Exploring the Expressivity of Constraint Grammar

Wen Kokke
University of Edinburgh
wen.kokke@ed.ac.uk

Abstract

We believe that for any formalism which
has its roots in linguistics, it is a natu-
ral question to ask “how expressive is it?”
Therefore, in this paper, we begin to ad-
dress the question of the expressivity of
CG. Aside from the obvious theoretical
interest, we envision also practical bene-
fits. Understanding what CG can and can-
not express makes it possible to transform
other formalisms to corresponding or ap-
proximate CGs, thus making way for new
ways of grammar writing, and better reuse
of existing language resources.

1 Introduction

For any formalism with its root in linguistics, it is
natural to ask questions such as “How expressive
is it?” or “Where does it sit in the Chomsky hier-
archy?” (Chomsky, 1956) In this paper, we begin
addressing some of these questions for constraint
grammar (Karlsson et al., 1995, CG).

Before we can even consider such a question,
there is a problem we must solve. CG was never
meant to be a grammar in the generative sense. In-
stead, it is a tool for analysing and disambiguating
strings. This, we believe, explains why the ques-
tion of the expressivity of CