, w : S′ ⊢ϕ (νxy)C

Γ ⊢ϕ ⊢ (νzw)(νxy)C

Case SC-ResExt.

Γ ⊢ϕ C ∆, x : S, y : S ⊢ϕ D
Γ,∆, x : S, y : S ⊢ϕ (C ∥ D)

Γ,∆ ⊢ϕ (νxy)(C ∥ D) ≡
Γ ⊢ϕ C

∆, x : S, y : S ⊢ϕ D
∆ ⊢ϕ (νxy)D

Γ,∆ ⊢ϕ C ∥ (νxy)D

Case SC-ParNil.

Γ ⊢ϕ C
∅ ⊢⊥ () : 1

∅ ⊢◦ ◦()
Γ ⊢ϕ C ∥ ◦() ≡ Γ ⊢ϕ C

Case SC-ParComm.

Γ ⊢ϕ C ∆ ⊢ϕ′ D
Γ,∆ ⊢ϕ+ϕ′

(C ∥ D) ≡
∆ ⊢ϕ′ D Γ ⊢ϕ C
Γ,∆ ⊢ϕ′+ϕ (D ∥ C)

Case SC-ParAssoc.

Γ ⊢ϕ C
∆ ⊢ϕ′ D Θ ⊢ϕ′′ E
∆,Θ ⊢ϕ′+ϕ′′

(D ∥ E)
Γ,∆,Θ ⊢ϕ+ϕ′+ϕ′′ C ∥ (D ∥ E) ≡

Γ ⊢ϕ C ∆ ⊢ϕ′ D
Γ,∆ ⊢ϕ+ϕ′

(C ∥ D) Θ ⊢ϕ′′ E
Γ,∆,Θ ⊢ϕ+ϕ′+ϕ′′

(C ∥ D) ∥ E

Theorem 3.5. If Γ ⊢ϕ C and C −→C C′, then Γ ⊢ϕ C′.

Proof. By induction on the derivation of C −→C C′.
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Case E-New.

new : 1⊸ S × S ∅ ⊢⊥ () : 1

∅ ⊢⊥ new () : S × S
···

Γ ⊢ϕ F [new ()] −→C

x : S ⊢⊥ x : S y : S ⊢⊥ y : S

x : S, y : S ⊢⊥ (x, y) : S × S
···

Γ, x : S, y : S ⊢ϕ F [(x, y)]

Γ ⊢ϕ (νxy)F [(x, y)]

Case E-Spawn.

spawn : (1⊸p,q 1)⊸ 1 ∆ ⊢⊥ V : 1⊸p,q 1

∆ ⊢⊥ spawn V : 1
···

Γ,∆ ⊢ϕ F [spawn V ]
−→

C

∅ ⊢⊥ () : 1
···

Γ ⊢ϕ F [()]

∆ ⊢⊥ V : 1⊸p,q 1 ∅ ⊢⊥ () : 1

∆ ⊢q V () : 1

∆ ⊢◦ ◦ (V ())

Γ,∆ ⊢ϕ F [()] ∥ ◦ (V ())

Case E-Send. See Fig. 6.

Case E-Close.

close : endo
! ⊸

⊤,o 1 x : endo
! ⊢⊥ x : endo

!

x : endo
! ⊢o close x : 1

···
Γ, x : endo

! ⊢ϕ F [close x]

wait : endo
? ⊸

⊤,o 1 y : endo
? ⊢⊥ y : endo

?

y : endo
? ⊢o wait y : 1

···
∆, y : endo

? ⊢ϕ′
F ′[wait y]

Γ,∆, x : endo
! , y : endo

? ⊢ϕ+ϕ′
F [close x] ∥ F ′[wait y]

Γ,∆ ⊢ϕ+ϕ′
(νxy)(F [close x] ∥ F ′[wait y])

−→
C

∅ ⊢⊥ () : 1
···

Γ ⊢ϕ F [()]

∅ ⊢⊥ () : 1
···

∆ ⊢ϕ′
F ′[()]

Γ,∆ ⊢ϕ+ϕ′
F [()] ∥ F ′[()]

Case E-LiftC. By induction on the evaluation context G.

Case E-LiftM. By Lemma 3.3.
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Case E-LiftSC. By Lemma 3.4.

(a) (b)

Γ,∆,Θ, x : !oT.S, y : ?oT.S ⊢ϕ+ϕ′ F [send (V, x)] ∥ F ′[recv y]

Γ,∆,Θ ⊢ϕ+ϕ′
(νxy)(F [send (V, x)] ∥ F ′[recv y])

(a) ≜

send : T × !oT.S ⊸⊤,o S

∆ ⊢p V : T x : !oT.S ⊢⊥ x : !oT.S

∆, x : !oT.S ⊢p (V, x) : T × !oT.S

∆, x : !oT.S ⊢p⊔o send (V, x) : S
···

Γ,∆, x : !oT.S ⊢ϕ F [send (V, x)]

(b) ≜

recv : ?oT.S ⊸⊤,o T × S y : ?oT.S ⊢⊥ y : ?oT.S

y : ?oT.S ⊢o recv y : T × S
···

Θ, y : ?oT.S ⊢ϕ′ F ′[recv y]

−→
C

x : S ⊢⊥ x : S
···

Γ, x : S ⊢ϕ F [x]

∆ ⊢p V : T ∆, y : S ⊢⊥ y : S

∆, y : S ⊢p (V, y) : T × S
···

∆,Θ, y : S ⊢ϕ′ F ′[(V, y)]

Γ,∆,Θ, x : S, y : S ⊢ϕ+ϕ′ F [x] ∥ F ′[(V, y)]

Γ,∆,Θ ⊢ϕ+ϕ′
(νxy)(F [x] ∥ F ′[(V, y)])

Figure 6: Subject Reduction (E-Send)

3.2. Progress and Deadlock Freedom. PGV satisfies progress, as PGV configurations
either reduce or are in normal form. However, the normal forms may seem surprising at first,
as evaluating a well-typed PGV term does not necessarily produce just a value. If a term
returns an endpoint, then its normal form contains a thread which is ready to communicate
on the dual of that endpoint. This behaviour is not new to PGV.

Let us consider an example, adapted from Lindley and Morris [LM15], in which a term
returns an endpoint linked to an echo server. The echo server receives a value and sends it
back unchanged. Consider the program which creates a new channel, with endpoints x and
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x′, spawns off an echo server listening on x, and then returns x′:

• let (x, x′) = new () in
spawn (λ().echox);x

′
echox ≜ let (y, x) = recv x in

let x= send (y, x) in close x

If we reduce the above program, we get (νxx′)(◦ echox ∥ • x′). Clearly, no more
evaluation is possible, even though the configuration contains the thread ◦ echox, which is
blocked on x. In Corollary 3.14 we will show that if a term does not return an endpoint, it
must produce only a value.

Actions are terms which perform communication actions and which synchronise between
two threads.

Definition 3.6. A term acts on an endpoint x if it is send (V, x), recv x, close x, or
wait x. A term is an action if it acts on some endpoint x.

Ready terms are terms which perform communication actions, either by themselves, e.g.,
creating a new channel or thread, or with another thread, e.g., sending or receiving. It is worth
mentioning that the notion of readiness presented here is akin to live processes introduced by
Caires and Pfenning [CP10, DP22], and poised processes introduced by Pfenning and Griffith
[PG15] and later used by Balzer et al. [BP17, BTP19]. Ready processes like live/poised
processes denote processes that are ready to communicate on their providing channel.

Definition 3.7. A term L is ready if it is of the form E[M ], where M is of the form new,
spawn N , link (x, y), or M acts on x. In the latter case, we say that L is ready to act on
x or is blocked on.

Progress for the term language is standard for GV, and deviates from progress for linear
λ-calculus only in that terms may reduce to values or ready terms, where the definition of
ready terms encompasses all terms whose reduction is struck on some constant K.

Lemma 3.8. If Γ ⊢p M : T and Γ contains only session types, then: (i) M is a value;
(ii) M −→M N for some N ; or (iii) M is ready.

With “Γ contains only session types” we mean that for every x : T ∈ Γ, T is a session
type, i.e., is of the form S.

Canonical forms deviate from those for GV, in that we opt to move all ν-binders to
the top. The standard GV canonical form, alternating ν-binders and their corresponding
parallel compositions, does not work for PGV, since multiple channels may be split across a
single parallel composition.

A configuration either reduces, or it is equivalent to configuration in normal form.
Crucial to the normal form is that each term Mi is blocked on the corresponding channel xi,
and hence no two terms act on dual endpoints. Furthermore, no term Mi can perform a
communication action by itself, since those are excluded by the definition of actions. Finally,
as a corollary, we get that well-typed terms which do not return endpoints return just a
value:

Definition 3.9. A configuration C is in canonical form if it is of the form
(νx1x

′
1) . . . (νxnx

′
n)(◦ M1 ∥ · · · ∥ ◦ Mm ∥ • N) where no term Mi is a value.

Lemma 3.10. If Γ ⊢• C, there exists some D such that C ≡ D and D is in canonical form.

Proof. We move any ν-binders to the top using SC-ResExt, discard any superfluous occur-
rences of ◦ () using SC-ParNil, and move the main thread to the rightmost position using
SC-ParComm and SC-ParAssoc.



28:24 W. Kokke and O. Dardha Vol. 19:4

Definition 3.11. A configuration C is in normal form if it is of the form
(νx1x

′
1) . . . (νxnx

′
n)(◦ M1 ∥ · · · ∥ ◦ Mm ∥ • V ) where each Mi is ready to act on xi.

Lemma 3.12. If Γ ⊢p L : T is ready to act on x : S ∈ Γ, then the priority bound p is some
priority o, i.e., not ⊥ or ⊤.

Proof. Let L = E[M ]. By induction on the structure of E. M has priority pr(S), and
each constructor of the evaluation context E passes on the maximum of the priorities of its
premises. No rule introduces the priority bound ⊤ on the sequent.

Theorem 3.13. If ∅ ⊢• C and C is in canonical form, then either C −→C D for some D; or
C ≡ D for some D in normal form.

Proof. Let C = (νx1x
′
1) . . . (νxnx

′
n)(◦ M1 ∥ · · · ∥ ◦ Mm ∥ • N). We apply Lemma 3.8 to each

Mi and N . If for any Mi or N we obtain a reduction Mi −→M M ′
i or N −→M N ′, we apply

E-LiftM and E-LiftC to obtain a reduction on C. Otherwise, each term Mi is ready, and
N is either ready or a value. Pick the ready term L ∈ {M1, . . . ,Mm, N} with the smallest
priority bound.

(1) If L is a new E[new ()], we apply E-New.
(2) If L is a spawn E[spawn M ], we apply E-Spawn.
(3) If L is a link E[link (y, z)] or E[link (z, y)], we apply E-Link.
(4) Otherwise, L is ready to act on some endpoint y : S. Let y′ : S be the dual endpoint

of y. The typing rules enforce the linear use of endpoints, so there must be a term
L′ ∈ {M1, . . . ,Mm, N} which uses y′. L′ must be either a ready term or a value:
(a) L′ is ready. By Lemma 3.12, the priority of L is pr(S). By duality, pr(S) = pr(S).

We cannot have L = L′, otherwise the action on y′ would be guarded by the action
on y, requiring pr(S) < pr(S).
The term L′ must be ready to act on y′, otherwise the action y′ would be guarded
by another action with priority smaller than pr (S), which contradicts our choice of
L as having the smallest priority.
Therefore, we have two terms ready to act on dual endpoints. We apply the
appropriate reduction rule, i.e., E-Send or E-Close.

(b) L′ = N and is a value. We rewrite C to put L in the position corresponding to
the endpoint it is blocked on, using SC-ParComm, SC-ParAssoc, and optionally
SC-ResSwap. We then repeat the steps above with the term with the next smallest
priority, until either we find a reduction, or the configuration has reached the desired
normal form.
The argument based on the priority being the smallest continues to hold, since we
know that neither L nor L′ will be picked, and no other term uses y or y′.

Corollary 3.14. If ∅ ⊢ϕ C, C−̸→C, and C contains no endpoints, then C ≡ ϕ V for some
value V .

An immediate consequence of Theorem 3.13 and Corollary 3.14 is that a term which
does not return an endpoint will complete all its communication actions, thus satisfying
deadlock freedom.
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4. Relation to Priority CP

Thus far we have presented Priority GV (PGV) together with the relevant technical results.
We remind the reader that this line of work of adding priorities, started with Priority CP
(PCP) [DG18a] where priorities are integrated in Wadler’s Classical Processes (CP), which
is a π-calculus leveraging the correspondence of session types as linear logic propositions
[Wad12]. In his work, Wadler presents a connection (via encoding) of CP and GV. Following
that work, we sat out to understand the connection between the priority versions of CP and
GV, thus comparing PGV and PCP. Before presenting our formal results, we will revisit
PCP in the following section.

4.1. Revisiting Priority CP.

Types. Types (A,B) in PCP are based on classical linear logic propositions, and are defined
by the following grammar:

A,B ::= A⊗o B | A`o B | 1o | ⊥o | A⊕o B | A&o B | 0o | ⊤o

Each connective is annotated with a priority o ∈ N.
Types A⊗o B and A`o B type the endpoints of a channel over which we send or receive

a channel of type A, and then proceed as type B. Types 1o and ⊥[o] type the endpoints of
a channel whose session has terminated, and over which we send or receive a ping before
closing the channel. These two types act as units for A⊗o B and A`o B, respectively.

Types A⊕o B and A&o B type the endpoints of a channel over which we can receive
or send a choice between two branches A or B. We have opted for a simplified version
of choice and followed the original Wadler’s CP [Wad14], however types ⊕ and & can be
trivially generalised to ⊕o{li : Ai}i∈I and &o{li : Ai}i∈I , respectively, as in the original PCP
[DG18b].

Types 0o and ⊤o type the endpoints of a channel over which we can send or receive a
choice between no options. These two types act as units for A⊕o B and A&o B, respectively.

Typing Environments. Typing environments Γ, ∆ associate names to types. Environments
are linear, so two environments can only be combined as Γ,∆ if their names are distinct,
i.e., fv(Γ) ∩ fv(∆) = ∅.

Γ,∆ ::= ∅ | Γ, x : A

Type Duality. Duality is an involutive function on types which preserves priorities:

(1o)⊥ =⊥o

(⊥o)⊥ = 1o
(A⊗o B)⊥ =A⊥ `o B⊥

(A`o B)⊥ =A⊥ ⊗o B⊥
(0o)⊥ =⊤o

(⊤o)⊥ = 0o
(A⊕o B)⊥ =A⊥ &o B⊥

(A&o B)⊥ =A⊥ ⊕o B⊥
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Priorities. The function pr(·) returns smallest priority of a type. As with PGV, the type
system guarantees that the top-most connective always holds the smallest priority. The
function pr(·) returns the minimum priority of all types a typing context, or ⊤ if the context
is empty:

pr(1o) = o
pr(⊥o) = o

pr(A⊗o B) = o
pr(A`o B) = o

pr(0o) = o
pr(⊤o) = o

pr(A⊕o B) = o
pr(A&o B) = o

pr(∅) = ⊤ pr(Γ, x : T ) = pr(Γ) ⊓ pr(T )

Terms. Processes (P , Q) in PCP are defined by the following grammar.

P ,Q ::= x↔y | (νxy)P | (P ∥ Q) | 0
| x[y].P | x[].P | x(y).P | x().P
| x ◁ inl.P | x ◁ inr.P | x ▷ {inl : P ; inr : Q} | x ▷ {}

Process x↔y links endpoints x and y and forwards communication from one to the other.
(νxy)P , (P ∥ Q) and 0 denote respectively the restriction processes where channel endpoints
x and y are bound together and with scope P , the parallel composition of processes P and
Q and the terminated process.

Processes x[y].P and x(y).P send or receive over channel x a value y and proceed as
process P . Processes x[].P and x().P send and receive an empty value—denoting the closure
of channel x, and continue as P .

Processes x ◁ inl.P and x ◁ inr.P make a left and right choice, respectively and proceed as
process P . Dually, x ▷ {inl : P ; inr : Q} offers both left and right branches, with continuations
P and Q, and x ▷ {} is the empty offer.

We write unbound send as x⟨y⟩.P , which is syntactic sugar for x[z].(y↔z ∥ P ). Alterna-
tively, we could take x⟨y⟩.P as primitive, and let x[y].P be syntactic sugar for (νyz)(x⟨z⟩.P ).
CP takes bound sending as primitive, as it is impossible to eliminate the top-level cut in
terms such as (νyz)(x⟨z⟩.P ), even with commuting conversions. In our setting without
commuting conversions and with more permissive normal forms, this is no longer an issue,
but, for simplicity, we keep bound sending as primitive.

On Commuting Conversions. The main change we make to PCP is removing commuting
conversions. Commuting conversions are necessary if we want our reduction strategy to
correspond exactly to cut (or cycle in [DG18b]) elimination. However, as Lindley and
Morris [LM15] show, all communications that can be performed with the use of commuting
conversions, can also be performed without them, but using structural congruence.

From the perspective of process calculi, commuting conversions behave strangely. Con-
sider the commuting conversion (κ`) for x(y).P :

(κ`) (νzz′)(x(y).P ∥ Q) =⇒ x(y).(νzz′)(P ∥ Q)

As a result of (κ`), Q becomes blocked on x(y), and any actions Q was able to perform
become unavailable. Consequently, CP is non-confluent:

(νxx′)(a(y).P ∥ (νzz′)(z[].0 ∥ z′().Q))=⇒

=⇒
+

a(y).(νxx′)(P ∥ (νzz′)(z[].0 ∥ z′().Q)) a(y).(νxx′)(P ∥ Q)
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Structural congruence.

SC-LinkSwap x↔y ≡ y↔x
SC-ResLink (νxy)x↔y ≡ 0
SC-ResSwap (νxy)P ≡ (νyx)P
SC-ResComm (νxy)(νzw)P ≡ (νzw)(νxy)P
SC-ResExt (νxy)(P ∥ Q) ≡ P ∥ (νxy)Q, if x, y /∈ fv(P )
SC-ParNil P ∥ 0 ≡ P
SC-ParComm P ∥ Q ≡ Q ∥ P
SC-ParAssoc P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R

Reduction.

E-Link (νxy)(w↔x ∥ P ) =⇒ P{w/x}
E-Send (νxy)(x[z].P ∥ x(w).Q) =⇒ (νxy)(νzw)(P ∥ Q)
E-Close (νxy)(x[].P ∥ y().Q) =⇒ P ∥ Q
E-Select-Inl (νxy)(x ◁ inl.P ∥ x ▷ {inl : Q; inr : R}) =⇒ (νxy)(P ∥ Q)
E-Select-Inr (νxy)(x ◁ inr.P ∥ x ▷ {inl : Q; inr : R}) =⇒ (νxy)(P ∥ R)

E-LiftRes
P =⇒ P ′

(νxy)P =⇒ (νxy)P ′

E-LiftPar
P =⇒ P ′

P ∥ Q =⇒ P ′ ∥ Q

E-LiftSC
P ≡ P ′ P ′ =⇒ Q′ Q′ ≡ Q

P =⇒ Q

Figure 7: Operational Semantic for PCP.

In PCP, commuting conversions break our intuition that an action with lower priority
occurs before an action with higher priority. To cite Dardha and Gay [DG18b] “if a prefix
on a channel endpoint x with priority o is pulled out at top level, then to preserve priority
constraints in the typing rules [..], it is necessary to increase priorities of all actions after
the prefix on x” by o+ 1.

4.2. Operational Semantics. The operational semantics for PCP, given in Fig. 7, is defined
as a reduction relation =⇒ on processes (bottom) and uses structural congruence (top).
Each of the axioms of structural congruence corresponds to the axiom of the same name
for PGV. We write =⇒+ for the transitive closures, and =⇒⋆ for the reflexive-transitive
closures.

The reduction relation is given by a set of axioms and inference rules for context closure.
Reduction occurs under restriction. E-Link reduces a parallel composition with a link into
a substitution. E-Send is the main communication rule, where send and receive processes
sychronise and reduce to the corresponding continuations. E-Close follows the previous rule
and it closes the channel identified by endpoints x and y. E-Select-Inl and E-Select-Inr

are generalised versions of E-Send. They state respectively that a left and right selection
synchronises with a choice offering and reduces to the corresponding continuations. The
last three rules state that reduction is closed under restriction, parallel composition and
structural congruence, respectively.

4.3. Typing Rules. Figure 8 gives the typing rules for our version of PCP. A typing
judgement P ⊢ Γ states that “process P is well typed under the typing context Γ”.
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T-Link

x↔Ay ⊢ x : A, y : A⊥

T-Res
P ⊢ Γ, x : A, y : A⊥

(νxy)P ⊢ Γ

T-Par
P ⊢ Γ Q ⊢ ∆

P ∥ Q ⊢ Γ,∆

T-Halt

0 ⊢ ∅

T-Send
P ⊢ Γ, y : A, x : B o < pr(Γ, A,B)

x[y].P ⊢ Γ, x : A⊗o B

T-Close
P ⊢ Γ o < pr(Γ)

x[].P ⊢ Γ, x : 1o

T-Recv
P ⊢ Γ, y : A, x : B o < pr(Γ, A,B)

x(y).P ⊢ Γ, x : A`o B

T-Wait
P ⊢ Γ o < pr(Γ)

x().P ⊢ Γ, x : ⊥o

T-Select-Inl
P ⊢ Γ, x : A o < pr(Γ, A,B) pr(A) = pr(B)

x ◁ inl.P ⊢ Γ, x : A⊕o B

T-Select-Inr
P ⊢ Γ, x : B o < pr(Γ, A,B) pr(A) = pr(B)

x ◁ inr.P ⊢ Γ, x : A⊕o B

T-Offer
P ⊢ Γ, x : A Q ⊢ Γ, x : B o < pr(Γ, A,B)

x ▷ {inl : P ; inr : Q} ⊢ Γ, x : A&o B

T-Offer-Absurd
o < pr(Γ)

x ▷ {} ⊢ Γ, x : ⊤o

Figure 8: Typing Rules for PCP.

T-Link states that the link process x↔y is well typed under channels x and y having
dual types, respectively A and A⊥. T-Res states that the restriction process (νxy)P is
well typed under typing context Γ if process P is well typed in Γ augmented with channel
endpoints x and y having dual types, respectively A and A⊥. T-Par states that the parallel
composition of processes P and Q is well typed under the disjoint union of their respective
typing contexts. T-Halt states that the terminated process 0 is well typed in the empty
context.

T-Send and T-Recv state that the sending and receiving of a bound name y over a
channel x is well typed under Γ and x of type A⊗o B, respectively A`o B. Priority o is
the smallest among all priorities of the types used by the output or input process, captured
by the side condition o < pr(Γ, A,B).

Rules T-Close and T-Wait type the closure of channel x and are in the same lines as
the previous two rules, requiring that the priority of channel x is the smallest among all
priorities in Γ.

T-Select-Inl and T-Select-Inr type respectively the left x ◁ inl.P and right x ◁ inr.P
choice performed on channel x. T-Offer and T-Offer-Absurd type the offering of a
choice, or empty choice, on channel x. In all the above rules the priority o of channel x is
the smallest with respect to the typing context o < pr(Γ) and types involved in the choice
o < pr(Γ, A,B).

Figure 9 shows how syntactic sugar in PCP is well typed.
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T-UnboundSend

P ⊢ Γ, x : B o < pr (Γ, A,B)

x⟨y⟩.P ⊢ Γ, x : A⊗ B, y : A⊥ ≜

z↔Ay ⊢ y : A⊥, z : A P ⊢ Γ, x : B

z↔Ay ∥ P ⊢ Γ, x : B, y : A⊥, z : A o < pr (Γ, A,B)

x[z].(z↔Ay ∥ P ) ⊢ Γ, x : A⊗ B, y : A⊥

Figure 9: Typing Rules for Syntactic Sugar for PCP.

Finally, since our reduction relation is a strict subset of the reduction relation in the
original [DG18b], we defer to their proof of subject reduction (Theorem 2 in [DG18b]). We
prove progress for our version of PCP, see § 4.5.

4.4. PCP and PLL. In this subsection, we highlight the connection between PCP and
linear logic. Dardha and Gay [DG18a] present PCP–consequently also PCP given in this
paper–in a way which can be viewed both as Classical Processes with restriction (T-Res)
and parallel composition (T-Par) typing rules, and as a new version of linear logic, which
they call Priority Linear Logic (PLL). PLL builds on CLL by replacing the cut rule with two
logical rules: a mix and a cycle rule—here corresponding to T-Par and T-Res, respectively.
Dardha and Gay [DG18a, §4] prove cycle-elimination, in the same lines as cut-elimination
for CLL. As a corollary of cycle-elimination for PLL, we obtain deadlock freedom for PCP
(Theorem 3 in [DG18a, §4]). In summary, PLL is an extension of CLL and the authors show
the correspondence of PCP and PLL. Notice however, that PCP is not in correspondence
with CLL itself, since processes in PCP are graphs, whether CLL induces trees.

4.5. Technical Developments.

Definition 4.1. A process acts on an endpoint x if it is x↔y, y↔x, x[y].P , x(y).P , x[].P ,
x().P , x ◁ inl.P , x ◁ inr.P , x ▷ {inl : P ; inr : Q}, or x ▷ {}. A process is an action if it acts
on some endpoint x.

Definition 4.2. A process P is in canonical form if it is either 0 or of the form
(νx1x

′
1). . . (νxnx

′
n)(P1 ∥ · · · ∥ Pm) where m > 0 and each Pj is an action.

Lemma 4.3. If P ⊢ Γ, there exists some Q such that P ≡ Q and Q is in canonical form.

Proof. If P = 0, we are done. Otherwise, we move any ν-binders to the top using SC-ResExt,
and discard any superfluous occurrences of 0 using SC-ParNil.

The proof for progress (below) follows the same reasoning by Kobayashi [Kob06] used
in the proof of deadlock freedom for closed processes (Theorem 2).

Theorem 4.4. If P ⊢ ∅, then either P = 0 or there exists a Q such that P =⇒ Q.

Proof (Sketch). This proof follows the exact same reasoning and proof sketch given by
Kobayashi in [Kob06] and later adopted by Dardha and Gay for PCP in their technical
report [DG18b].
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By Lemma 4.3, we rewrite P to canonical form. If the resulting process is 0, we are
done. Otherwise, it is of the form

(νx1x
′
1). . . (νxnx

′
n)(P1 ∥ · · · ∥ Pm) ⊢ ∅

where m > 0 and each Pi ⊢ Γi is an action.
Consider processes P1 ∥ · · · ∥ Pm. Among them, we pick the process with the smallest

priority pr (Γi) for all i. Let this process be Pi and the priority of the top prefix be o. Pi acts
on some endpoint y : A ∈ Γi. We must have pr (Γi) = pr (A) = o, since the other actions in
Pi are guarded by the action on y : A, thus satisfying law (i) of priorities.

If Pi is a link y↔z or z↔y, we apply E-Link.
Otherwise, Pi is an input/branching or output/selection action on endpoint y of type A

with priority o. Since process P is closed and consequently it respects law (ii) of priorities,
there must be a co-action y′ of type A⊥ where y and y′ are dual endpoints of the same
channel (by application of rule T-Res). By duality, pr (A) = pr (A⊥) = o. In the following
we show that: y′ is the subject of a top level action of a process Pj with i ̸= j. This allows
for the communication among Pi and Pj to happen immediately over channel endpoints y
and y′.

Suppose that y′ is an action not in a different parallel process Pj but rather of Pi itself.
That means that the action on y′ must be prefixed by the action on y, which is top level in
Pi. To respect law (i) of priorities we must have o < o, which is absurd. This means that y′

is in another parallel process Pj for i ̸= j.
Suppose that y′ in Pj is not at top level. In order to respect law (i) of priorities, it

means that y′ is prefixed by actions that are smaller than its priority o. This leads to a
contradiction because stated that o is the smallest priority. Hence, y′ must be the subject of
a top level action.

We have two processes, acting on dual endpoints. We apply the appropriate reduction
rule, i.e., E-Send, E-Close, E-Select-Inl, or E-Select-Inr.

4.6. Correspondence between PGV and PCP. We illustrate the relation between PCP
and PGV by defining a translation L·MC from PCP processes to PGV configurations which
satisfies operational correspondence.

The translation L·MC translates PCP processes to PGV configurations by translating
as much as possible of the π-calculus constructs from PCP to the identical configuration
constructs in PGV, i.e., all top-level ν and ∥ constructs. When it encounters the first
action, it translates the remainder of the processs to a term using L·MM . The translation L·MM
translates PCP processes to PGV terms by mapping the π-calculus constructs from PCP
(e.g., ν, ∥, ·[·].·, ·[·].·, ·(·).·, etc.) to the corresponding constants in PGV (e.g., new, spawn,
send, recv, etc.). Translating a process with L·MC is the same as translating that process
with L·MM followed by several steps of configuration reduction. The translation L·M tranlates
session types from PCP to session types in PGV matching the translation on processes.

The translation on types is defined as follows:

LA⊗o BM = !oLAM.LBM
LA⊕o BM = LAM ⊕o LBM

L1oM = endo
!

L0oM = ⊕o{}

LA`o BM = ?oLAM.LBM
LA&o BM = LAM &o LBM

L⊥oM = endo
?

L⊤oM = &o{}
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The translation L·MM translates processes to terms and maps the π-calculus constructs
from PCP to the corresponding constants in PGV:

Lx↔yMM = link (x, y)

L(νxy)P MM = let (x, y) = new () in LP MM
LP ∥ QMM = spawn (λ().LP MM); LQMM
L0MM = ()

Lx[].P MM = close x; LP MM
Lx().P MM = wait x; LP MM
Lx[y].P MM = let (y, z) = new () in let x= send (z, x) in LP MM
Lx(y).P MM = let (y, x) = recv x in LP MM
Lx ◁ inl.P MM = let x= select inl x in LP MM
Lx ◁ inr.P MM = let x= select inr x in LP MM
Lx ▷ {inl : P ; inr : Q}MM = offer x {inl x 7→ LP MM ; inr x 7→ LQMM}
Lx ▷ {}MM = offer x {}

Unfortunately, the operational correspondence along L·MM is unsound, as it translates
ν-binders and parallel compositions to new and spawn, which can reduce to their equivalent
configuration constructs using E-New and E-Spawn. The same goes for ν-binders which are
inserted when translating bound send to unbound send. For instance, the process x[y].P is
blocked, but its translation uses new and can reduce. To address this issue, we introduce
a second translation, L·MC, which is equivalent to translating with L·MM then reducing with
E-New and E-Spawn:

L(νxy)P MC = (νxy)LP MC
LP ∥ QMC = LP MC ∥ LQMC
Lx[y].P MC = (νyz)(◦ let x= send (z, x) in LP MM)

Lx ◁ inl.P MC = (νyz)(◦ let x= close (send (inl y, x)); z in LP MM)

Lx ◁ inr.P MC = (νyz)(◦ let x= close (send (inr y, x)); z in LP MM)

LP MC = ◦LP MM , if none of the above apply

Typing environments are translated pointwise, and sequents P ⊢ Γ are translated as LΓM ⊢◦ LP MC,
where ◦ indicates a child thread, since translated processes do not have a main thread.
The translations L·MM and L·MC preserve typing, and the latter induces a sound and complete
operational correspondence.

Lemma 4.5. If P ⊢ Γ, then LΓM ⊢p LP MM : 1.

Proof. By induction on the derivation of P ⊢ Γ.

Case T-Link, T-Res, T-Par, and T-Halt. See Fig. 10.

Case T-Close, and T-Wait. See Fig. 11.

Case T-Send. See Fig. 12.

Case T-Recv. See Fig. 13.
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T-Link

x↔Ay ⊢ x : A, y : A⊥ L·MM−−−→

link : LAM × LAM ⊸ 1

x : LAM ⊢⊥ x : LAM y : LAM ⊢⊥ y : LAM

x : LAM, y : LAM ⊢⊥ (x, y) : LAM × LAM

x : LAM, y : LAM ⊢⊥ link (x, y) : 1

T-Res
P ⊢ Γ, x : A, y : A⊥

(νxy)P ⊢ Γ
L·MM−−−→

new : 1⊸ LAM × LAM ∅ ⊢⊥ () : 1

∅ ⊢⊥ new () : LAM × LAM LΓM, x : LAM, y : LAM ⊢p LP MM : 1

LΓM ⊢p let (x, y) = new () in LP MM : 1

T-Par
P ⊢ Γ Q ⊢ ∆

P ∥ Q ⊢ Γ,∆
L·MM−−−→

spawn : (1⊸pr (Γ),p 1)⊸ 1

LΓM ⊢p LP MM : 1

LΓM ⊢⊥ λ().LP MM : 1⊸pr (Γ),p 1

LΓM ⊢⊥ spawn (λ().LP MM) : 1 L∆M ⊢q LQMM : 1

LΓM, L∆M ⊢q spawn (λ().LP MM); LQMM : 1

T-Halt

0 ⊢ ∅
L·MM−−−→ ∅ ⊢⊥ () : 1

Figure 10: Translation L·MM preserves typing (T-Link, T-Res, T-Par, and T-Halt).

Case T-Select-Inl, T-Select-Inr, and T-Offer. See Fig. 14.

Theorem 4.6. If P ⊢ Γ, then LΓM ⊢◦ LP MC.

Proof. By induction on the derivation of P ⊢ Γ.

Case T-Res. Immediately, from the induction hypothesis.

T-Res
Γ, x : A, y : A⊥ ⊢ P

Γ ⊢ (νxy)P
L·MC−−−→

LΓM, x : LAM, y : LBM ⊢◦ LP MC
LΓM ⊢◦ (νxy)LP MC
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T-Close
P ⊢ Γ o < pr(Γ)

x[].P ⊢ Γ, x : 1o
L·MM−−−→

close : endo
! ⊸

⊤,o 1 x : endo
! ⊢⊥ x : endo

!

x : endo
! ⊢o close x : 1 LΓM ⊢p LP MM : 1 o < pr(LΓM)

LΓM, x : endo
! ⊢o⊔p close x; LP MM : 1

T-Wait
P ⊢ Γ o < pr(Γ)

x().P ⊢ Γ, x : 1o
L·MM−−−→

wait : endo
? ⊸

⊤,o 1 x : endo
? ⊢⊥ x : endo

?

x : endo
? ⊢o wait x : 1 LΓM ⊢p LP MM : 1 o < pr(LΓM)

LΓM, x : endo
? ⊢o⊔p wait x; LP MM : 1

Figure 11: Translation L·MM preserves typing (T-Close and T-Wait).

T-Send
P ⊢ Γ, y : A, x : B o < pr(Γ, A,B)

x[y].P ⊢ Γ, x : A⊗o B
L·MM−−−→

(a)

new : 1⊸ LAM × LAM ∅ ⊢⊥ () : 1

∅ ⊢⊥ new () : LAM × LAM

(b)

send : LAM × !oLAM.LBM ⊸⊤,o LBM

z : LAM ⊢⊥ x : LAM x : !oLAM.LBM ⊢⊥ x : !oLAM.LBM

x : !oLAM.LBM, z : LAM ⊢⊥ (z, x) : LAM × !oLAM.LBM

x : !oLAM.LBM, z : LAM ⊢o send (z, x) : LBM

(a)

(b) LΓM, y : LAM, x : LBM ⊢p LP MM : 1 o < pr(LΓM, LAM, LBM)

LΓM, x : !oLAM.LBM, y : LAM, z : LAM ⊢o⊔p let x= send (z, x) in LP MM : 1

LΓM, x : !oLAM.LBM ⊢o⊔p let (y, z) = new () in let x= send (z, x) in LP MM : 1

Figure 12: Translation L·MM preserves typing (T-Send).
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T-Recv
P ⊢ Γ, y : A, x : B o < pr(Γ, A,B)

x(y).P ⊢ Γ, x : A`o B
L·MM−−−→

(a)

recv : ?oLAM.LBM ⊸⊤,o LAM × LBM x : ?oLAM.LBM ⊢⊥ x : ?oLAM.LBM
x : ?oLAM.LBM ⊢o recv x : LAM × LBM

(a) LΓM, y : LAM, x : LBM ⊢p LP MM : 1 o < pr(LΓM, LAM, LBM)
LΓM, x : ?oLAM.LBM, y : LAM, z : LAM ⊢o⊔p let x= recvx in LP MM : 1

Figure 13: Translation L·MM preserves typing (T-Recv).

T-Select-Inl
P ⊢ Γ, x : A o < pr(Γ)

x ◁ inl.P ⊢ Γ, x : A⊕o B
L·MM−−−→

select inl : LAM ⊕o LBM ⊸⊤,o LAM x : LAM ⊕o LBM ⊢⊥ x : LAM ⊕o LBM
x : LAM ⊕o LBM ⊢o select inl x : LAM
Γ, x : LAM ⊢p LP MM : 1 o < pr(Γ)

Γ, x : LAM ⊕o LBM ⊢o⊔p let x= select inl x in LP MM : 1

T-Select-Inr
P ⊢ Γ, x : A o < pr(Γ)

x ◁ inr.P ⊢ Γ, x : A⊕o B
L·MM−−−→

select inr : LAM ⊕o LBM ⊸⊤,o LBM x : LAM ⊕o LBM ⊢⊥ x : LAM ⊕o LBM
x : LAM ⊕o LBM ⊢o select inr x : LBM
Γ, x : LBM ⊢p LP MM : 1 o < pr(Γ)

Γ, x : LAM ⊕o LBM ⊢o⊔p let x= select inr x in LP MM : 1

T-Offer
P ⊢ Γ, x : A Q ⊢ Γ, x : B o < pr(Γ, A,B)

x ▷ {inl : P ; inr : Q} ⊢ Γ, x : A&o B
L·MM−−−→

x : LAM &o LBM ⊢⊥ x : LAM &o LBM
LΓM, x : LAM ⊢p LP MM : 1 LΓM, x : LBM ⊢p LQMM : 1 o < pr(LΓM, LAM, LBM)

LΓM, x : LAM &o LBM ⊢o⊔p offer x {inl x 7→ LP MM ; inr x 7→ LQMM} : 1

Figure 14: Translation L·MM preserves typing (T-Select-Inl, T-Select-Inr, and T-Offer).
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Case T-Par. Immediately, from the induction hypotheses.

T-Par
Γ ⊢ P ∆ ⊢ Q

Γ,∆ ⊢ P ∥ Q
L·MC−−−→

LΓM ⊢◦ LP MC L∆M ⊢◦ LQMC
LΓM, L∆M ⊢◦ LP MC ∥ LQMC

Case *. By Lemma 4.5

Γ ⊢ P
L·MC−−−→

LΓM ⊢p LP MM : 1

LΓM ⊢◦ ◦ LP MM

Theorem 4.7. If P ⊢ Γ and LP MC −→C C, there exists a Q such that P =⇒+ Q and
C −→⋆

C LQMC

Proof. By induction on the derivation of LP MC −→C C. We omit the cases which cannot
occur as their left-hand side term forms are not in the image of the translation function, i.e.,
E-New, E-Spawn, and E-LiftM.

Case E-Link.

(νxx′)(F [link (w, x)] ∥ C) −→C F [()] ∥ C{w/x′}
The source for link (w, x) must be w↔x. None of the translation rules introduce an evalu-
ation context around the recursive call, hence F must be the empty context. Let P be the
source term for C, i.e., LP MC = C. Hence, we have:

(νxx′)(w↔x ∥ P ) P{w/x′}

(νxx′)(◦ link (w, x) ∥ LP MC)

LP MC{w/x′} LP{w/x′}MC

=⇒

L·MC

L·MC

−→+
C

=

Case E-Send.

(νxx′)(F [send (V, x)] ∥ F ′[recv x′]) −→C (νxx′)(F [x] ∥ F ′[(V, x′)])

There are three possible sources for send and recv: x[y].P and x′(y′).Q; x ◁ inl.P and
x′ ▷ {inl : Q; inr : R}; or x ◁ inr.P and x′ ▷ {inl : Q; inr : R}.

Subcase x[y].P and x′(y′).Q. None of the translation rules introduce an evaluation
context around the recursive call, hence F must be ◦ let x=□ in LP MM . Similarly, F ′ must be
◦ let (y′, x′) =□ in LQMM . The value V must be an endpoint y, bound by the name restriction
(νyy′) introduced by the translation. Hence, we have:

(νxx′)(x[y].P ∥ x′(y′).Q) (νxx′)(νyy′)(P ∥ Q)

(νxx′)(νyy′)

(
◦ let x= send (y, x) in LP MM ∥
◦ let (y′, x′) = recv x′ in LQMM

)

(νxx′)(νyy′)(◦ LP MM ∥ ◦ LQMM) (νxx′)(νyy′)(LP MC ∥ LQMC)

L·MC

=⇒

L·MC

≡−→+
C

−→⋆
C

(by Lemma 4.8)
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Subcase x ◁ inl.P and x′ ▷ {inl : Q; inr : R}. None of the translation rules introduce an
evaluation context around the recursive call, hence F must be

◦ let x= close □; y in LP MM .

Similarly, F ′ must be

◦ let (y′, x′) =□ in wait x′; case y′
{
inl y′ 7→ LQMM ; inr y′ 7→ LRMM

}
.

Hence, we have:

(νxx′)(x ◁ inl.P ∥ x ▷ {inl : Q; inr : R}) (νxx′)(P ∥ Q)

(νxx′)

(
◦ let x= select inl x in LP MM ∥
◦ offer x′ {inl x′ 7→ LQMM ; inr x′ 7→ LRMM}

)

(νxx′)(◦ LP MM ∥ ◦ LQMM) (νxx′)(LP MC ∥ LQMC)

L·MM

=⇒

L·MC

−→+
C

−→⋆
C

(by Lemma 4.8)

Subcase x ◁ inr.P and x′ ▷ {inl : Q; inr : R}. None of the translation rules introduce an
evaluation context around the recursive call, hence F must be

◦ let x= close □; y in LP MM .

Similarly, F ′ must be

◦ let (y′, x′) =□ in wait x′; case y′
{
inl y′ 7→ LQMM ; inr y′ 7→ LRMM

}
.

Hence, we have:

(νxx′)(x ◁ inr.P ∥ x ▷ {inl : Q; inr : R}) (νxx′)(P ∥ Q)

(νxx′)

(
◦ let x= select inr x in LP MM ∥
◦ offer x′ {inl x′ 7→ LQMM ; inr x′ 7→ LRMM}

)

(νxx′)(◦ LP MM ∥ ◦ LRMM) (νxx′)(LP MC ∥ LRMC)

L·MM

=⇒

L·MC

−→+
C

−→⋆
C

(by Lemma 4.8)

Case E-Close.

(νxx′)(F [wait x] ∥ F ′[close x′]) −→C F [()] ∥ F ′[()]

The source for wait and close must be x().P and x′[].Q.
(The translation for x ▷ {inl : P ; inr : Q} also introduces a wait, but it is blocked on

another communication, and hence cannot be the first communication on a translated term.
The translations for x ◁ inl.P and x ◁ inr.P also introduce a close, but these are similarly
blocked.)
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None of the translation rules introduce an evaluation context around the recursive call,
hence F must be □; LP MM . Similarly, F ′ must be □; LQMM . Hence, we have:

(νxx′)(x[].P ∥ x′().Q) P ∥ Q

(νxx′)(◦ close x; LP MM ∥ ◦ wait x′; LQMM)

◦ LP MM ∥ ◦ LQMM LP MC ∥ LQMC

L·MM

=⇒

L·MC

−→+
C

−→⋆
C

(by Lemma 4.8)

Case E-LiftC. By the induction hypothesis and E-LiftC.

Case E-LiftSC. By the induction hypothesis, E-LiftSC, and Lemma 4.9.

Lemma 4.8. For any P , either:
• ◦ LP MM = LP MC; or
• ◦ LP MM −→+

C LP MC, and for any C, if ◦ LP MM −→C C, then C −→⋆
C LP MC.

Proof. By induction on the structure of P .

Case (νxy)P . We have:

L(νxy)P MM = ◦ let (x, y) = new () in LP MM
−→+

C (νxy)(◦ LP MM)
−→⋆

C (νxy)LP MC
= L(νxy)P MC

Case P ∥ Q.

LP ∥ QMM = ◦ spawn (λ().LP MM); LQMM
−→+

C ◦ LP MM ∥ ◦ LQMM
−→⋆

C LP MC ∥ LQMC
= LP ∥ QMC

Case x[y].P .

Lx[y].P MM = let (y, z) = new () in let x= send (z, x) in LP MM
−→+

C (νyz)(◦ let x= send (z, x) in LP MM)
= Lx[y].P MC

Case x ◁ inl.P .

Lx[y].P MM = let x= select inl x in LP MM
≜ let x= let (y, z) = new () in close (send (inl y, x)); z in LP MM

−→+
C (νyz)(◦ let x= close (send (inl y, x)); z in LP MM)
= Lx[y].P MC
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Case x ◁ inr.P .

Lx[y].P MM = let x= select inr x in LP MM
≜ let x= let (y, z) = new () in close (send (inr y, x)); z in LP MM

−→+
C (νyz)(◦ let x= close (send (inr y, x)); z in LP MM)
= Lx[y].P MC

Case ∗. In all other cases, ◦ LP MM = LP MC.

Lemma 4.9. If P ⊢ Γ and P ≡ Q, then LP MC ≡ LQMC.

Proof. Every axiom of the structural congruence in PCP maps directly to the axiom of the
same name in PGV.

Theorem 4.10.
If P ⊢ Γ and P =⇒ Q, then LP MC −→+

C LQMC.

Proof. By induction on the derivation of P =⇒ Q.

Case E-Link.

(νxx′)(w↔x ∥ P ) P{w/x′}

(νxx′)(◦ link (w, x) ∥ LP MC)

LP MC{w/x′} LP{w/x′}MC

=⇒

L·MC

L·MC

−→+
C

=

Case E-Send.

(νxx′)(x[y].P ∥ x′(y′).Q) (νxx′)(νyy′)(P ∥ Q)

(νxx′)

◦
(
let (y, y′) = new () in
let x= send (y, x) in LP MM

)
∥

◦ let (y′, x′) = recv x′ in LQMM



(νxx′)(νyy′)(◦ LP MM ∥ ◦ LQMM) (νxx′)(νyy′)(LP MC ∥ LQMC)

L·MM

=⇒

L·MC

−→+
C

−→⋆
C

(by Lemma 4.8)

Case E-Close.

(νxx′)(x[].P ∥ x′().Q) P ∥ Q

(νxx′)(◦ close x; LP MM ∥ ◦ wait x′; LQMM)

◦ LP MM ∥ ◦ LQMM LP MC ∥ LQMC

L·MM

=⇒

L·MC

−→+
C

−→⋆
C

(by Lemma 4.8)



Vol. 19:4 PRIORITISE THE BEST VARIATION 28:39

Case E-Select-Inl.

(νxx′)(x ◁ inl.P ∥ x ▷ {inl : Q; inr : R}) (νxx′)(P ∥ Q)

(νxx′)

(
◦ let x= select inl x in LP MM ∥
◦ offer x′ {inl x′ 7→ LQMM ; inr x′ 7→ LRMM}

)

(νxx′)(◦ LP MM ∥ ◦ LQMM) (νxx′)(LP MC ∥ LQMC)

L·MM

=⇒

L·MC

−→+
C

−→⋆
C

(by Lemma 4.8)

Case E-Select-Inr.

(νxx′)(x ◁ inr.P ∥ x ▷ {inl : Q; inr : R}) (νxx′)(P ∥ R)

(νxx′)

(
◦ let x= select inr x in LP MM ∥
◦ offer x′ {inl x′ 7→ LQMM ; inr x′ 7→ LRMM}

)

(νxx′)(◦ LP MM ∥ ◦ LRMM) (νxx′)(LP MC ∥ LRMC)

L·MM

=⇒

L·MC

−→+
C

−→⋆
C

(by Lemma 4.8)

Case E-LiftRes. By the induction hypothesis and E-LiftC.

Case E-LiftPar. By the induction hypotheses and E-LiftC.

Case E-LiftSC. By the induction hypothesis, E-LiftSC, and Lemma 4.9.

5. Milner’s Cyclic Scheduler

As an example of a deadlock-free cyclic process, Dardha and Gay [DG18b] introduce an
implementation of Milner’s cyclic scheduler [Mil89] in Priority CP. We reproduce that
scheduler here, and show its translation to Priority GV.

Example 5.1. A set of processes Proci, 1 ≤ i ≤ n, is scheduled to perform some tasks in
cyclic order, starting with Proc1, ending with Procn, and notifying Proc1 when all processes
have finished.

Our scheduler Sched consists of set of agents Agenti, 1 ≤ i ≤ n, each representing their
respective process. Each process Proci waits for the signal to start their task on a′i, and
signals completion on b′i. Each agent signals their process to start on ai, waits for their
process to finish on bi, and then signals for the next agent to continue on ci. The agent
Agent1 initiates, then waits for every other process to finish, and signals Proc1 on d. Every
other agent Agenti, 2 ≤ i ≤ n waits on c′i−1 for the signal to start. Each of the channels in
the scheduler is of a terminated type, and is merely used to synchronise.

Below is a diagram of our scheduler instantiated with three processes:
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Agent1

Agent2Agent3

Proc1

Proc2Proc3

c1

c′1

c2c′2

c3

c′3

a1

a′1

b1

b′1

a2

a′2b2

b′2

a3

a′3 b3

b′3

d

d′

optional
data transfer

We implement the scheduler as follows, using
∏

I Pi to denote the parallel composition of
the processes Pi, i ∈ I, and P [Q] to denote the plugging of Q in the one-hole process-context
P . The process-contexts Pi represent the computations performed by each process Proci.
The process-contexts Qi represent any post-processing, and any possible data transfer from
Proci to Proci+1. Finally, Q1 should contain d′().

Sched ≜ (νa1a
′
1). . . (νana

′
n)(νb1b

′
1). . . (νbnb

′
n)(νc1c

′
1). . . (νcnc

′
n)(νdd

′)
(Proc1 ∥ Agent1 ∥

∏
2≤i≤n(Proci ∥ c′i−1().Agenti))

Agent1 ≜ ai[].bi().ci[].c
′
n().d[].0

Agenti ≜ ai[].bi().ci[].0

Proci ≜ a′i().Pi[b
′
i[].Qi]

Example 5.2. The PGV scheduler has exactly the same behaviour as the PCP version
in Example 5.1. It is implemented as follows, using

∏
I Ci to denote the parallel composition

of the processes Ci, i ∈ I, and M [N ] to denote the plugging of N in the one-hole term-
context M . For simplicity, we let sched be a configuration. The terms Mi represent the
computations performed by each process proci. The terms Ni represent any post-processing,
and any possible data transfer from proci to proci+1. Finally, N1 should contain wait d′.

sched ≜ (νa1a
′
1) . . . (νana

′
n)(νb1b

′
1) . . . (νbnb

′
n)(νc1c

′
1) . . . (νcnc

′
n)(νdd

′)
( ϕ proc1 ∥ ◦ agent1;wait c′n; close d
∥

∏
2≤i≤n(◦ proci ∥ ◦ wait c′i−1;agenti) )

agenti ≜ close ai;wait bi; close ci
proci ≜ wait a′i;Mi[close b′i;Ni]

If LPiMM = Mi and LQiMM = Ni, then the translation of Sched (Example 5.1), LSched MC,
is exactly sched (Example 5.2).
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6. Related Work and Conclusion

Deadlock freedom and progress. Deadlock freedom and progress are well studied properties
in the π-calculus. For the “standard” typed π-calculus—types for channels used in input
and output, an important line of work stems from Kobayashi’s approach to deadlock free-
dom [Kob98], where priorities are values from an abstract poset. Kobayashi [Kob06] simplifies
the abstract poset to pairs of naturals, called obligations and capabilities. Padovani simplifies
these further to a single natural, called a priority [Pad14], and adapts obligations/capabilities
to session types [Pad13]. Later work by Kobayashi and co-authors [GKL14, KL17] address
deadlock detection for a value-passing CCS (a predecessor of the π-calculus) where the
number of nodes in a network is arbitrary, namely modelling unbounded networks. The
authors define a sound inference algorithm for their type system, which guarantees deadlock
freedom for these more complex kinds of communication networks. This type system is more
expressive than previous work by Kobayashi.

For the session-typed π-calculus, an important line of work stems from Dezani and
co-authors. In their work, Dezani et al. [DCMYD06] guarantee progress by allowing only
one active session at a time. As sessions do not interleave, consequently they do not
deadlock. Later on, Dezani et al. [DCdY07] introduce a partial order on channels, similar to
Kobayashi [Kob98] and produce a type system for progress.

Carbone and Debois [CD10] define progress for session-typed π-calculus in terms of a
catalyser, which provides the missing counterpart to a process. Intuitively, either the process
is deadlock-free in which case the catalyser is structurally congruent to the inaction process, or
if the process is “stuck” for e.g., an input process x(y).0 (using CP syntax) then the catalyser
simply provides the missing output required for communication. Carbone et al. [CDM14] use
catalysers to show that progress is a compositional form of livelock freedom and can be lifted to
session types via the encoding of session types to linear types [Kob07, DGS12, Dar14, DGS17].
In this work, Carbone et al. [CDM14] sistematise and compare different notions of liveness
properties: progress, deadlock freedom and livelock freedom. Their technique of using the
encoding of session types combined with Kobayashi’s type systems for deadlock and livelock
freedom allows for a more flexible deadlock/livelock detection. It is worth noting that
livelock freedom is a stronger property than deadlock freedom in the presence of recursion,
as the former also discards useless divergent processes; for finite processes the two properties
coincide.

Vieira and Vasconcelos [VV13] use single priorities and an abstract partial order to
guarantee deadlock freedom in a binary session-typed π-calculus and building on conversation
types, which is akin to session types.

While our work focuses on binary session types, it is worth discussing related work on
Multiparty Session Types (MPST), which describe communication among multiple agents
in a distributed setting. The line of work on MPST starts with Honda et al. [HYC08],
which guarantees deadlock freedom within a single session by design, but the property
does not hold for session interleaving. Bettini et al. [BCD+08] follow a technique similar to
Kobayashi’s for MPST. The main difference with our work is that we associate priorities with
communication actions, where Bettini et al. [BCD+08] associate them with channels. Coppo
et al. [CDPY13, CDYP16] present a deterministic, sound and complete, and compositional
type inference algorithm for an interaction type system, which is used to guarantee global
progress for processes in a calculus based on asynchronous as well as dynamically interleaved
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and interfered multiparty sessions. The interaction type system allows to infer causalities—
much in the line of Kobayashi’s priorities —of channels, thus guaranteeing that session-
typed processes do not get stuck at intermediate stages of their sessions. Carbone and
Montesi [CM13] combine MPST with choreographic programming and obtain a formalism
that satisfies deadlock freedom. In the same vein as MPST, choreographic programming
specifies communication among all participants in a distributed system. While MPST target
mainly protocol descriptions, choreographies have mainly targetted implementations and
programming languages as they are suitable for describing concrete system implementations.
Deniélou and Yoshida [DY13] introduce multiparty compatibility, which generalises the
notion of duality in binary session types. They synthesise safe and deadlock-free global types–
specifying communication among all involved participants, from local session types–specifying
communication from the viewpoint of one participant. To do so, they leverage Labelled
Transition Systems (LTSs) and communicating automata. Castellani et al. [CDGH20]
guarantee livelock freedom, a stronger property than deadlock freedom, for MPST with
internal delegation, where participants in the same session are allowed to delegate tasks to
each other, and internal delegation is captured by the global type. Scalas and Yoshida [SY19]
provide a revision of the foundations for MPST, and offer a less complicated and more
general theory, by removing duality/consistency. The type systems is parametric and type
checking is decidable, but allows for a novel integration of model checking techniques. More
protocols and processes can be typed and are guaranteed to be free of deadlocks.

Neubauer and Thiemann [NT04] and Vasconcelos et al. [VRG04, VGR06] introduce
the first functional language with session types. Such works did not guarantee deadlock
freedom until GV [LM15, Wad14]. Toninho et al. [TCP12] present a translation of simply-
typed λ-calculus into session-typed π-calculus, but their focus is not on deadlock freedom.
Fowler et al. [FKD+21] present Hypersequent GV (HGV), which is a variation of GV that
uses hyper-environments, much in the same line as Hypersequent CP, and enjoys deadlock
freedom, confluence, and strong normalisation.

Ties with logic. The correspondence between logic and types lays the foundation for functional
programming [Wad15]. Since its inception by Girard [Gir87], linear logic has been a candidate
for a foundational correspondence for concurrent programs. A correspondence with linear
π-calculus was established early on by Abramsky [Abr94] and Bellin and Scott [BS94].
Many years later, several correspondences between linear logic and the π-calculus with
binary session types were proposed. Caires and Pfenning [CP10] propose a correspondence
with dual intuitionistic linear logic, while Wadler [Wad12] proposes a correspondence with
classical linear logic. Both works guarantee deadlock freedom as a consequence of adopting
cut elimination. Building on a previous work [CP10], Toninho et al. [TCP13] present a
Curry-Howard correspondence between session types and linear logic for functional language
via linear contextual monads, which are first-class values, thus giving rise to a higher-order
session-typed language. In addition to the more standard results, the authors also prove
a global progress theorem. Qian et al. [QKB21] extend Classical Linear Logic with co-
exponentials, which allows to model servers receiving requests from an arbitrary set of
clients, yielding an extension to the Curry-Howard correspondence between logic and session
typed processes. Dardha and Gay [DG18b] define Priority CP by integrating Kobayashi
and Padovani’s work on priorities [Kob06, Pad14] with CP, which as described in the
introduction, weakens its ties to linear logic in exchange for expressivity. However, they
show how PCP can be also viewed as a an extension of linear logic, which they call Priority
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Linear Logic (PLL), and uses mix and cycle rules as opposed to the cut rule. Dardha and
Pérez [DP18, DP15, DP22] compare priorities à la Kobayashi with tree restrictions à la CP,
and show that the latter is a subsystem of the former. In addition, they give a detailed
account of comparing several type systems for deadlock freedom spanning across session
types, linear logic, and linear types. Carbone et al. [CMSY15, CLM+16] give a logical
view of MPST with a generalised duality. Caires and Pérez [CP16] give a presentation of
MPST in terms of binary session types and the use of a medium process which guarantee
protocol fidelity and deadlock freedom. Their binary session types are rooted in linear logic.
Ciobanu and Horne [CH15] give the first Curry-Howard correspondence between MPST and
BV [Gug07], a conservative extension of linear logic with a non-commutative operator for
sequencing. Horne [Hor20] give a system for subtyping and multiparty compatibility where
compatible processes are race free and deadlock free using a Curry-Howard correspondence,
similar to the approach in [CH15]. Balzer et al. [BP17] introduce sharing at the cost of
deadlock freedom, which they restore using worlds, an approach similar to priorities [BTP19].
Staying on sharing, Rocha and Caires [RC21] introduce an imperative feature, that of
shared mutable states into a functional language based on Curry-Howard correspondence
with linear logic. Their type system is thus able to capture programs which were not
possible in previous works. The authors prove extensive technical results, including session
fidelity, progress, confluence and normalisation. Lastly, Jacobs et al. [JBK22] present a novel
technique to guarantee deadlock freedom based on the notion of connectivity graph, which
is an abstract representation of the topology of concurrent systems, and separation logic
used to substructurally treat connectivity graph edges and labels.

Conclusion and Future Work. We answered our research question by presenting Priority
GV, a session-typed functional language which allows cyclic communication structures and
uses priorities to ensure deadlock freedom. We showed its relation to Priority CP [DG18b]
via an operational correspondence.

Our formalism so far only captures the core of GV. In future work, we plan to explore
recursion, following Lindley and Morris [LM16] and Padovani and Novara [PN15], and
sharing, following Balzer and Pfenning [BP17] or Voinea et al. [VDG19].
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Coherence generalises duality: A logical explanation of multiparty session types. In Proc.
of CONCUR, volume 59 of LIPIcs, pages 33:1–33:15. Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.CONCUR.2016.33.

[CM13] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: Multiparty asynchronous
global programming. In Proc. of POPL, pages 263–274, 2013. doi:10.1145/2480359.2429101.

[CMS18] Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies, logically. Distrib.
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[DP15] Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session typed processes. In Proc.
of EXPRESS/SOS, volume 190 of Electron. Proc. in Theor. Comput. Sci., pages 1–15, 2015.
doi:10.4204/EPTCS.190.1.
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5.3 Discussion
This section proceeds as follows:

• In § 5.3.1, we discuss the relation between PCP and CP.
• In § 5.3.2, we define sound and complete priority inference for PCP.

In this section, PCP’s processes and PGV’s terms are printed in red, both
of their types are printed in blue, and both of their priorities are printed
in yellow, and all are rendered in a sans-serif font. To save on accessible
colour combinations, the processes and terms, types, and priorities of any
other system are printed in pink, green, and periwinkle, respectively, all
are rendered in an italicised font with serif, and any relations, such as
typing and reduction, are marked by a subscript.

5.3.1 Relation to Classical Processes
One notable omission in the literature is any proof that Priority CP is
an extension of CP or that Priority CLL (PLL) is an extension of CLL.
To discuss this matter formally, we must define what we mean by
“extension”. What does it mean for one system to extend another? We
consider two options:

• If PLL extends the proofs of CLL, any valid CLL proof is a valid PLL
proof, and any well-typed CP process is a well-typed PCP process.

• If PLL extends the theorems of CLL, any proposition provable in CLL
is provable in PLL, and any type inhabited in CP is inhabited in PCP.

An extension of the proofs is a much stronger notion than an extension
of the theorems, and, from the perspective of a process calculus, it is
much more useful. Unfortunately, the stronger notion does not hold, as
we discuss shortly. At the time of writing, I do not know if the weaker
notion—an extension of theorems—holds.

The question is complicated by the priority annotations. What does it
mean for a CLL proposition to be provable in PLL? Does it suffice if the
proposition is provable with some priority assignment? Or should it be
provable with every priority assignment? Priorities leak a fair amount
of the structure of the underlying proof. For instance, any proposition
where the priorities decrease as we descend into the proposition is
unprovable, other than by absurdity or the axiom, e.g. there is no proof
of (a) even though there is a proof of (b):

(a) ⊬ 11 ⊗3 12 (b) ⊢ 12 ⊗1 13

Hence, it would seem overly strict to require that a CLL proposition must
be provable in PLL with every priority assignment.
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PCP Conflates Tensor and Par

As Dardha and Gay [2018] discuss, PLL admits MIX and MIX0, under the
names T-PAR and T-HALT. Consequently, it conflates one/bottom and
partially conflates tensor/par

1p ˛o ⊥q and A⊗p B⊸o A &q B
For instance, the conversion of tensor to par holds by the following
derivations, which hold as long as o < p,q and either p < q or q < p.

⊢ A,A ⊢ B,B
⊢ A,B,A,B q < pr(A,B)⊢ A,B,A &q B p < q

⊢ A &p B,A &q B o < p,q
⊢ A &p B &o A &q B
⊢ A⊗p B⊸o A &q B

⊢ A,A ⊢ B,B
⊢ A,B,A,Bp < pr(A,B) ⊢ A &p B,A,Bq < p

⊢ A &p B,A &q Bo < p,q
⊢ A &p B &o A &q B
⊢ A⊗p B⊸o A &q B

These conflations are the natural consequence of admittingMIX andMIX0,
even in the absence of priorities. PLL also admits MULTICUT, which can
be derived from T-RES and T-PAR, which fully conflates tensor/par

A &p B⊸o A⊗q B

The conversion of par to tensor holds by the following derivations, which
hold as long as o < p,q and either p < q or q < p.

⊢ A,A ⊢ B,B
⊢ A,B,A,B q < pr(A,B)⊢ A,B,A⊗q B p < q

⊢ A⊗p B,A⊗q B o < p,q
⊢ A⊗p B &o A⊗q B
⊢ A &p B⊸o A⊗q B

⊢ A,A ⊢ B,B
⊢ A,B,A,Bp < pr(A,B) ⊢ A⊗p B,A,Bq < p

⊢ A⊗p B,A⊗q Bo < p,q
⊢ A⊗p B &o A⊗q B
⊢ A &p B⊸o A⊗q B

In CLL, tensor and par capture independence and interdependence:

• If ⊢𝘊 Γ,A⊗ B, the resources used by A and B are independent.
• If⊢𝘊 Δ,A &B, the resources used byA andB are interdependent. How
they depend on one another is unknown, but they are guaranteed
to be free from cyclic dependencies.

These are naturally compositional. In ⊢𝘊 Δ,A &B, we do not know how
the resources in A and B are used, so the only option that is guaranteed
to avoid cyclic dependencies is to ensure that in ⊢𝘊 Γ,A⊗B the resources
used by A and B are independent.

PLL’s “tensor” and “par” are not truly a tensor and par, and do not
capture independence and interdependence. Morally, they are the
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same self-dual connective, which may capture either independence or
interdependence, but must specify exactly if and how its resources
interdepend. The motivation to separate this self-dual connective into
two dual connectives, “⊗o” and “ &o”, comes from the process calculus
interpretation, rather than the logic itself, as the separate connectives are
used to guarantee session fidelity under the interpretation where “⊗o” is
send and “ &o” is receive.

PCP Does Not Extend CP

The priorities in PCP expose information about the order in which a
process uses its resources. Consequently, the additives in PCP are less
expressive than the additives in CP, and, while we have not discussed
the exponentials in this thesis, the exponentials in PCP are also less
expressive than in CP.

Let us consider the typing rules for the offer in CP and PCP:

P ⊢𝘊 Γ, x ∶ A Q ⊢𝘊 Γ, x ∶ B T-OFFERx ▷ {inl∶ P; inr∶Q} ⊢𝘊 Γ, x ∶ A & B

P ⊢ Γ, x ∶ A Q ⊢ Γ, x ∶ B o < pr(Γ)
T-OFFERx ▷ {inl∶ P; inr∶Q} ⊢ Γ, x ∶ A &o B

The two typing rules ostensibly quite similar, with the only difference
being the added priority constraint in PCP’s typing rule. However, recall
that, while the processes P and Q may differ in their use of the sessions
A and B, the priority annotations on the typing environment Γmean that
both processes must use all other resources in the exact same order. CP’s
type system, on the other hand, imposes no such restriction.

Counterexample 5.1 (Extension). It is not true that every well-typed CP
process is a well-typed PCP process.

For example, the process

a ▷ {inl∶ x(). y().a[]; inr∶ y(). x().a[]}
is typeable in CP but not PCP.

In CP, its typing derivation is as follows:

a[] ⊢𝘊 a ∶ 1
y().a[] ⊢𝘊 y ∶ ⊥,a ∶ 1

x(). y().a[] ⊢𝘊 x ∶ ⊥, y ∶ ⊥,a ∶ 1

a[] ⊢𝘊 a ∶ 1
x().a[] ⊢𝘊 x ∶ ⊥,a ∶ 1

y(). x().a[] ⊢𝘊 x ∶ ⊥, y ∶ ⊥,a ∶ 1
a ▷ {inl∶ x(). y().a[]; inr∶ y(). x().a[]} ⊢𝘊 x ∶ ⊥, y ∶ ⊥,a ∶ 1 & 1

In PCP, the process is not typeable, because the typing derivation requires
that p < q and q < p, where p and q are the priorities associated with the
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actions on x and y.

a[] ⊢ a ∶ 1o1 q < o1

y().a[] ⊢ y ∶ ⊥q,a ∶ 1o1 p < q
x(). y().a[] ⊢ x ∶ ⊥p, y ∶ ⊥q,a ∶ 1o2

a[] ⊢ a ∶ 1o2 p < o2

x().a[] ⊢ x ∶ ⊥p,a ∶ 1o1 q < p
y(). x().a[] ⊢ x ∶ ⊥p, y ∶ ⊥q,a ∶ 1o2

a ▷ {inl∶ x(). y().a[]; inr∶ y(). x().a[]} ⊢ x ∶ ⊥p, y ∶ ⊥q,a ∶ 1o1 &o 1o2

Therefore, not every well-typed CP process is a well-typed PCP process.

For the additives, we can partially work around this restriction by
combining the entire typing environment into a single type, offering a
session of type (omitting the priority annotations on the &’s, to reduce
eyestrain)

(⊥p1 &⊥p1 &1o1) &o (⊥p2 &⊥q2 &1o2)
However, this requires a global process transformation and changes the
type of the session.

A similar example exists for PCP’s exponentials. We can construct two
sessions of type ⊥p &o ⊥q that use the sessions corresponding to p and q
in opposite orders, and apply dereliction and contracting the resulting
sessions. The process

?x[x1, x2]. (νzz̄)(?x1[x]. x(y). x(). y(). z[] ∥ ?x2[x]. x(y). y(). x(). z̄().a[])
is well-typed in CP with exponentials, using the typing rules and
alternative notation fromWadler [2014, 3.4], reproduced below:

T-DERELICT
P ⊢𝘊 Γ, y ∶ A

?x[y].P ⊢𝘊 Γ, x ∶ ?A
T-CONTRACT
P ⊢𝘊 Γ, x1 ∶ ?A, x2 ∶ ?A
?x[x1, x2].P ⊢𝘊 Γ, x ∶ ?A

However, it is not typeable in PCP, using the typing rules fromDardha and
Gay [2018, Figure 2], as typing derivation requires that p < q and q < p,
reproduced below:

T-DERELICT
P ⊢ Γ, y ∶ A o < pr(Γ)
?x[y].P ⊢ Γ, x ∶ ?oA

T-CONTRACT
P ⊢ Γ, x1 ∶ ?o1A, x2 ∶ ?o2A o ≤ o1 o ≤ o2 o < pr(Γ)

?x[x1, x2].P ⊢ Γ, x ∶ ?oA
This restriction might be worked around to some extent by using the
additives to encode the different usages of the typing environment
and the duplicated session. However, this requires a global process
transformation, and changes the type of the session.

PGV Does Not Extend GV

The counterexample to extension given for CP and PCP in the previous
section is easily adapted to provide a counterexample to extension for
GV and PGV.
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Counterexample 5.2 (Extension). It is not true that every well-typed GV
term is a well-typed PGV term.

For example, the term
case x {inl x↦ x;M; inr x↦ x;N}
where
M ≜ wait y;wait z
N ≜ wait z;wait y

is typeable in GV but not in PGV.

In GV, using the typing rules in Figure I.2, its typing derivation is as follows.
(In the following derivation, the premises for TM-APP are stacked and the
first premise of TM-LETUNIT is omitted.)

⋮
y ∶ end?, z ∶ end? ⊢𝘎𝘝 M ∶ 1

x ∶ 1, y ∶ end?, z ∶ end? ⊢𝘎𝘝 x;M ∶ 1
⋮

y ∶ end?, z ∶ end? ⊢𝘎𝘝 N ∶ 1
x ∶ 1, y ∶ end?, z ∶ end? ⊢𝘎𝘝 x;N ∶ 1

x ∶ 1 + 1, y ∶ end?, z ∶ end? ⊢𝘎𝘝 case x {inl x↦ x;M; inr x↦ x;N} ∶ 1
where the typing derivations for M and N are

⊢𝘎𝘝 wait ∶ end? ⊸ 1
y ∶ end? ⊢𝘎𝘝 y ∶ end?
y ∶ end? ⊢𝘎𝘝 wait y ∶ 1

⊢𝘎𝘝 wait ∶ end? ⊸ 1
z ∶ end? ⊢𝘎𝘝 z ∶ end?
z ∶ end? ⊢𝘎𝘝 wait z ∶ 1

y ∶ end?, z ∶ end? ⊢𝘎𝘝 M ∶ 1
and

⊢𝘎𝘝 wait ∶ end? ⊸ 1
z ∶ end? ⊢𝘎𝘝 z ∶ end?
z ∶ end? ⊢𝘎𝘝 wait z ∶ 1

⊢𝘎𝘝 wait ∶ end? ⊸ 1
y ∶ end? ⊢𝘎𝘝 y ∶ end?
y ∶ end? ⊢𝘎𝘝 wait y ∶ 1

y ∶ end?, z ∶ end? ⊢𝘎𝘝 N ∶ 1
respectively.

In PGV, using the typing rules in Figure II.2, its typing derivation is as
follows. (In the following derivation, the premises for T-APP are stacked
and the first premise of T-LETUNIT is omitted.)

⋮
y ∶ endp

? , z ∶ endq
? ⊢p⊔q M ∶ 1

x ∶ 1, y ∶ endp
? , z ∶ endq

? ⊢p⊔q x;M ∶ 1

⋮
y ∶ endp

? , z ∶ endq
? ⊢p⊔q N ∶ 1

x ∶ 1, y ∶ endp
? , z ∶ endq

? ⊢p⊔q x;N ∶ 1
x ∶ 1 + 1, y ∶ endp

? , z ∶ endq
? ⊢p⊔q case x {inl x↦ x;M; inr x↦ x;N} ∶ 1

where the typing derivations forM and N are

⊢⊥ wait ∶ endp
? ⊸⊤,p 1

y ∶ endp
? ⊢⊥ y ∶ endp

?
y ∶ endp

? ⊢p wait y ∶ 1

⊢⊥ wait ∶ endq
? ⊸⊤,q 1

z ∶ endq
? ⊢⊥ z ∶ endq

?
z ∶ endq

? ⊢q wait z ∶ 1 p < q
y ∶ endp

? , z ∶ endq
? ⊢p⊔q M ∶ 1
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and

⊢⊥ wait ∶ endq
? ⊸⊤,q 1

z ∶ endq
? ⊢⊥ z ∶ endq

?
z ∶ endq

? ⊢q wait z ∶ 1

⊢⊥ wait ∶ endp
? ⊸⊤,p 1

y ∶ endp
? ⊢⊥ y ∶ endp

?
y ∶ endp

? ⊢p wait y ∶ 1 q < p
y ∶ endp

? , z ∶ endq
? ⊢p⊔q N ∶ 1

respectively, which require that p < q and q < p, respectively, where p and
q are the priorities associated with the actions on y and z, respectively.

Therefore, not every well-typed GV term is a well-typed PGV term.

There is no corresponding counterexample for the exponentials, since
the presentation of PGV in Paper II omits the exponentials. However,
any variant of PGV that introduces replication, following the work by
Lindley and Morris [2015] and Dardha and Gay [2018], without any
further changes, would certainly admit such an example.

My Priorities Leave Me No Choice

What is the issue with priorities that causes PCP and PGV to be non-
extensions of CP and GV, respectively?

The priorities impose a linear order in which a collection of resources is
to be used. For instance, under the typing environment x ∶ A1, y ∶ B2, the
resource x must be used first and the resource y must be used second.
When the same typing environment is shared by different branches in
a program, as is the case for the additives and the exponentials, each
branch is required to use those resources in the same order, which
fundamentally limits the expressiveness of branching. The structure
offered by the ordering on priorities—which are the natural numbers
extended with a lower and upper bound—is insufficient to capture
different uses across branches.

To address this issue, we would have to extend the structure of priorities
to be able to capture branching, e.g. by adding branching structure to
the priorities, or by marking constraints by the choices under which
they must hold. Any solution would likely be closely related to the
introduction of proof-boxes in the proof nets for linear logic [Girard, 1987,
p. 43].

On the other side, since the issue is that it is not generally possible
to impose a linear order on processes with branching, this is a good
indication that priorities do extend the multiplicative fragment of linear
logic, as well as the fragment with fixed points [e.g. Lindley and Morris,
2016b], since neither introduces branching.
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Identity Expansion Fails for Priority CP

The type system for PCP does not satisfy identity expansion.

Counterexample 5.3 (Identity Expansion). It is not true that, if there
exists a proof of ⊢ Γ that uses T-LINK, then there exists a proof of ⊢ Γ that
does not use T-LINK.

For example, given the following proof
T-LINK⊢ 11 ⊗3 12, ⊥1 &3 ⊥2

there exists no proof with the same conclusion that does not use T-LINK.

The reason is that PCP’s type system omits certain constraints that are,
generally speaking, syntactically impossible to violate. For instance, the
typing rule T-RECV introduces the type A &o B, but does not require that o
is smaller than the priorities on A and B. This constraint is not required,
since a process that uses an endpoint of type A1 &3 B2 would have to act
on the endpoint of type A1 before receiving it. I refer to these constraints
as the priority tree of a type, since they capture the tree structure of the
type. For instance, for the type Ap &o Bq, the priority tree contains the
constraints o < p and o < q and all constraints imposed by the structure
of A and B. The priority tree of a type, written 𝘛A, is a set of constraints,
defined as follows:

𝘛A⊗oB, 𝘛A &oB, 𝘛A⊕oB, 𝘛A&oB ≜ {o < pr(A),o < pr(B)} ∪ 𝘛A ∪ 𝘛B𝘛1o , 𝘛⊥o , 𝘛0o , 𝘛⊤o ≜ ∅
PCP’s type system omits the constraints in the priority tree for all
types. This includes the types introduced by links and absurd offers.
Unfortunately, the syntactic argument does not apply in these cases.
Consequently, PCP’s type system allows links, such as the process in
Counterexample 5.3, whose priorities violate the constraints imposed by
the priority trees. Since no process, other than the link and the absurd
offer, can introduce such types, these links are, in essence, dead, as
they can only ever be connected to other links or absurd offers, and, as
mentioned, they do not satisfy identity expansion.

To address this issue, I conjecture that it suffices to require that the
constraints in priority tree for all types introduced by links and absurd
offers must hold.

5.3.2 Priority Inference
In this section, I introduce priority inference for PCP. Usually, a type
inference system is presented as an algorithmic variant of the type
system, whose derivations take terms as input and produce types as
output. Such type inference derivations are compositional, and produce
locally correct information.
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Deadlock freedom is a global property. While CP and HCP guarantee
deadlock freedom locally and compositionally, they do so by enforcing
a much stronger and more restrictive invariant: the tree and forest
structure of the connection graph. In essence, PCP guarantees global
deadlock freedom simply by checking it, globally. Consequently, PCP’s
typing derivations are notmeaningfully compositional. Prioritieswitness
global deadlock freedom, and, as such, capture global information.
Morally, if you connect two PCP processes, you must re-check if they
are deadlock free. (Practically, you can connect two PCP processes
if and only if you already chose their priorities to witness the global
deadlock freedom of the resulting process.) As typing derivations are
not compositional, there is little hope for a local, compositional priority
inference system for PCP. Instead, I structure priority inference as a two-
stage process, which factors out the local, compositional portion into the
first stage, and defers the global check to the second stage.

Priority inference is structured as follows:

1. I define pre-processes and pre-types, which replace priorities with
priority metavariables, and pre-typing, which ensures
communication safety, but not deadlock freedom. Crucially,
pre-typing is local and compositional.

2. I prove that a pre-process is a process only if it is deadlock-free.

In this section, processes, types, and priorities are printed in red, blue,
and yellow, respectively, and all three are rendered in a sans-serif font,
whereas pre-processes, pre-types, and prioritymetavariables are printed
in pink, green, and periwinkle, respectively, and all three are rendered
in an italicised font with serif. The pre-typing sequent is marked by a
subscript “PI”.

Priority metavariables are names, whereas priorities are natural
numbers. Let o, p, and q range over priority metavariables. Priority
metavariables should be unique, i.e. no priority metavariable should
occurmore than once in a pre-process, pre-type, pre-typing environment,
or pre-typing derivation. I use Barendregt’s convention for priority
metavariables, and assume this uniqueness, rather than explicitly
renaming duplicate priority metavariables.

Pre-processes are the same as processes, but annotated by pre-types
rather than types. Let x, y, z, andw range over endpoint names, and let P,
Q, and R range over pre-processes. Binding for pre-processes is the same
as binding for processes.

Pre-types are the same as types, but annotated by priority metavariables
rather than priorities. Pre-types are well-formed if and only if each
connective is annotated with a distinct priority metavariable. Let A,
B, C, and D as well as Ā, B̄, C̄, and D̄ range over pre-types. Following
our convention for endpoints, I write A and Ā to imply that the types
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associated with these pre-types are dual, which I define shortly. The set
of priority metavariables in a pre-type A, written fp(A), is the set of all
priority metavariables that occur in the pre-type A. Two pre-types are
equivalent, written A ≈ B, if they are equal up to priority metavariables.

A1 ⊗p A2 ≈ B1 ⊗q B2 ⟺ A1 ≈ B1 ∧ A2 ≈ B2 1p ≈ 1q
A1

&p A2 ≈ B1

&q B2 ⟺ A1 ≈ B1 ∧ A2 ≈ B2 ⊥p ≈ ⊥q

A1 ⊕p A2 ≈ B1 ⊕q B2 ⟺ A1 ≈ B1 ∧ A2 ≈ B2 0p ≈ 0q
A1 &p A2 ≈ B1 &q B2 ⟺ A1 ≈ B1 ∧ A2 ≈ B2 ⊤p ≈ ⊤q

Two pre-types are dual, written A ∼ Ā, if they are dual up to priority
metavariables.

A1 ⊗p A2 ∼ Ā1

&q Ā2 ⟺ A1 ∼ Ā1 ∧ A2 ∼ Ā2 1p ∼ ⊥q

A1

&p A2 ∼ Ā1 ⊗q Ā2 ⟺ A1 ∼ Ā1 ∧ A2 ∼ Ā2 ⊥p ∼ 1q
A1 ⊕p A2 ∼ Ā1 &q Ā2 ⟺ A1 ∼ Ā1 ∧ A2 ∼ Ā2 0p ∼ ⊤q

A1 &p A2 ∼ Ā1 ⊕q Ā2 ⟺ A1 ∼ Ā1 ∧ A2 ∼ Ā2 ⊤p ∼ 0q

Pre-typing environments are the same as typing environments, but
contain pre-type assignments, rather than type assignments. Let Γ and
Δ range over pre-typing environments. Pre-typing environments are
well-formed if and only if the priority metavariables in all pre-types are
distinct. The set of priority metavariables in a pre-typing environment
Γ, written fp(Γ), is the set of priority metavariables that occur in all the
pre-types in the pre-typing environment Γ.

Priority graph (ranged over by G,H) are mixed graphs whose vertices are
priority metavariables. I informally revisit the relevant definitions. For
a detailed discussion, see § A.1.

• A mixed graph 𝘎 has a set of vertices (denoted 𝘝𝘎, ranged over by 𝘶,
𝘷), a set of edges (denoted 𝘌𝘎), a set of arcs (denoted 𝘈𝘎). Edges are
unordered pairs denoted by juxtaposition, i.e. 𝘶𝘷 ≜ {𝘶, 𝘷}. The set
of edges may not contain loops 𝘶𝘶. Arcs are ordered pairs denoted
by juxtaposition overset with an arrow to indicate the direction, i.e.
𝘶𝘷 ≜ (𝘶, 𝘷). The set of arcs may not contain loops 𝘶𝘶.

• For any graph 𝘎with vertices 𝘶, 𝘷 ∈ 𝘝𝘎, 𝘶 is adjacent to 𝘷 when there
exists some edge 𝘶𝘷 ∈ 𝘌𝘎 or some arc 𝘶𝘷 ∈ 𝘈𝘎.

• A walk 𝘸 is a sequence of pairwise adjacent vertices.
• A path 𝘱 is a walk with no repeated vertices, except possibly the first
and last.

• A cycle 𝘤 is a path that begins and ends at the same vertex.
• A walk is essentially directed when it contains at least one arc.
• A graph is essentially acyclic if and only if it contains no essentially
directed cycles.

• The undirected reachability relation (denoted by ∼𝘎) is the
equivalence closure over 𝘌𝘎.

• The essentially directed reachability relation (denoted by ≺𝘎) is the
transitive closure over 𝘈𝘎 quotiented by ∼𝘎.
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• The empty graph with vertices 𝘝 , written �̄�𝘝 , is the graph consisting
of vertices 𝘝 , with no edges or arcs.

• The graph union of 𝘎𝟣 and 𝘎𝟤, denoted by 𝘎𝟣 ∪ 𝘎𝟤, is defined by, for
each projection, taking the union of the projection of 𝘎𝟣 and 𝘎𝟤, e.g.𝘝𝘎𝟣∪𝘎𝟤 ≜ 𝘝𝘎𝟣 ∪ 𝘝𝘎𝟤 , 𝘌𝘎𝟣∪𝘎𝟤 ≜ 𝘌𝘎𝟣 ∪ 𝘌𝘎𝟤 , etc..

• The directed rooting of 𝘎 in 𝘷, written 𝘷 ≺ 𝘎, is the graph formed by
adding the vertex 𝘷 and adding an arc from 𝘷 to every other vertex
of 𝘎, i.e. 𝘝𝘷≺𝘎 ≜ {𝘷} ∪ 𝘝𝘎 and 𝘈𝘷≺𝘎 ≜ {𝘷𝘶|𝘶 ∈ 𝘝𝘎} ∪ 𝘈𝘎. Directed rooting
preserves the remaining projections, e.g. 𝘌𝘷≺𝘎 ≜ 𝘌𝘎.

The priority tree of a pre-type, written 𝘛A, is the priority graph whose
vertices are the priority metavariables in A, with arcs flowing along the
structure of the type.

𝘛A⊗oB, 𝘛A &oB, 𝘛A⊕oB, 𝘛A&oB ≜ o ≺ (𝘛A ∪ 𝘛B)𝘛1o , 𝘛⊥o , 𝘛0o , 𝘛⊤o ≜ o

The priority link of two pre-types, written 𝘓A,Ā, is the bipartite priority
graph with edges between the corresponding priority metavariables in
A and Ā. The priority link is defined if and only if A ∼ Ā.

𝘓A⊗pB,Ā &qB̄, 𝘓A &pB,Ā⊗qB̄, 𝘓A⊕pB,Ā&qB̄, 𝘓A&pB,Ā⊕qB̄ ≜ pq ∪ 𝘓A,Ā ∪ 𝘓B,B̄𝘓1p,⊥q , 𝘓⊥p,1q , 𝘓0p,⊤q , 𝘓⊤p,0q ≜ pq

The priority link-tree of two pre-types, written 𝘛A,Ā, is the union of the two
priority trees for A and Ā and the priority link for A and Ā.

𝘛A,Ā ≜ 𝘛A ∪ 𝘛Ā ∪ 𝘓A,Ā
To illustrate these definitions, let us look at an example. Let A and Ā be
the pre-types 1p1 ⊗o1 1q1 and ⊥p1 &o2 ⊥q2 , respectively. The priority tree 𝘛A,
priority link 𝘓A,Ā, and priority link-tree 𝘛A,Ā are as follows:

𝘛A =
o1

q1

p1

𝘓A,Ā =
o1

q1

p1

o2

q2

p2

𝘛A,Ā =
o1

q1

p1

o2

q2

p2

The pre-typing judgment P ⊢𝘗𝘐 Γ | G means that P is well-typed if, for
each pre-type assignment x ∶ A in Γ, exactly one pre-process in P uses the
endpoint x according to the session pre-type A. The priority graph G is an
output of the pre-typing derivation.

Definition 5.4 (Pre-Typing). A pre-process P is well-typed under some pre-
typing environment Γ if there exists a pre-typing derivation with conclusion
P ⊢𝘗𝘐 Γ | G for some G that uses the pre-typing rules in Figure 5.1.

A priority substitution assigns a priority to eachprioritymetavariable. Let
σ range over priority substitutions. A priority substitution translates pre-
processes to processes, pre-types to types, and pre-typing environments
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PI-LINK
x↔y ⊢𝘗𝘐 x ∶ A, y ∶ Ā | 𝘓A,Ā

P ⊢𝘗𝘐 Γ, x ∶ A, x̄ ∶ Ā | G
PI-RES(νxx̄)P ⊢𝘗𝘐 Γ | 𝘓A,Ā ∪ G

P ⊢𝘗𝘐 Γ | G Q ⊢𝘗𝘐 Δ | H
PI-PARP ∥ Q ⊢𝘗𝘐 Γ,Δ | G ∪H PI-HALT0 ⊢𝘗𝘐 ∅ | �̄�∅

P ⊢𝘗𝘐 Γ, y ∶ A, x ∶ B | G
PI-SENDx[y].P ⊢𝘗𝘐 Γ, x ∶ A⊗o B | o ≺ G

P ⊢𝘗𝘐 Γ, y ∶ A, x ∶ B | G
PI-RECVx(y).P ⊢𝘗𝘐 Γ, x ∶ A &o B | o ≺ G

P ⊢𝘗𝘐 Γ | G PI-CLOSEx[].P ⊢𝘗𝘐 Γ, x ∶ 1o | o ≺ G
P ⊢𝘗𝘐 Γ | G PI-WAITx().P ⊢𝘗𝘐 Γ, x ∶ ⊥o | o ≺ G

P ⊢𝘗𝘐 Γ, x ∶ A | G PI-SELECT1x◁ inl.P ⊢𝘗𝘐 Γ, x ∶ A⊕o B | o ≺ G
P ⊢𝘗𝘐 Γ, x ∶ B | G PI-SELECT2x◁ inr.P ⊢𝘗𝘐 Γ, x ∶ A⊕o B | o ≺ G

P ⊢𝘗𝘐 Γ, x ∶ A | G1 Q ⊢𝘗𝘐 Γ, x ∶ B | G2 PI-OFFERx ▷ {inl∶ P; inr∶Q} ⊢𝘗𝘐 Γ, x ∶ A &o B | o ≺ (G1 ∪ G2)
N = fn(Γ) PI-ABSURDx N ⊢𝘗𝘐 Γ, x ∶ ⊤o | �̄�fn(Γ,x∶⊤o)

Figure 5.1: Pre-Typing Rules for Priority CP
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to typing environments, by pointwise applying the priority substitution
to each priority metavariable.

Priority inference is sound. If the priority graph produced by the
pre-typing derivation is essentially acyclic, there exists some priority
substitution such that the resulting process is typeable in PCP.

Proposition 5.5 (Soundness). If P ⊢𝘗𝘐 Γ | G and G is essentially acyclic,
then there exists some priority substitution σ such that σ(P) ⊢ σ(Γ).

Proof. Let 𝘏 be the quotient graph of G by its edges 𝘌G, i.e. G/𝘌G.
Consequently, 𝘏 has no edges and is a directed graph. Since G is
essentially acyclic, 𝘏 is acyclic. By topological sort, there exists a linear
ordering 𝘚𝘯 of the vertices of 𝘏 such that, if 𝘶𝘷 ∈ 𝘈𝘏, then 𝘶 comes before
𝘷 in 𝘚𝘯. Let the priority substitution σ ∶ 𝘝G → ℕ be the function that maps
each priority metavariable to its position in the linear ordering 𝘚𝘯, i.e.
σ = {o↦ 𝘪|o ∈ 𝘚𝘪}.
The typing derivation for σ(P) ⊢ σ(Γ) is constructed by induction on the
typing derivation for P ⊢𝘗𝘐 Γ | G.

• In the cases for PI-SEND, PI-RECV, PI-CLOSE, PI-WAIT, PI-SELECT1,
PI-SELECT2, PI-OFFER, and PI-ABSURD, the result follows from the
induction hypothesis and the rules T-SEND, T-RECV, T-CLOSE, T-WAIT,
T-SELECT1, T-SELECT2, T-OFFER, and T-ABSURDZAP, respectively. The
constraint o < pr(Γ) is satisfied by the definition of σ and the rooting
of the priority graph o ≺ G.

• In the case for PI-LINK, the result follows from the rule PI-LINK. In
the case for PI-RES, the result follows from the induction hypothesis
and the rule PI-RES. In both cases, duality is satisfied by the
definition of σ and the priority link 𝘓A,Ā.

• In the case for PI-PAR, the result follows from the induction
hypotheses and the rule T-PAR.

• In the case for PI-HALT, the result follows from the rule T-HALT.

Priority erasure replaces priority annotations with fresh priority
metavariables, and translates processes to pre-processes, types to
pre-types, and typing environments to pre-typing environments, by
pointwise applying the priority erasure to each priority metavariable.

Definition 5.6 (Priority Erasure). Priority erasure, written ⌊⋅⌋𝘗𝘐 , maps
processes to pre-processes, types to pre-types, typing environments to pre-
typing environments, and typing derivations to pre-typing derivations, by
replacing all priorities with fresh priority metavariables.

Priority inference satisfies completeness. If the process is well-typed
in PCP, then the priority graph produced by the pre-typing derivation
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is essentially acyclic, and the order of the original priority assignment
respects reachability in the priority graph.

Proposition 5.7 (Completeness). If P ⊢ Γ, then ⌊P⌋𝘗𝘐 ⊢𝘗𝘐 ⌊Γ⌋𝘗𝘐 | G such that
the produced priority graph G is essentially acyclic, and, if σ is the priority
substitution such that σ(P) = P and σ(Γ) = Γ, then p ≺G q ⟹ σ(p) < σ(q).
Proof. By induction on the derivation of P ⊢ Γ. In each case, we construct
the priority substitution σ by matching the priority metavariables in
the erased types to the priorities on the original type, and prove that σ
is a graph homomorphism from the produced priority graph G to the
graph corresponding to the order on the natural numbers. Consequently,
σ witnesses the fact that G is linearisable, and therefore is essentially
acyclic.

5.4 Conclusion
In this chapter, we introduced Priority GV with its typing rules, reduction
semantics, and metatheory, and we revisited Priority CP with its
typing rules, reduction semantics, and metatheory, and introduced an
operational correspondence between PCP and PGV. Priority CP and
Priority GV are variants of CP and GV that use priority typing to
permit processes with benign cyclic connections. For PGV, we proved
preservation (Theorem II.3.5) and global progress (Theorem II.3.14). For
PCP, we dropped the commuting conversions, which cause Dardha
and Gay’s PCP to be non-confluent, from the reduction semantics,
we added the additive units, and we proved preservation (Theorem
II.3.5), and proved that global progress (Theorem II.3.14) continues to
hold. We related PCP to PGV by means of a translation, proved that
it preserves types (Theorem II.4.6), and proved that it gives rise to
a complete (Theorem II.4.7) and sound (Theorem II.4.10) operational
correspondence. I demonstrated that PCP and PGV are not extensions of
CP and GV, respectively, and that PCP does not satisfy identity expansion.
Finally, I introduced priority inference for PCP.

I conjecture that multiplicative PCP—the fragment (⊗,1, &,⊥)—does
extend multiplicative CP, and proving this would be an interesting
topic for future work. It is easily verified that most typing rules for
multiplicative CP preserve essential acyclicity of the priority graph. The
exception is cut. I conjecture that a successful proof for cut proceeds
by induction on the cut formula, and relies on splitting—the property
that the subgraphs of the priority graph which are reachable from the
arguments of a tensor are disjoint.

It would be interesting to investigate the exact relation between priority
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graphs and proof nets. Certainly, they are not equivalent, since priority
graphs encode the order in which the sequent calculus rules are used.
However, I conjecture that if priority graphs were extended with type
information, theywould contain sufficient information to reconstruct the
entire typing derivation, and hence, they encode the entire process.

It would be interesting to extend PCP and PGVwith fixed points, following
Lindley and Morris [2016b] and Padovani [2014], and with first- and
second-order quantifiers, interpreted as priority and type polymorphism.

Finally, itwould be interesting to investigate solutions for the expressivity
of additives in priority-based calculi by extending the structure of priority
graphswith choice, e.g. by boxing, as done in the proof nets of linear logic
[Girard, 1987].
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Chapter 6

Implementations

In previous chapters, I have made the claim that GV’s session-typed
communication is easy to implement as a library, especially when the
host language already supports linear types. To evidence this claim,
this chapter presents an implementation of both HGV and PGV’s session-
typed concurrency primitives as a library, named priority-sesh,
implemented in LinearHaskell [Marlow et al., 2010, Bernardy et al., 2018].

The library only implementsHGVandPGV’s concurrency primitives. This
is a double-edged sword. Only implementing the concurrency primitives
makes GV easy to implement, but also easy to implement incorrectly,
since this makes a number of assumptions about the host language that
are difficult to prove.

• It relies on the host language to provide the basic ingredients of
a functional language—e.g. functions, pairs, sums, etc..—and basic
concurrency primitives—i.e. threads and channels.

• It assumes that the host language and GV agree on their evaluation
strategy, or that GV’s correctness guarantees are invariant under
the choice of evaluation strategy. (For Haskell, we can say with
confidence that the first option does not hold, since GV’s semantics
are call-by-value, whereas Haskell’s semantics are call-by-need.)

• It assumes that the host language and GV agree on the semantics for
threads and channels.

The bulk of the chapter consists of the paper Deadlock-Free Session Types
in Linear Haskell by Kokke and Dardha [2021b], hereafter referred to as
Paper III. Referencesmade from themain body of this thesis into Paper III
will be prefixed by an “III”, e.g. “Theorem III.3.1”. This chapter proceeds
as follows:

• In § 6.1, I provide a legend and an errata for Paper III.

• In § 6.2, we present an implementation of both HGV and PGV’s
session-typed communication as a library in Linear Haskell. This
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section consists entirely of Paper III, and proceeds as follows:

– In § III.2.1, we implement one-shot channels.
– In § III.2.2, we implement session-typed channels.
– In § III.2.3, we show that a restriction of the interface defined
in § III.2.2 corresponds to HGV’s communication primitives.

– In § III.2.4, we implement priority-based channels.
– In § III.3, we show that the interface defined in § III.2.4 is the
monadic reflection of PGV’s communication primitives.

– In § III.4, we discuss the related work. Notably, we compare
a variety of session types in Haskell, extending the analysis
provided by Orchard and Yoshida [2017].

– In § III.5, we discuss our experience using Linear Haskell as
well as potential directions for future work.

6.1 Legend and Errata
The conventions and terminology in Paper I are different from those used
in the rest of this thesis.

• The concurrency primitives, session types, and priorities in the
Linear Haskell implementation as well as the terms, types, and
priorities of Priority GV are printed in red, blue, and green,
respectively, and are rendered in an italicised or bolded font with
serif.

There are several other notable differences between HGV and PGV and
their implementations in the library.

First, the library implements several extensions to GV.

• The library implements session cancellation, following Exceptional
GV [EGV, Fowler et al., 2019].

Strictly speaking, this means the implementation is affine rather
than linear, in the sense that values can be left unused. This
is important in any practical implementation of session types,
regardless of what typing facilities are offered by the host language.
We can design a session-typed language in the simplified setting
where communication always succeeds andnoprocess ever crashes,
but this assumption is immediately shattered upon contact with
reality.

This extension also allows us to implement GV as a library in host
languages whose type systems are affine rather than linear, such
as the predecessor to the library, Rusty Variation by Kokke [2019],
which is implemented in Rust [Matsakis and Klock, 2014].

• The library has polymorphic and recursive session types, simply
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by virtue of being implemented in Haskell. The recursive sessions
in the library do not provide any termination guarantees. This
is unsurprising, since Haskell does not offer any termination
guarantees. Hence, the recursive sessions in the library do not
correspond to the recursive sessions in Lindley and Morris’ µGV,
but they may correspond to the variant that identifies the greatest
and least fixed points [Lindley and Morris, 2016b, § 2.3, under
“Nontermination”].

Second, the library makes several simplifications that are common in
practical variants of GV, which relax the correspondence with CLL.

• The link primitive is omitted from both the implementation of
session-typed channels (in § III.2.2) and the implementation of
priority-based session-typed channels (in § III.2.4). This is common
in implementations of GV, or variants of GV which do not aim to
prove a correspondence with a variant of CP.

• The type system conflates end! and end? into End. This is equivalent
to postulating MIX and MIX0 in CLL, i.e. it preserves deadlock-
freedom, but relaxes the structure of the connection graph from a
tree to a forest. Consequently, processes may become disconnected.
Consequently, exceptions raised in disconnected child processes are
not propagated to the main process. This is not a serious problem,
as it cannot affect the outcome of the main computation, and does
not justify the added complexity of separating end! and end?.
(If the library’s concurrency primitives are used together with
other forms of inter-process communication, exceptions raised in
disconnected child processes can affect the outcome of the main
computation, but such uses already lose the guarantee of deadlock-
freedom.)

Finally, the library makes several changes that are required to correctly
embed HGV and PGV into Linear Haskell.

• The library relies on Linear Haskell to provide linearity checking.
However, Linear Haskell and GV have different notions of linearity.
In GV, linearity is a property of values. If a value is linear, it must
be used exactly once. In Linear Haskell, linearity is a property
of functions. If a function is linear, it must use its argument
exactly once. To accommodate this difference, it is important that
session-typed endpoints, which must be used linearly, are only ever
obtained as the arguments of linear functions.

In HGV’s implementation, the concurrency primitive fork is
replaced with the equivalent concurrency primitive connect from
Wadler’s GV (see § III.2.3). Whereas fork returns the dual endpoint,
connect passes it to another continuation. As endpoints can only be
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created by connect, this guarantees they are used linearly.

fork ∶ (S⊸ end!) ⊸ S connect ∶ (S⊸ end!) ⊸ (S⊸ T) ⊸ T

(The type of “connect” in the library differs from the type of connect
presented above. We shall discuss this shortly.)

In PGV’s implementation, the concurrency primitives are lifted
into a linear graded monad (see “Sesh”, in § III.2.4, under ”The
Communication Monad”). As the bind operation for this monad is
linear, this guarantees that endpoints are used linearly.

• In HGV’s implementation, the type of “connect” differs from the type
of Wadler’s connect, as presented above.

connect ∷ Session 𝘴 ⇒ (𝘴 ⊸ IO ()) ⊸ (Dual 𝘴 ⊸ IO 𝘢) ⊸ IO 𝘢
The function corresponding to the child thread has type 𝘴 ⊸ IO ()
instead of S⊸ end!, which means it returns the unit, rather than an
endpoint of type end!.

The change of type is due to two relaxations of GV’s typing. The first
is the conflation of end! and end? into End, discussed above. The
second is the switch from the synchronous End to the asynchronous
unit, which lets child processes terminate asynchronously, without
synchronising with their parents.

• In PGV’s implementation, the concurrency connectives are lifted
into the graded linear monad Sesh𝘲𝘱, which permits us to encode
PGV’s constraints in Haskell’s type system as type-level constraints.

There are minor errors in Paper III:

• A phrase in the first paragraph on Page III.6 reads “For instance, for
totallyFinewe can assign the number 0 to send (𝘤𝘩𝘴𝟣) and recv (𝘤𝘩𝘳𝟤),
and 1 to send (𝘤𝘩𝘴𝟤) and recv (𝘤𝘩𝘳𝟣)”, but should read “For instance,
for totallyFine we can assign the number 0 to send (𝘤𝘩𝘴𝟣) and
recv (𝘤𝘩𝘳𝟣), and 1 to send (𝘤𝘩𝘴𝟤) and recv (𝘤𝘩𝘳𝟤)”.



6.2 Paper III: Deadlock-Free Session Types in
Linear Haskell

This section contains the paper with the same title, in collaboration with
Ornela Dardha, which was originally published in the proceedings of the
ACM SIGPLAN International Symposium on Haskell (Haskell 2021).

The work presented in the paper was conceived of by all the authors.
I implemented the Haskell library, developed the refined version of
Priority GV’s type system and its monadic reflection, wrote the initial
draft of the paper, and co-authored the comparison with existing Haskell
libraries for session-typed channels.



Deadlock-Free Session Types in Linear Haskell
Wen Kokke

University of Edinburgh

Edinburgh, Scotland

wen.kokke@ed.ac.uk

Ornela Dardha

University of Glasgow

Glasgow, Scotland

ornela.dardha@glasgow.ac.uk

Abstract
Priority Sesh is a library for session-typed communication in

Linear Haskell which offers strong compile-time correctness

guarantees. Priority Sesh offers two deadlock-free APIs for

session-typed communication. The first guarantees deadlock

freedom by restricting the process structure to trees and

forests. It is simple and composable, but rules out cyclic

structures. The second guarantees deadlock freedom via

priorities, which allows the programmer to safely use cyclic

structures as well.

Our library relies on Linear Haskell to guarantee linear-

ity, which leads to easy-to-write session types and more

idiomatic code, and lets us avoid the complex encodings

of linearity in the Haskell type system that made previous

libraries difficult to use.
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1 Introduction
Session types are a type formalism used to specify and verify

communication protocols [26–28, 62]. They’ve been stud-

ied extensively in the context of the 𝜋-calculus [58], a pro-

cess calculus for communication an concurrency, and in the

context of concurrent 𝜆-calculi, such as the GV family of

languages [“Good Variation”, 20, 23, 40, 64].
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Session types have been implemented in various program-

ming languages. We give a detailed overview in section 4,

and Orchard and Yoshida [49] provide a complete survey of

session type implementations in Haskell.

The main difficulty when implementing session types in

most programming languages is linearity, i.e., the guarantee
that each channel endpoint is used exactly once. There are
several different approaches to guaranteeing linearity, but

the main distinction is between dynamic [52, 59, 60] and
static [41, 42, 56] usage checks. With dynamic checks, using

a channel endpoint more than once simply throws a runtime

error. With static checks, usage is somehow encoded into the

type system of the host language usually by encoding the

entire linear typing environment into the type system using

a parameterised or graded monad. Such encodings are only

possible if the type system of the host language is expressive

enough. However, such encodings are often quite complex,

and result in a trade-off between easy-to-write session types

and idiomatic programs.

Moreover, these implementations only focus on the most

basic features of session types and often ignore more ad-

vanced ones, such as channel delegation or deadlock freedom:

Neubauer and Thiemann [44] only provide single session

channels; Pucella and Tov [56] provide multiple channels,

but only the building blocks for channel delegation; Imai et al.

[30] extend Pucella and Tov [56] and provide full delegation.

None of these works address deadlock freedom. Lindley and

Morris [41] provide an implementation of GV into Haskell

building on the work of Polakow [55]. To the best of our

knowledge, this is the only work that guarantees deadlock

freedom of session types in Haskell, albeit in a simple form.

In GV, all programs must have tree-shaped process structures.

The process structure of a program is an undirected graph,

where nodes represent processes, and edges represent the

channels connecting them. (We explore this in more detail

in section 2.3.) Therefore, deadlock freedom is guaranteed

by design: session types rule out deadlocks over a single

channel, and the tree-restriction rules out sharing multiple

channels between two processes. While Lindley and Morris

[41] manage to implement more advanced properties, the

tree restriction rules out many interesting programs which

have cyclic process structure, but are deadlock free.

Recent works by Padovani and Novara [53] and Kokke and

Dardha [PGV, 35] integrate priorities [32, 51] into functional

languages. Priorities are natural numbers that abstractly rep-

resent the time at which a communication action happens.

1



Haskell ’21, August 26–27, 2021, Virtual, Republic of Korea Wen Kokke and Ornela Dardha

Priority-based type systems check that there are no cycles
in the communication graph. The communication graph is

a directed graph where nodes represent dual communica-

tion actions, and directed edges represent one action must

happen before another. (We explore this in more detail in

section 2.4.) Such type systems are more expressive, as they
allow programs to have cyclic process structure, as long as
they have an acyclic communication graph.

With the above in mind, our research goals are as follows:

Q1 Can we have easy-to-write session types, easy linearity

checks and idiomatic code at the same time?

Q2 Can we address not only the main features of session

types, but also advanced ones, such as full delegation,

recursion, and deadlock freedom of programs with

cyclic process structure?

Our priority-sesh library answers both questions mostly
positively. We sidestep the problems with encoding linearity

in Haskell by using Linear Haskell [4], which has native sup-

port for linear types. The resulting session type library pre-

sented in sections 2.2 and 2.3 has both easy-to-write session

types, easy linearity checks, and idiomatic code. Moving to

Q2, the library has full delegation, recursion, and the variant
in section 2.3 guarantees deadlock freedom, albeit by restrict-

ing the process structure to trees and forests. In section 2.4,

we implement another variant which uses priorities to en-

sure deadlock freedom of programs with cyclic processes

structure. The ease-of-writing suffers a little, as the program-

mer has to manually write priorities, though this isn’t a huge

inconvenience. Unfortunately, GHC’s ability to reason about

type-level naturals currently is not as powerful as to allow

the programmer to easily write priority-polymorphic code,

which is required for recursion. Hence, while we address

deadlock freedom for cyclic process structures, we do so only

for the finite setting.

Contributions. In section 2, we present Priority Sesh,

an implementation of deadlock free session types in Linear

Haskell which is:

• the first implementation of session types to take ad-

vantage of Linear Haskell for linearity checking, and

producing easy-to-write session types and more id-

iomatic code;

• the first implementation of session types in Haskell to

guarantee deadlock freedom of programs with cyclic

process structure via priorities; and
• the first embedding of priorities into an existing main-

stream programming language.

In section 3, we:

• present a variant of Priority GV [35]—the calculus

upon which Priority Sesh is based—with asynchro-

nous communication and session cancellation follow-

ing Fowler et al. [20] and explicit lower bounds on the

sequent, rather than lower bounds inferred from the

typing environment; and

• show that Priority Sesh is related to Priority GV via

monadic reflection.

2 What is Priority Sesh?
In this section we introduce Priority Sesh in three steps:

• in section 2.1, we build a small library of linear or

one-shot channels based on MVars [54];

• in section 2.2, we use these one-shot channels to build

a small library of session-typed channels [12]; and
• in section 2.4, we decorate these session types with

priorities to guarantee deadlock-freedom [35].

It is important to notice that the meaning of linearity in

one-shot channels differs from linearity in session channels.
A linear or one-shot channel originates from the linear 𝜋-

calculus [33, 58], where each endpoint of a channel must

be used for exactly one send or receive operation, whereas

linearity in the context of session-typed channels, it means

that each step in the protocol is performed exactly once, but
the channel itself is used multiple times.

Priority Sesh is written in Linear Haskell [4]. The type

⊸ is syntactic sugar for the linear arrow %1->. Familiar

definitions refer to linear variants packaged with linear-
base1 (e.g., IO, Functor , Bifunctor , Monad) or with Priority

Sesh (e.g., MVar).
We colour the Haskell definitions which are a part of Sesh:

red for functions and constructors; blue for types and type

families; and emerald for priorities and type families acting

on priorities.

2.1 One-shot Channels
We start by building a small library of linear or one-shot
channels, i.e., channels that must be use exactly once to send

or receive a value.

The one-shot channels are at the core of our library, and

their efficiency is crucial to the overall efficiency of Prior-

ity Sesh. However, we do not aim to present an efficient

implementation here, rather we aim to present a compact

implementation with the correct behaviour.

Channels. A one-shot channel has two endpoints, Send1
and Recv1, which are two copies of the same MVar .

newtype Send1 a = Send1 (MVar a)
newtype Recv1 a = Recv1 (MVar a)
new1 :: IO (Send1 a, Recv1 a)
new1 = do
(mvar𝑠 ,mvar𝑟 ) ← dup2 ⟨$⟩ newEmptyMVar
return (Send1 (unur mvar𝑠 ), Recv1 (unur mvar𝑟 ))

The newEmptyMVar function returns an unrestricted MVar ,
which may be used non-linearly, i.e., as many times as one

1https://hackage.haskell.org/package/linear-base

2
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wants. The dup2 function creates two (unrestricted) copies

of the MVar . The unur function casts each unrestricted copy

to a linear copy. Thus, we end up with two copies of anMVar ,
each of which must be used exactly once.
We implement send1 and recv1 as aliases for the corre-

sponding MVar operations.

send1 :: Send1 a ⊸ a ⊸ IO ()
send1 (Send1 mvar𝑠 ) x = putMVar mvar𝑠 x

recv1 :: Recv1 a ⊸ IO a
recv1 (Recv1 mvar𝑟 ) = takeMVar mvar𝑟

The MVar operations implement the correct blocking be-

haviour for asynchronous one-shot channels: the send1 oper-
ation is non-blocking, and the recv1 operations blocks until
a value becomes available.

Synchronisation. We use Send1 and Recv1 to implement

a construct for one-shot synchronisation between two pro-

cesses, Sync
1
, which consists of two one-shot channels. To

synchronise, each process sends a unit on the one channel,

then waits to receive a unit on the other channel.

data Sync
1
= Sync

1
(Send1 ()) (Recv1 ())

newSync
1
:: IO (Sync

1
, Sync

1
)

newSync
1
= do (chs1, chr1) ← new1

(chs2, chr2) ← new1

return (Sync
1
chs1 chr2, Sync1 chs2 chr1)

sync
1
:: Sync

1
⊸ IO ()

sync
1
(Sync

1
chs chr ) = do send1 chs (); recv1 chr

Cancellation. We implement cancellation for one-shot

channels. One-shot channels are created in the linear IO
monad, so forgetting to use a channel results in a complaint

from the type-checker. However, it is possible to explicitly
drop values whose types implement the Consumable class,
using consume :: a ⊸ (). The ability to cancel communica-

tions is important, as it allows us to safely throw an exception

without violating linearity, assuming that we cancel all open

channels before doing so.

One-shot channels implement Consumable by sim-

ply dropping their MVars. The Haskell runtime throws

an exception when a “thread is blocked on an MVar ,
but there are no other references to the MVar so

it can’t ever continue.”
2

Practically, consumeAndRecv
throws a BlockedIndefinitelyOnMVar exception, whereas

consumeAndSend does not:

consumeAndRecv = do
(chs, chr ) ← new1

fork $ return (consume chs)
recv1 chr

consumeAndSend = do u
(chs, chr ) ← new1

fork $ return (consume chr )
send1 chs ()

2https://downloads.haskell.org/~ghc/9.0.1/docs/html/libraries/base-
4.15.0.0/Control-Exception.html#t:BlockedIndefinitelyOnMVar

Where fork forks off a new thread using a linear forkIO. (In
GV, this operation is called spawn.)

As the BlockedIndefinitelyOnMVar check is performed by

the runtime, it’ll even happen when a channel is dropped for

reasons other than consume, such as a process crashing.

2.2 Session-typed Channels
We use the one-shot channels to build a small library of

session-typed channels based on the continuation-passing style
encoding of session types in linear types by Dardha [9],

Dardha et al. [12] and in line with other libraries for Scala

[59, 60], OCaml [52], and Rust [34].

An Example. Let’s look at a simple example of a session-

typed channel—a multiplication service, which receives two

integers, sends back their product, and then terminates:

type MulServer = Recv Int (Recv Int (Send Int End ))
type MulClient = Send Int (Send Int (Recv Int End ))

We define mulServer , which acts on a channel of type

MulServer , and mulClient, which acts on a channel of the

dual type:

mulServer (s ::MulServer)
= do (x, s) ← recv s

(y, s) ← recv s
s← send (x ∗ y, s)
close s
return ()

mulClient (s ::MulClient)
= do s← send (32, s)

s← send (41, s)
(z, s) ← recv s
close s
return z

In order to encode the sequence of a session type using

one-shot types, each action on a session-typed channel re-

turns a channel for the continuation of the session—save

for close, which ends the session. Furthermore, mulServer
and mulClient act on endpoints with dual types. Duality is

crucial to session types as it ensures that when one process

sends, the other is ready to receive, and vice versa. This is

the basis for communication safety guaranteed by a session

type system.

Channels. We start by defining the Session type class,

which has an associated type Dual. You may think of Dual
as a type-level function associated with the Session class with
one case for each instance.We encode the various restrictions

on duality as constraints on the type class. Each session

type must have a dual, which must itself be a session type—

Session (Dual s) means the dual of s must also implement

Session. Duality must be injective—the annotation result →
s means result must uniquely determine s and involutive—
Dual (Dual s) ∼ s means Dual (Dual s) must equal s. These
constraints are all captured by the Session class, along with

new for constructing channels:

class (Session (Dual s),Dual (Dual s) ∼ s) ⇒ Session s
where

3
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type Dual s = result | result → s
new :: IO (s,Dual s)

There are three primitive session types: Send , Recv , and End .

newtype Send a s = Send (Send1 (a,Dual s))
newtype Recv a s = Recv (Recv1 (a, s))
newtype End = End Sync

1

By following Dardha et al. [12], a channel Send wraps a one-

shot channel Send1 over which we send some value—which

is the intended value sent by the session channel, and the

channel over which the communicating partner process con-
tinues the session—it’ll make more sense once you read the

definition for send. A channel Recv wraps a one-shot channel

Recv1 over which we receive some value and the channel

over which we continue the session. Finally, an channel End
wraps a synchronisation.

We define duality for each session type—Send is dual to

Recv , Recv is dual to Send , and End is dual to itself:

instance Session s⇒ Session (Send a s)
where
type Dual (Send a s) = Recv a (Dual s)
new = do (chs, chr ) ← new1

return (Send chs, Recv chr )
instance Session s⇒ Session (Recv a s)

where
type Dual (Recv a s) = Send a (Dual s)
new = do (chs, chr ) ← new1

return (Recv chr , Send chs)
instance Session End

where
type Dual End = End
new = do (chsync1, chsync2) ← newSync

1

return (End chsync1, End chsync2)

The send operation constructs a channel for the continuation

of the session, then sends one endpoint of that channel, along

with the value, over its one-shot channel, and returns the

other endpoint:

send :: Session s⇒ (a, Send a s)⊸ IO s
send (x, Send chs) = do (here, there) ← new

send1 chs (x, there)
return here

The recv and close operations simply wrap their correspond-

ing one-shot operations:

recv :: Recv a s ⊸ IO (a, s)
recv (Recv chr ) = recv1 chr
close :: End ⊸ IO ()
close (End chsync) = sync

1
chsync

Cancellation. We implement session cancellation via the

Consumable class. For convenience, we provide the cancel
function:

cancel :: Session s⇒ s ⊸ IO ()
cancel s = return (consume s)

As with one-shot channels, consume simply drops the chan-

nel, and relies on the BlockedIndefinitelyOnMVar check,

which means that cancelAndRecv throws an exception and

cancelAndSend does not:

cancelAndRecv = do
(chs, chr ) ← new
fork $ cancel chs
((), ()) ← recv chr
return ()

cancelAndSend = do u
(chs, chr ) ← new
fork $ cancel chr
() ← send chs ()
return ()

These semantics correspond to EGV [20].

Asynchronous Close. We don’t always want session-end
to involve synchronisation. Unfortunately, the close opera-
tion is synchronous.

An advantage of defining session types via a type class

is that its an open class, and we can add new primitives

whenever. Let’s make the unit type, (), a session type:

instance Session s⇒ Session ()
where

type Dual () = ()
new = return ((), ())

Units are naturally affine—they contain zero information,

so dropping them won’t harm—and the linear Monad class

allows you to silently drop unit results of monadic computa-

tions. They’re ideal for asynchronous session end!

Using () allows us to recover the semantics of one-shot

channels while keeping a session-typed language for id-

iomatic protocol specification.

Choice. So far, we’ve only presented sending, receiving,

and synchronisation. It is, however, possible to send and

receive channels as well as values, and we leverage that to

implementmost other session types by using these primitives

only!

For instance, we can implement binary choice by send-

ing/receiving Either of two session continuations:

type Select s1 s2 = Send (Either (Dual s1) (Dual s2)) ()
type Offer s1 s2 = Recv (Either s1 s2) ()
selectLeft :: (Session s1) ⇒ Select s1 s2 ⊸ IO s1
selectLeft s = do (here, there) ← new

send (Left there, s)
return here

offerEither :: Offer s1 s2 ⊸ (Either s1 s2 ⊸ IO a)⊸ IO a
offerEither s match = do (e, ()) ← recv s;match e

4
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Differently from (), we don’t have to implement the Session
class for Select and Offer . They’re already session types!

Recursion. We can write recursive session types by writ-

ing them as recursive Haskell types. Unfortunately, we can-

not write recursive type synonyms, so we have to use a

newtype. For instance, we can write the type for a recursive

summation service, which receives numbers until the client

indicates they’re done, and then sends back the sum. We

specify two newtypes:

newtype SumSrv
= SumSrv (Offer (Recv Int SumSrv) (Send Int End ))

newtype SumCnt
= SumCnt (Select (Send Int SumCnt ) (Recv Int End ))

We implement the summation server as a recursive function:

sumSrv :: Int ⊸ SumSrv · ⊸ IO ()
sumSrv tot (SumSrv s) = offerEither s $ 𝜆e. case x of

Left s→ do (x, s) ← recv s; sumSrv (tot + x) s
Right s→ do s← send (tot, s); close s

As SumSrv and SumCnt are new types, we must provide

instances of the Session class for them.

instance Session SumSrv
where
type Dual SumSrv = SumCnt
new = do (chsrv, chcnt) ← new

return (SumSrv chsrv, SumCnt chcnt)

2.3 Deadlock Freedom via Process Structure
The session-typed channels presented in section 2.2 can be

used to write deadlocking programs, e.g., by receiving before
sending:

woops :: IO Void
woops = do (chs1, chr1) ← new

(chs2, chr2) ← new
fork $ do (void, ()) ← recv chr1

send (void, chs2)
(void, ()) ← recv chr2
let (void, voidcopy) = dup2 void
send (void, chs1)
return voidcopy

Counter to what the type says, this program doesn’t actually

produce an inhabitant of the uninhabited type Void. Instead,
it deadlocks! We’d like to help the programmer avoid such

programs.

As discussed in section 1, we can structurally guarantee

deadlock freedom by ensuring that the process structure is
always a tree or forest. The process structure of a program is

an undirected graph, where nodes represent processes, and

edges represent the channels connecting them. For instance,

the process structure of woops is cyclic:

main child

chs1 chr1

chs2chr2

This restriction works by ensuring that between two pro-

cesses there is at most one (series of) channels over which
the two can communicate. As duality rules out deadlocks on

any one channel, such configurations must be deadlock free.

We can rule out cyclic process structures by hiding new,
and only exporting connect, which creates a new channel

and, crucially, immediately passes one endpoint to a new

thread:

connect :: Session s⇒
(s ⊸ IO ())⊸ (Dual s ⊸ IO a)⊸ IO a

connect k1 k2 = do (s1, s2) ← new; fork (k1 s1); k2 s2

You can view connect as the node constructor for a binary
process tree. If the programmer only uses connect, their pro-
cess structure is guaranteed to be a tree. If they also use

standalone fork, their process structure is a forest. Either
way, their programs are guaranteed to be deadlock free.

2.4 Deadlock Freedom via Priorities
The strategy for deadlock freedom presented in section 2.3 is

simple, but very restrictive, since it rules out all cyclic com-

munication structures, even the ones which don’t deadlock:

totallyFine :: IO String
totallyFine = do (chs1, chr1) ← new

(chs2, chr2) ← new
fork $ do (x, ()) ← recv chr1

send (x, chs2)
send ("Hiya!", chs1)
(x, ()) ← recv chr2
return x

This process has exactly the same process structure as woops,
but it’s totally fine, and returns "Hiya!" as you’d expect.

We’d like to enable the programmer to write such programs

while still guaranteeing their programs don’t deadlock.

As discussed in section 1, there is another way to rule out

deadlocks—by using priorities. Priorities are an approxima-

tion of the communication graph of a program. The commu-

nication graph of a program is a directed graph where nodes

represent actions on channels, and directed edges represent

that one action happens before the other. Dual actions are

connected with double undirected edges. (You may consider

the graph contracted along these edges.) If the communica-

tion graph is cyclic, the program deadlocks. The communi-

cation graphs for woops and totallyFine are as follows:

5
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send chs1 recv chr1

send chs2recv chr2

woops

send chs1 recv chr1

send chs2recv chr2

totallyFine
If the communication graph is acyclic, then we can assign

each node a number such that directed edges only ever point

to nodes with bigger numbers. For instance, for totallyFine
we can assign the number 0 to send chs1 and recv chr2 , and 1

to recv chr2 and send chs2 . These numbers are priorities.
In this section, we present a type system in which priorities

are used to ensure deadlock freedom, by tracking the time a

process starts and finishes communicating using a graded

monad [21, 48]. The bind operation registers the order of its

actions in the type, requiring the sequentiality of their duals.

Priorities. The priorities assigned to communication ac-
tions are always natural numbers, which represent, abstractly,
at which time the action happens. When tracking the start

and finish times of a program, however, we also use ⊥ and

⊤ for programs which don’t communicate. These are used

as the identities for ⊓ and ⊔ in lower and upper bounds,

respectively. We let o range over natural numbers, p over

lower bounds, and q over upper bounds.

data Priority = ⊥ | Nat | ⊤

We define strict inequality (<), minimum (⊓), and maxi-

mum (⊔) on priorities as usual.

Channels. We define Sendo, Recvo, and Endo, which dec-

orate the raw sessions from section 2.2 with the priority o of
the communication action, i.e., it denoted when the commu-

nication happens. Duality (Dual) preserves these priorities.
These are implemented exactly as in section 2.2.

TheCommunicationMonad. Wedefine a gradedmonad

Seshqp , which decorates IO with a lower bound p and an upper
bound q on the priorities of its communication actions, i.e., if
you run the monad, it denotes when communication begins

and ends.

newtype Seshqp a = Sesh { runSeshIO :: IO a}

The monad operations for Seshqp merely wrap those for IO,
hence trivially obeys the monad laws.

The ireturn function returns a pure computation—the type

Sesh⊥⊤ guarantees that all communications happen between

⊤ and ⊥, hence there can be no communication at all.

ireturn :: a ⊸ Sesh⊥⊤ a
ireturn x = Sesh $ return x

The >>>= operator sequences two actions with types Seshqp
and Seshq

′

p′ , and requires q < p′, i.e., the first action must

have finished before the second starts. The resulting action

has lower bound p ⊓ p′ and upper bound q ⊔ q′.

(>>>=) :: (q < p′) ⇒ Seshqp a ⊸ (a ⊸ Seshq
′

p′ b)⊸ Seshq⊔q
′

p⊓p′ b
mx>>>=mf = Sesh $ runSeshIO mx >>= 𝜆x . runSeshIO (mf x)

In what follows, we implicitly use >>>= with do-notation. This

can be accomplished in Haskell using RebindableSyntax.
We define decorated variants of the concurrency and com-

munication primitives: send, recv, and close each perform

a communication action with some priority o, and return

a computation of type Seshoo, i.e., with exact bounds; new
and cancel don’t perform any communication action, and

so return a pure computation of type Sesh⊥⊤; fork takes a

computation which performs communication actions as an

argument, forks it off into a separate thread, and masks the

upper bound in its return type.

new :: Session s⇒ Sesh⊥⊤ (s,Dual s)
fork :: Seshqp ()⊸ Sesh⊥p ()
cancel :: Session s⇒ s ⊸ Sesh⊥⊤ ()
send :: Session s⇒ (a, Sendo a s)⊸ Seshoo s
recv :: Recvo a s ⊸ Seshoo (a, s)
close :: Endo ⊸ Seshoo ()

From these, we derive decorated choice, as before:

type Selecto s1 s2 = Sendo (Either (Dual s1) (Dual s2)) ()
type Offero s1 s2 = Recvo (Either s1 s2) ()
selectLeft :: (Session s1) ⇒ Selecto s1 s2 ⊸ Seshoo s1
selectRight :: (Session s2) ⇒ Selecto s1 s2 ⊸ Seshoo s2
offerEither :: (o < p) ⇒ Offero s1 s2 ⊸

(Either s1 s2 ⊸ Seshqp a)⊸ Sesho⊔qo⊓p a

Safe IO. We can use a trick from the ST monad [38] to

define a “pure” variant of runSesh, which encapsulates all

use of IO within the Seshqp monad. The idea is to index the

Seshqp and every session type constructor with an extra type

parameter tok, which we’ll call the session token:

send :: Session s⇒ (a, Sendo tok a s)⊸ Seshoo tok s
recv :: Recvo tok a s ⊸ Seshoo tok (a, s)
close :: Endo tok ⊸ Seshoo tok ()

The session token should never be instantiated, except by

runSesh, and every action under the same call to runSesh
should use the same type variable tok as its session token:

runSesh :: (∀tok. Seshqp tok a)⊸ a
runSesh x = unsafePerformIO (runSeshIO x)

This ensures that none of the channels created in the session

can escape out of the scope of runSesh.
We implement this encapsulation in priority-sesh,

though the session token is the first argument, preceding

the priority bounds.

6
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Recursion. We could implement recursive session via

priority-polymorphic types, or via priority-shifting [53]. For

instance, we could give the summation service from sec-

tion 2.2 the following type:

newtype SumSrvo

= SumSrv (Offero (Recvo+1 Int (SumSrvo+2))
(Sendo+1 Int (Endo+2)))

We’d then like to assign sumSrv the following type:

sumSrv : Int ⊸ SumSrvo ⊸ Sesh⊤o ()
sumSrv tot (SumSrv s) = offerEither s $ 𝜆e. case x of

Left s→ do (x, s) ← recv s; sumSrv (tot + x) s
Right s→ do s← send (tot, s);weaken (close s)

The upper bound for a recursive call should be ⊤, which en-

sures that recursive calls are only made in tail position [3, 22].
The recursive call naturally has upper bound ⊤. However,
the close operation happens at some concrete priority 𝑜 + 𝑛,
which needs to be raised to⊤, so we’d have to add a primitive

weaken : Seshqp a ⊸ Sesh⊤p a.
Unfortunately, writing such priority-polymorphic code

relies heavily on GHC’s ability to reason about type-level

naturals, and GHC rejects sumSrv complaining that it can-

not verify that o < o + 1, o + 1 < o + 2, etc. There’s several
possible solutions for this:

1. We could embrace the Hasochism [39], and provide

GHC with explicit evidence, though this would make

priority-sesh more difficult to use.

2. We could delegate some of these problems to a GHC

plugin such as type-nat-solver3 or ghc-typelits-
presburger4. Unfortunately, ⊓ and ⊔ are beyond Pres-
burger arithmetic, and type-nat-solver has not been
maintained in recent years.

3. We could attempt to write type families which reduce

in as many cases as possible. Unfortunately, a restric-

tion in closed type families [16, §6.1] prevents us from

checking exactly these cases.

Currently, the prioritised sessions don’t support recursion,

and implementing one of these solutions is future work.

Cyclic Scheduler. Dardha and Gay [10] and Kokke and

Dardha [36] use a finite cyclic scheduler as an example. The

cyclic scheduler has the following process structure, with

the flow of information indicated by the dotted arrows:

3https://github.com/yav/type-nat-solver
4https://hackage.haskell.org/package/ghc-typelits-presburger

sched

main

adder

adder

adder

We start by defining the types of the channels which connect

each client process to the scheduler:

type SRo2o1 a = Sendo1 a (Recvo2 a ())
type RSo2o1 a = Dual (SRo2o1 a)
We then define the scheduler itself, which forwards messages

from one process to the next in a cycle:

sched :: RS7
0
a ⊸ SR2

1
a ⊸ SR4

3
a ⊸ SR6

5
a ⊸ Sesh7

0
()

sched s1 s2 s3 s4 = do
(x, s1) ← recv s1
s2 ← send (x, s2); (x, ()) ← recv s2
s3← send (x, s3); (x, ()) ← recv s3
s4← send (x, s4); (x, ()) ← recv s4
send (x, s1)

Finally, we define the adder and the main processes. The

adder adds one to the value it receives, and themain process

initiates the cycle and receives the result:

adder :: (o1 < o2) ⇒ RSo2o1 Int ⊸ Sesho2o1 ()
adder s = do (x, s) ← recv s; send (x + 1, s)
main :: (o1 < o2) ⇒ Int ⊸ SRo2o1 Int ⊸ Sesho2o1 Int
main x s = do ; s← send (x, s); (x, ()) ← recv s; ireturn x

While the process structure of the cyclic scheduler as pre-
sented isn’t cyclic, nothing prevents the user from adding

communications between the various client processes, or

from removing the scheduler and having the client processes

communicate directly in a ring.

3 Relation to Priority GV
The priority-sesh library is based on a variant of Priority

GV [35], which differs in three ways:

1. it marks lower bounds explicitly on the sequent, rather

than implicitly inferring them from the typing envi-

ronment;

2. it collapses the isomorphic types for session end, end𝑜
!

and end𝑜
?
, into end𝑜 ;

3. it is extended with asynchronous communication and

session cancellation following Fowler et al. [20].

These changes preserve subject reduction and progress prop-

erties, and give us tighter bounds on priorities. To see why,

note that PCP [10] and PGV [35] use the smallest priority in

the typing environment as an approximation for the lower

7
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bound. Unfortunately, this underestimates the lower bound
in the rules T-Var and T-Lam (check fig. 1). These rules type

values, which are pure and could have lower bound ⊤, but
the smallest priority in their typing environment is not nec-

essarily ⊤.

Priority GV. We briefly revisit the syntax and type system

of PGV, but a full discussion of PGV is out of scope for this

paper. For a discussion of the synchronous semantics for PGV,

and the proofs of subject reduction, progress, and deadlock

freedom, please see Kokke and Dardha [35]. For a discus-

sion of the asynchronous semantics and session cancellation,

please see Fowler et al. [20].

As in section 2.4, we let 𝑜 range over priorities, which are

natural numbers, and 𝑝 and 𝑞 over priority bounds, which

are either natural numbers, ⊤, or ⊥.
PGV is based on the standard linear 𝜆-calculus with prod-

uct types (· × ·), sum types (· + ·), and their units (1 and 0).
Linear functions (·⊸𝑞

𝑝 ·) are annotated with priority bounds
which tell us–when the function is applied–when communi-

cation begins and ends.

Types and session types are defined as follows:

𝑆 F !
𝑜𝑇 .𝑆 | ?𝑜𝑇 .𝑆 | end𝑜

𝑇,𝑈 F 𝑇 ×𝑈 | 1 | 𝑇 +𝑈 | 0 | 𝑇 ⊸𝑞
𝑝 𝑈 | 𝑆

The types !
𝑜𝑇 .𝑆 and ?𝑜𝑇 .𝑆 mean “send” and “receive”, respec-

tively, and end𝑜 means, well, session end.

The term language is the standard linear 𝜆-calculus ex-

tended with concurrency primitives 𝐾 :

𝐿,𝑀, 𝑁

F 𝑥 | 𝐾 | 𝜆𝑥.𝑀 | 𝑀 𝑁

| () | 𝑀 ;𝑁

| (𝑀, 𝑁 ) | let (𝑥,𝑦) =𝑀 in 𝑁
| absurd 𝑀
| inl 𝑀 | inr 𝑀 | case 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 }

𝐾 F new | fork | send | recv | close

The concurrency primitives are uninterpreted in the term

language. Rather, they are interpreted in a configuration

language based on the 𝜋-calculus, which we omit from this

paper (see Kokke and Dardha [35]).

We present the typing rules for PGV in fig. 1. A sequent

Γ ⊢𝑞𝑝 𝑀 : 𝑇 should be read as “𝑀 is well-typed PGV program

with type 𝑇 in typing environment Γ, and when run it starts

communicating at time 𝑝 and stops at time 𝑞.”

Monadic Reflection. The graded monad Seshqp arises

from the monadic reflection [17] of the typing rules in fig. 1.

Monadic reflection is a technique for translating programs

in an effectful language to monadic programs in a pure lan-

guage. For instance, Filinski [17] demonstrates the reflection

from programs of type 𝑇 in a language with exceptions and

handlers to programs of type 𝑇 + exn in a pure language

where exn is the type of exceptions.

We translate programs from PGV to Haskell programs in

the Seshqp monad. First, let’s look at the translation of types:

J𝑇 ⊸𝑞
𝑝 𝑈 K = JTK ⊸ Seshqp JU K

J!𝑜𝑇 .𝑆K = Sendo JTK JSK
J?𝑜𝑇 .𝑆K = Recvo JTK JSK
Jend𝑜K = Endo

J1K = ()
J𝑇 ×𝑈 K = (JTK, JU K)
J0K = Void
J𝑇 +𝑈 K = Either JTK JU K

Now, let’s look at the translation of terms. A term of type

𝑇 with lower bound 𝑝 and upper bound 𝑞 is translated to a

Haskell program of type Seshqp JTK:

J𝑥K = ireturn x
J𝜆𝑥 .𝐿K = ireturn (𝜆x . JLK)
J𝐾K = ireturn JKK
J𝐿 𝑀K = JLK>>>=𝜆f . JMK >>= 𝜆x . f x
J()K = ireturn ()
Jlet () = 𝐿 in 𝑀K = JLK>>>=𝜆().M
J(𝐿,𝑀)K = JLK>>>=𝜆x . JMK >>= 𝜆y. ireturn (x, y)
Jlet (𝑥,𝑦) = 𝐿 in 𝑀K = JLK>>>=𝜆(x, y). JMK
Jabsurd 𝐿K = JLK>>>=𝜆x . absurd x
Jinl 𝐿K = JLK>>>=𝜆x . ireturn (Left x)
Jinr 𝐿K = JLK>>>=𝜆x . ireturn (Right x)
Jcase 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 }K =

JLK>>>=𝜆x . case x of {Left x → JMK; Right y → JN K}
We translate the communication primitives from PGV to

those with the same name in priority-sesh, with some

minor changes in the translations of new and fork, where
PGV needs some unit arguments to create thunks in PGV, as

it’s call-by-value, which aren’t needed in Haskell:

Jnew : 1 ⊸⊥
⊤ 𝑆 × 𝑆K

= 𝜆(). new :: ()⊸ (JSK, J(Dual S)K)
Jfork : (1 ⊸𝑞

𝑝 1)⊸⊥
⊤ 1K

= 𝜆k. fork (k ()) :: (()⊸ Seshqp ())⊸ Sesh⊥⊤ ()
The rest of PGV’s communication primitives line up exactly

with those of priority-sesh:

Jsend : 𝑇×!𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑆K

= send :: Session JSK⇒ (JTK, Sendo JTK JSK)⊸ Seshoo JSK
Jrecv : ?

𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑇 × 𝑆K

= recv :: Recvo JTK JSK ⊸ Seshoo (JTK, JSK)
Jclose : end𝑜 ⊸𝑜

𝑜 1K
= close :: Endo ⊸ Seshoo ()
Jcancel : 𝑆 ⊸⊥

⊤ 1K
= cancel :: Session JSK⇒ JSK ⊸ Sesh⊥⊤ ()

These two translations, on types and terms, comprise a

monadic reflection from PGV into priority-sesh, which
preserves typing. We state this theorem formally, using

Γ ⊢ x :: a to mean that the Haskell program x has type

a in typing environment Γ:

Theorem 3.1. If Γ ⊢𝑞𝑝 𝑀 : 𝑇 , then JΓK ⊢ JMK :: Seshqp JTK.

Proof. Figure 2 presents the translation from typing deriva-

tions in PGV to abbreviated typing derivations in Haskell

with priority-sesh. □
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Static Typing Rules. Γ ⊢𝑞𝑝 𝑀 : 𝑇

T-Var

𝑥 : 𝑇 ⊢⊥⊤ 𝑥 : 𝑇

T-Lam

Γ, 𝑥 : 𝑇 ⊢𝑞𝑝 𝑀 : 𝑈

Γ ⊢⊥⊤ 𝜆𝑥.𝑀 : 𝑇 ⊸𝑞
𝑝 𝑈

T-Const

∅ ⊢⊥⊤ 𝐾 : 𝑇

T-App

Γ ⊢𝑞𝑝 𝑀 : 𝑇 ⊸𝑞′′

𝑝′′ 𝑈 Δ ⊢𝑞
′

𝑝′ 𝑁 : 𝑇 𝑞 < 𝑝 ′ 𝑞′ < 𝑝 ′′

Γ,Δ ⊢𝑞⊔𝑞
′⊔𝑞′′

𝑝⊓𝑝′⊓𝑝′′ 𝑀 𝑁 : 𝑈

T-Unit

∅ ⊢⊥⊤ () : 1

T-LetUnit

Γ ⊢𝑞𝑝 𝑀 : 1 Δ ⊢𝑞
′

𝑝′ 𝑁 : 𝑇 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let () =𝑀 in 𝑁 : 𝑇

T-Pair

Γ ⊢𝑞𝑝 𝑀 : 𝑇 Δ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ (𝑀, 𝑁 ) : 𝑇 ×𝑈

T-LetPair

Γ ⊢𝑞𝑝 𝑀 : 𝑇 ×𝑇 ′ Δ, 𝑥 : 𝑇,𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let (𝑥,𝑦) =𝑀 in 𝑁 : 𝑈

T-Inl

Γ ⊢𝑞𝑝 𝑀 : 𝑇

Γ ⊢𝑞𝑝 inl 𝑀 : 𝑇 +𝑈

T-Inr

Γ ⊢𝑞𝑝 𝑀 : 𝑇

Γ ⊢𝑞𝑝 inr 𝑀 : 𝑇 +𝑈

T-CaseSum

Γ ⊢𝑞𝑝 𝐿 : 𝑇 +𝑇 ′ Δ, 𝑥 : 𝑇 ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 Δ, 𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊔𝑝′ case 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 } : 𝑈

T-Absurd

Γ ⊢𝑞𝑝 𝑀 : 0

Γ ⊢𝑞𝑝 absurd 𝑀 : 𝑇

Type Schemas for Constants. 𝐾 : 𝑇

new : 1 ⊸⊥
⊤ 𝑆 × 𝑆 fork : (1 ⊸𝑞

𝑝 1)⊸⊥
⊤ 1 cancel : 𝑆 ⊸⊥

⊤ 1

send : 𝑇×!𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑆 recv : ?

𝑜𝑇 .𝑆 ⊸𝑜
𝑜 𝑇 × 𝑆 close : end𝑜 ⊸𝑜

𝑜 1

Figure 1. Typing rules for Priority GV.

4 Related Work
Session Types in Haskell. Orchard and Yoshida [49] dis-

cuss various approaches to implementing session types in

Haskell. Their overview is reproduced below:

• Neubauer and Thiemann [44] give an encoding of first-

order single-channel session-types with recursion;

• Using parameterised monads, Pucella and Tov [56] pro-
vide multiple channels, recursion, and some building

blocks for delegation, but require manual manipula-

tion of a session typing environment;

• Sackman and Eisenbach [57] provide an alternate ap-

proach where session types are constructed via a value-

level witnesses;

• Imai et al. [30] extend Pucella and Tov [56] with dele-

gation and a more user-friendly approach to handling

multiple channels;

• Orchard and Yoshida [50] use an embedding of effect

systems into Haskell via graded monads based on a

formal encoding of session-typed π-calculus into PCF

with an effect system;

• Lindley and Morris [41] provide a finally tagless em-

bedding of the GV session-typed functional calculus

into Haskell, building on a linear λ-calculus embedding

due to Polakow [55].

With respect to linearity, all works above—except Neubauer

and Thiemann [44]—guarantee linearity by encoding a linear

typing environment in the Haskell type system, which leads

to a trade-off between having easy-to-write session types

and having idiomatic programs. We side-step this trade-off

by relying on Linear Haskell to check linearity. Furthermore,

our implementation supports all relevant features, includ-

ing multiple channels, full delegation, recursion, and more

idiomatic code.

With respect to deadlock freedom, none of the works

above—except Lindley and Morris [41]—guarantee deadlock

freedom. However, Lindley and Morris [41] guarantee dead-

lock freedom structurally, by implementing GV. As discussed

in section 1, structure-based deadlock freedom is more re-

strictive than priority-based deadlock freedom, as it restricts

communication graphs to trees, whereas the priority-based
approach allows programs to have cyclic process structures.
Orchard and Yoshida [49] summarise the capabilities of

the various implementations of session types in Haskell in

a table, which we adapted in table 1 by adding columns

for the various versions of priority-sesh. In general, you

may read as “Kinda” and as a resounding “Yes!” For

instance, Pucella and Tov [56] only provide partial delega-
tion, Neubauer and Thiemann [44], Pucella and Tov [56], and

Lindley and Morris [41] still need to use combinators instead

of standard Haskell application, abstraction, or variables in
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𝑥 : 𝑇 ⊢⊥⊤ 𝑥 : 𝑇 =

x :: JTK ⊢ x :: JTK

ireturn x :: Sesh⊥⊤ JTK

Γ, 𝑥 : 𝑇 ⊢𝑞𝑝 𝐿 : 𝑈

Γ ⊢⊥⊤ 𝜆𝑥 .𝐿 : 𝑇 ⊸𝑞
𝑝 𝑈 =

JΓK, x :: JTK ⊢ JLK :: Seshqp JU K

ireturn (𝜆x . JLK) :: Sesh⊥⊤ (JTK ⊸ Seshqp JU K)

∅ ⊢⊥⊤ 𝐾 : 𝑇 = ireturn JKK :: Sesh⊥⊤ JTK

Γ ⊢𝑞𝑝 𝐿 : 𝑇 ⊸𝑞′′

𝑝′′ 𝑈 Δ ⊢𝑞
′

𝑝′ 𝑀 : 𝑇 𝑞 < 𝑝 ′ 𝑞′ < 𝑝 ′′

Γ,Δ ⊢𝑞⊔𝑞
′⊔𝑞′′

𝑝⊓𝑝′⊓𝑝′′ 𝐿 𝑀 : 𝑈 =

JΓK ⊢ JLK :: Seshqp (JTK ⊸ Seshq
′′

p′′ JU K) JΔK ⊢ JMK :: Seshq
′

p′ JTK

JLK>>>=𝜆f . JMK >>= 𝜆x . f x :: (q < p′, q′ < p′′) ⇒ Seshq⊔q
′⊔q′′

p⊓p′⊓p′′ JU K

∅ ⊢⊥⊤ () : 1 = ireturn () :: Sesh⊥⊤ ()

Γ ⊢𝑞𝑝 𝐿 : 1 Δ ⊢𝑞
′

𝑝′ 𝑀 : 𝑇 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let () = 𝐿 in 𝑀 : 𝑇 =

JΓK ⊢ JLK :: Seshqp () JΔK ⊢ JMK :: Seshq
′

p′ JTK

JLK>>>=𝜆().M :: (p < q′) ⇒ Seshq⊔q
′

p⊓p′ JTK

Γ ⊢𝑞𝑝 𝐿 : 𝑇 Δ ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ (𝐿,𝑀) : 𝑇 ×𝑈 =

JΓK ⊢ JLK :: Seshqp JTK JΔK ⊢ JMK :: Seshq
′

p′ JU K

JLK>>>=𝜆x . JMK >>= 𝜆y. ireturn (x, y) :: (q < p′) ⇒ Seshq⊔q
′

p⊓p′ (JTK, JU K)

Γ ⊢𝑞𝑝 𝐿 : 𝑇 ×𝑇 ′ Δ, 𝑥 : 𝑇,𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊓𝑝′ let (𝑥,𝑦) = 𝐿 in 𝑀 : 𝑈 =

JΓK ⊢ JLK :: Seshqp (JTK, JT ′K) JΔK, x :: JTK, y :: JT ′K ⊢ JMK :: Seshq
′

p′ JU K

JLK>>>=𝜆(x, y). JMK :: (q < p′) ⇒ Seshq⊔q
′

p⊓p′ JU K

Γ ⊢𝑞𝑝 𝐿 : 𝑇

Γ ⊢𝑞𝑝 inl 𝐿 : 𝑇 +𝑈 =

JΓK ⊢ JLK :: Seshqp JTK

JΓK ⊢ JLK>>>=𝜆x . ireturn (Left x) :: Seshqp (Either JTK JU K)

Γ ⊢𝑞𝑝 𝐿 : 𝑇

Γ ⊢𝑞𝑝 inr 𝐿 : 𝑇 +𝑈 =

JΓK ⊢ JLK :: Seshqp JU K

JΓK ⊢ JLK>>>=𝜆x . ireturn (Right x) :: Seshqp (Either JTK JU K)

Γ ⊢𝑞𝑝 𝐿 : 𝑇 +𝑇 ′ Δ, 𝑥 : 𝑇 ⊢𝑞
′

𝑝′ 𝑀 : 𝑈 Δ, 𝑦 : 𝑇 ′ ⊢𝑞
′

𝑝′ 𝑁 : 𝑈 𝑞 < 𝑝 ′

Γ,Δ ⊢𝑞⊔𝑞
′

𝑝⊔𝑝′ case 𝐿 {inl 𝑥 ↦→ 𝑀 ; inr 𝑦 ↦→ 𝑁 } : 𝑈 =

JΓK ⊢ JLK :: Seshqp (Either JTK JT ′K) JΔK ⊢ x :: JTK ⊢ JMK :: Seshq
′

p′ JU K JΔK ⊢ y :: JT ′K ⊢ JN K :: Seshq
′

p′ JU K

JΓK, JΔK ⊢ JLK>>>=𝜆x . case x {Left x → JMK; Right y → JN K} :: Seshq⊔q
′

p⊓p′ JU K

Γ ⊢𝑞𝑝 𝐿 : 0

Γ ⊢𝑞𝑝 absurd 𝐿 : 𝑇 =

JΓK ⊢ JLK :: Seshqp Void

JΓK ⊢ JLK>>>=𝜆x . absurd x :: Seshqp JTK

Figure 2. Translation from Priority GV to Sesh preserves types.

some places, and Neubauer and Thiemann [44] is only dead-

lock free on the technicality that they don’t support multiple

channels.

Session Types in other Programming Languages. Ses-
sion types have been integrated in other programming lan-

guage paradigms. Jespersen et al. [31], Padovani [52], Scalas

and Yoshida [60] integrate binary session types in the na-
tive host language, without language extensions; this to
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Table 1. Capabilities of various implementations of session types in Haskell [adapted from 49].

priority-sesh
NT04 PT08 SE08 IYA10 OY16 LM16 section 2.2 section 2.3 section 2.4

Recursion

Delegation

Multiple channels

Idiomatic code

Easy-to-write session types

Deadlock freedom

via process structure
via priorities

avoid hindering session types use in practice. To obtain this

integration of session types without extensions Padovani

[52], Scalas and Yoshida [60]) combine static typing of input

and output actions with runtime checking of linearity of

channel usage.

Implementations of multiparty session types (MPST) are

less common than binary implementations. Scalas et al. [59]

integrate MPST in Scala building upon Scalas and Yoshida

[60] and a continuation-passing style encoding of session

types into linear types Dardha et al. [11]. There are several

works on implementations of MPST in Java: Sivaramakr-

ishnan et al. [61] implement MPST leveraging an extension

of Java with session primitives; Hu and Yoshida [29] de-

velops a MPST-based API generation for Java leveraging

CFSMs by Brand and Zafiropulo [7]; and Kouzapas et al.

[37] implement session types in the form of typestates in
Java. Demangeon et al. [13] implement MPST in Python and

Fowler [18], Neykova and Yoshida [46] in Erlang, focusing

on purely dynamic MPST verification via runtime monitor-

ing. Neykova et al. [45], Neykova and Yoshida [47] extend

the work by Demangeon et al. [13] with actors and timed

specifications. Lopez et al. [43] adopt a dependently-typed

MPST theory to verify MPI programs.

Session Types, Linear Logic and Deadlock Freedom.
Themain line of work regarding deadlock freedom in session-

typed systems is that of Curry-Howard correspondences

with linear logic [25]. Caires and Pfenning [8] defined a cor-

respondence between session types and dual intuitionistic

linear logic and Wadler [64] between session types and clas-

sical linear logic. These works guarantee deadlock freedom

by design as the communication structures are restricted

to trees and due to the cut rule, processes share only one

channel between them. Dardha and Gay [10] extend Wadler

[64] with priorities following Kobayashi [32], Padovani [51],

thus allowing processes to share more than one channel in

parallel, while guaranteeing deadlock freedom. Balzer et al.

[2] introduce sharing and guarantee deadlock freedom via

priorities. All the above works deal with deadlock freedom

in a session-typed 𝜋-calculus. With regards to function lan-

guages, the original works on GV [23, 24] did not guarantee

deadlock freedom. This was later addressed by Lindley and

Morris [40], Wadler [65] via syntactic restrictions where

communication once again follows a tree structure. Kokke

and Dardha [35] introduce PGV–Priority GV, by following

Dardha and Gay [10] and allowing for more flexible pro-

gramming in GV. Fowler et al. [19] present Hypersequent

GV (HGV), a core calculus for functional programming with

session types that enjoys deadlock freedom, confluence, and

strong normalisation.

Other works on deadlock freedom in session-typed sys-

tems include the works by Dezani-Ciancaglini et al. [15],

where deadlock freedom is guaranteed by allowing only one

active session at a time and by Dezani-Ciancaglini et al. [14],

where priorities are used for correct interleaving of channels.

Honda et al. [28] guarantee deadlock freedom within a single
session of MPST, but not for session interleaving. Kokke [34]

guarantees deadlock freedom of session types in Rust by

enforcing a tree structure of communication actions.

5 Discussion and Future Work
We presented priority-sesh, an implementation of

deadlock-free session types in Linear Haskell. Using Lin-

ear Haskell allows us to check linearity—or more accurately,

have linearity guaranteed for us—without relying on com-

plex type-level machinery. Consequently, we have easy-to-

write session types and idiomatic code—in fact, probably the
most idiomatic code when compared with previous work,

though in fairness, all previous work predates Linear Haskell.

Unfortunately, there are some drawbacks to using Linear

Haskell. Most importantly, Linear Haskell is not very mature

at this stage. For instance:

• Anonymous functions are assumed to be unrestricted

rather than linear, meaning anonymous functionsmust

be factored out into a let-binding or where-clause with

at least a minimal type signature such as ⊸ .

• There is no integration with base or popular Haskell
packages, and given that LinearTypes is an exten-

sion, there likely won’t be for quite a while. There’s

linear-base, which provides linear variants of many
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of the constructs in base. However, linear-base re-
lies heavily on unsafeCoerce, which, ironically, may

affect Haskell’s performance.

• Generally, there is little integration with the Haskell

ecosystem, e.g., one other contributionwemade are the

formatting directives for Linear Haskell in lhs2TEX [1].

However, we believe that many of these drawbacks will

disappear as the Linear Haskell ecosystem matures.

Our work also provides a library which guarantees dead-

lock freedom via priorities, which allows for more flexible

typing than previous work on deadlock freedom via a tree

process structure.

In the future, we plan to address the issue of priority-

polymorphic code and recursion session types in our imple-

mentation. (While the versions of our library in sections 2.2

and 2.3 support recursion, that is not yet the case for the

priority-based version in section 2.4.) This is a challenging

task, as it requires complex reasoning about type-level natu-

rals. We outlined various approaches in section 2.4. However,

an alternative we would like to investigate, would be to im-

plement priority-sesh in Idris2 [5, 6], which supports both

linear types and complex type-level reasoning.
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6.3 Conclusion
In this chapter, we introduced a library in Linear Haskell which
implements session-typed channels based on GV and Priority GV. We
defined the monadic reflection of PGV’s type system into a graded linear
monad, to permit an easy embedding of PGV’s priority typing into Linear
Haskell’s type system. Finally, we compared our Haskell library to
existing Haskell libraries for session-typed channels.

In the future, it would be interesting to implement a variant of the
library that uses type-level programming for priority inference, as the
current design requires the user to manually annotate actions with
their priorities. Furthermore, it would be interesting to describe the
relation between the library and GV more formally, and formalise the
correspondence using a proof-assistant. Finally, it would be useful
to extend the library with the link primitive, both from a practical
standpoint, and tomore closely align the implementationwith the formal
calculus.



Appendix A

Glossary

A.1 Graph Theory
In this section, I introduce various graph theoretic notions that are used
throughout the thesis. I need undirected labelled graphswhen discussing
connection graphs in § 2.2.5 and § 3.2.5, mixed graphs when discussing
dependency graphs and priority graphs in § 2.2.4, § 3.2.4, and § 5.3.2,
and undirected multigraphs when discussing abstract process structure
in I.3.1.

Commonly, graphs are introduced as tuples of their components.
However, since I require undirected, directed, andmixed graphs, I intend
to save some ink by defining graphs in terms of their projections.

In the following, if someprojection is undefined, it is the empty set, e.g. for
an undirected graph, the set of directed arcs is empty, and, consequently,
directed reachability is the empty relation.

• A graph (ranged over by 𝘎) has a set of vertices, denoted by 𝘝𝘎
(ranged over by 𝘶, 𝘷).

• In an abuse of notation, I write 𝘶 for the singleton graph consisting
of the single vertex 𝘶, i.e. 𝘝𝘶 ≜ {𝘶}.

• Two graphs 𝘎𝟣 and 𝘎𝟤 are disjoint if and only if their sets of vertices
are disjoint, i.e. 𝘝𝘎𝟣 ∩ 𝘝𝘎𝟤 = ∅.

• An edge (ranged over by 𝘦) is an unordered pair of vertices, denoted
by juxtaposition, i.e. 𝘶𝘷 ≜ {𝘶, 𝘷}.

• An edge-loop or loop is an edge 𝘶𝘶 that connects a vertex to itself.
• In an abuse of notation, I write 𝘶𝘷 for the graph consisting of the
single edge 𝘶𝘷, i.e. 𝘝𝘶𝘷 ≜ {𝘶, 𝘷} and 𝘌𝘶𝘷 ≜ {𝘶𝘷}.

• An undirected graph 𝘎 is a graph with a set of undirected edges with
no edge-loops, denoted by 𝘌𝘎, i.e. 𝘌𝘎 ⊆ {𝘶𝘷|𝘶, 𝘷 ∈ 𝘝𝘎 ∧ 𝘶 ≠ 𝘷}.
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• An arc (ranged over by 𝘢) is an ordered pair of vertices, denoted
by juxtaposition overset with an arrow to indicate the direction, i.e.
𝘶𝘷 ≜ (𝘶, 𝘷).

• An arc-loop or loop is an arc 𝘶𝘶 that connects a vertex to itself.
• In an abuse of notation, I write 𝘶𝘷 for the graph consisting of the
single arc 𝘶𝘷, i.e. 𝘝�⃗�𝘷 ≜ {𝘶, 𝘷} and 𝘈�⃗�𝘷 ≜ {𝘶𝘷}.

• A directed graph 𝘎 is a graph with a set of directed arcs with no arc-
loops, denoted by 𝘈𝘎, i.e. 𝘈𝘎 ⊆ {𝘶𝘷|𝘶, 𝘷 ∈ 𝘝𝘎 ∧ 𝘶 ≠ 𝘷}.

• A mixed graph 𝘎 is a graph with a set of undirected edges with no
edge-loops, as above, and a set of directed arcs with no arc-loops, as
above.

• An edge-labelled graph 𝘎 is a graph with a set of edges, as above, a
set of edge labels, denoted by ℒ𝘎, and an edge-labelling function,
denoted by ℓ𝘎, where ℓ𝘎 ∶ 𝘌𝘎 → ℒ𝘎. The definitions for 𝘌𝘎 and ℒ𝘎
may be omitted, since 𝘌𝘎 ≜ dom(ℓ𝘎) and ℒ𝘎 ≜ cod(ℓ𝘎).

• An undirected multigraph 𝘎 is a graph with a set of edge names,
denoted by ℰ𝘎, and an edge-connection function, denoted by 𝘳𝘎,
where 𝘳𝘎 ∶ ℰ𝘎 → {𝘶𝘷|𝘶, 𝘷 ∈ 𝘝𝘎}. The set of edges 𝘌𝘎 is defined as
the union of all edges, i.e. 𝘌𝘎 ≜ ⋃𝘦∈ℰ𝘎 𝘳𝘎(𝘦). An undirected multigraph
is similar to an undirected edge-labelled graph but differs in that
it permits edge-loops and permits multiple edges between any two
vertices.

• The empty graph with vertices 𝘝 , written �̄�𝘝 , is the graph consisting
of vertices 𝘝 with no edges or arcs, i.e, 𝘝�̄�𝘝 ≜ 𝘝 , 𝘌�̄�𝘝 ≜ ∅, and 𝘈�̄�𝘝 ≜ ∅.

• The graph union of 𝘎𝟣 and 𝘎𝟤, denoted by 𝘎𝟣 ∪ 𝘎𝟤, is defined by, for
each projection, taking the union of the projection of 𝘎𝟣 and 𝘎𝟤, e.g.𝘝𝘎𝟣∪𝘎𝟤 ≜ 𝘝𝘎𝟣 ∪ 𝘝𝘎𝟤 , and 𝘌𝘎𝟣∪𝘎𝟤 ≜ 𝘌𝘎𝟣 ∪ 𝘌𝘎𝟤 , etc..

• The directed rooting of 𝘎 in 𝘷, written 𝘷 ≺ 𝘎, is the graph formed by
adding the vertex 𝘷 and adding an arc from 𝘷 to every other vertex
of 𝘎, i.e. 𝘝𝘷≺𝘎 ≜ {𝘷} ∪ 𝘝𝘎 and 𝘈𝘷≺𝘎 ≜ {𝘷𝘶|𝘶 ∈ 𝘝𝘎} ∪ 𝘈𝘎. Directed rooting
preserves the remaining projections, e.g. 𝘌𝘷≺𝘎 ≜ 𝘌𝘎.

• For any graph 𝘎 with vertices 𝘶, 𝘷 ∈ 𝘝𝘎, 𝘶 is adjacent to 𝘷 if and only
if there exists some edge 𝘶𝘷 ∈ 𝘌𝘎 or some arc 𝘶𝘷 ∈ 𝘈𝘎.

• For any graph 𝘎, awalk (ranged over by𝘸) is a sequence of pairwise
adjacent vertices. Equivalently, a walk is a sequence of edges and
arcs that join a sequence of vertices, where all arcs have the same
direction.

• A walk 𝘸 visits a vertex 𝘷 if and only if 𝘷 occurs in the walk, i.e. if
and only if 𝘸𝘪 = 𝘷 for some 𝘪 ∈ ℕ.

• A walk is closed if and only if its first and last vertex are the same.
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• A walk is undirected if and only if it contains only edges.

• A walk is directed if and only if it contains only arcs.

• A walk is essentially directed if and only if it contains at least one arc.

• A path (ranged over by 𝘱) is a walk without repeated vertices.

• A cycle (ranged over by 𝘤) is a closed path.

• A graph is acyclic if and only if the undirected graph formed by
replacing all arcs in with edges contains no cycles.

• A graph is essentially acyclic if and only if it contains no essentially
directed cycles.

• A graph is strongly connected if and only if there exists a path
between any two distinct vertices.

• A graph is connected if and only if the undirected graph formed by
replacing all arcs in with edges is strongly connected. (Commonly,
connected is also referred to as weakly connected.)

• For any graph 𝘎, the subgraph of 𝘎 induced by 𝘜, denoted by 𝘎[𝘜],
where 𝘜 ⊆ 𝘝𝘎, is the graph constructed by taking the subset of
vertices 𝘜 and restricting 𝘎’s projections to vertices in 𝘜.

• For any graph 𝘎, a strongly connected component of 𝘎 (ranged over
by 𝘊) is a maximal strongly connected subgraph of 𝘎.

• For any graph 𝘎, a component of 𝘎 (ranged over by 𝘊) is a maximal
connected subgraph of 𝘎.

• A tree (ranged over by 𝘛 ) is a graph that is connected and acyclic.

• A forest (ranged over by 𝘍) is a graph whose components are trees.

• For any graph 𝘎, undirected reachability, denoted by ∼𝘎, is the
equivalence closure over 𝘌𝘎, i.e. 𝘶 ∼𝘎 𝘷 holds if 𝘶 = 𝘷 or there
exists an undirected path from 𝘶 to 𝘷. (If 𝘌𝘎 is undefined, undirected
reachability is the smallest reflexive relation over 𝘝𝘎.)

• For any graph 𝘎, essentially directed reachability, denoted by ≺𝘎, is
the transitive closure over 𝘈𝘎 quotiented by ∼𝘎, i.e. 𝘶 ≺𝘎 𝘷 holds if and
only if there exists an essentially directed path from 𝘶 to 𝘷. (If 𝘈𝘎 is
undefined, essentially directed reachability is the empty relation.)

• For any graph 𝘎, reachability, denoted by ≼𝘎, is the union of
undirected and essentially directed reachability, i.e. 𝘶 ≼𝘎 𝘷 holds
if and only if there exists an undirected or essentially directed path
from 𝘶 to 𝘷.

• For any graph 𝘎, its sources and sinks, written sources(𝘎) and
sinks(𝘎), respectively, are the sets of minimals and maximals of
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essentially directed reachability, respectively, i.e. sources(𝘎) ≜ {𝘶 ∈
𝘝𝘎|∄𝘷.𝘷 ≺𝘎 𝘶} and sinks(𝘎) ≜ {𝘶 ∈ 𝘝𝘎|∄𝘷.𝘶 ≺𝘎 𝘷}.

Lemma A.1. If 𝘛𝟣 and 𝘛𝟤 are disjoint trees and 𝘶 and 𝘷 are vertices in 𝘛𝟣
and 𝘛𝟤, respectively, then the graph 𝘎 formed by connecting 𝘛𝟣 and 𝘛𝟤 with
the edge 𝘶𝘷 is a tree.

Lemma A.2. If 𝘎𝟣 and 𝘎𝟤 are disjoint essentially acyclic mixed graphs,
(𝘶𝟣, … , 𝘶𝘯) and (𝘷𝟣, … , 𝘷𝘯) are vertices in 𝘎𝟣 and 𝘎𝟤, respectively, such that
𝘶𝟣 ≺ … ≺ 𝘶𝘯 and 𝘷𝟣 ≺ … ≺ 𝘷𝘯, respectively, then the mixed graph 𝘎 formed by
connecting 𝘎𝟣 and 𝘎𝟤 with the edges 𝘶𝟣𝘷𝟣, … , 𝘶𝘯𝘷𝘯 is essentially acyclic.

Proof. By contradiction. Assume 𝘤 is an essentially directed cycle in 𝘎.
• If 𝘤 visits no vertex in 𝘎𝟤, then 𝘤 is an essentially directed cycle in 𝘎𝟣.

• If 𝘤 visits no vertex in 𝘎𝟣, then 𝘤 is an essentially directed cycle in 𝘎𝟤.

• Otherwise, 𝘤 must visit some vertex 𝘶 in 𝘎𝟣 and some vertex 𝘷 in 𝘎𝟤.

As 𝘤 is an essentially directed cycle, there must be distinct paths
𝘱𝘶𝘷 = (𝘶,… , 𝘷) and 𝘱𝘷𝘶 = (𝘷,… , 𝘶). At least one of 𝘱𝘶𝘷 and 𝘱𝘷𝘶 must
be essentially directed.

As 𝘎𝟣 and 𝘎𝟤 are disjoint, 𝘱𝘶𝘷 and 𝘱𝘷𝘶 must each contain at least one
of the edges 𝘶𝟣𝘷𝟣, … , 𝘶𝘯𝘷𝘯. Hence, there must be paths 𝘱𝘶𝘶𝘪 = (𝘶,… , 𝘶𝘪),𝘱𝘷𝘪𝘷 = (𝘷𝘪, … , 𝘷), 𝘱𝘷𝘷𝘫 = (𝘷,… , 𝘷𝘫), and 𝘱𝘶𝘫𝘶 = (𝘶𝘫, … , 𝘶) for some 𝟣 ≤ 𝘪, 𝘫 ≤
𝘯. At least one of 𝘱𝘶𝘶𝘪 , 𝘱𝘶𝘫𝘶, 𝘱𝘷𝘷𝘪 , and 𝘱𝘷𝘫𝘷 must be essentially directed.

– If 𝘪 = 𝘫, then either 𝘤 contains an arc in 𝘎𝟣 and 𝘱𝘶𝘶𝘪𝘱𝘶𝘫𝘶 is an
essentially directed cycle in 𝘎𝟣, or 𝘤 contains an arc in 𝘎𝟤 and𝘱𝘷𝘪𝘷𝘱𝘷𝘷𝘫 is an essentially directed cycle in 𝘎𝟤.

– If 𝘪 < 𝘫, then 𝘶𝘪 ≺ 𝘶𝘫 and 𝘷𝘪 ≺ 𝘷𝘫. There must be essentially
directed paths 𝘱𝘶𝘪𝘶𝘫 = (𝘶𝘪, … , 𝘶𝘫) in 𝘎𝟣 and 𝘱𝘷𝘪𝘷𝘫 = (𝘷𝘪, … , 𝘷𝘫) in 𝘎𝟤,
and 𝘱𝘶𝘶𝘪𝘱𝘶𝘪𝘶𝘫𝘱𝘶𝘫𝘶 is an essentially directed cycle in 𝘎𝟣.

– If 𝘪 > 𝘫, then 𝘶𝘫 ≺ 𝘶𝘪 and 𝘷𝘫 ≺ 𝘷𝘪. There must be essentially
directed paths 𝘱𝘶𝘫𝘶𝘪 = (𝘶𝘫, … , 𝘶𝘪) in 𝘎𝟣 and 𝘱𝘷𝘫𝘷𝘪 = (𝘷𝘫, … , 𝘷𝘪) in 𝘎𝟤,
and 𝘱𝘷𝘪𝘷𝘱𝘷𝘷𝘫𝘱𝘷𝘫𝘷𝘪 is an essentially directed cycle in 𝘎𝟤.

A.2 Multisets
Definition A.3 (Multiset). A multiset is a variant of a set that allows
multiple occurrences of each element. Formally, a multiset 𝒳 is a tuple
(𝘟, 𝜇𝘟 ) where 𝘟 is the support set of the multiset, and 𝜇𝘟 is a function,
giving each element itsmultiplicity, from 𝘟 to the class of nonzero cardinal
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numbers. I write multisets as lists of elements between “*” and “+”, e.g.*𝘢, 𝘣, 𝘣, 𝘣+.
I define the following operations on multisets:

Membership 𝘢 ∈𝘬 𝒳 ≜ 𝘢 ∈ 𝘟 ∧ 𝜇𝘟 (𝘢) = 𝘬
Union 𝒳∪𝒴 ≜ (𝘟 ∪ 𝘠,max(𝜇𝘟 , 𝜇𝘠 ))
Intersection 𝒳∩𝒴 ≜ (𝘟 ∩ 𝘠,min(𝜇𝘟 , 𝜇𝘠 ))
Deletion 𝒳 ∖ 𝘠 ≜ (𝘟 ∖ 𝘠, 𝜇𝘟 ◁−𝘠)
Subtraction 𝒳−𝒴 ≜ ({𝘢 ∈ 𝘟 ∪ 𝘠 ∣ 𝜇𝘟 (𝘢) > 𝜇𝘠 (𝘢)}, 𝜇𝘟 −𝜇𝘠 )
Sum 𝒳+𝒴 ≜ (𝒳 ∪𝒴,𝜇𝘟 +𝜇𝘠 )
Product 𝒳𝒴 ≜ (𝒳 ∩𝒴,𝜇𝘟 𝜇𝘠 )
Symmetric Difference 𝒳△𝒴 ≜ (𝒳 −𝒴) ∪ (𝒴 −𝒳)

Definition A.4 (Domain Subtraction). Domain subtraction, 𝘧 ◁− 𝘟 , is the
operation that removes all elements in 𝘟 from the domain of the function 𝘧 ,
i.e. 𝘧 ◁− 𝘟 = 𝘢 ↦ 𝘧 (𝘢) if 𝘢 ∉ 𝘟 .
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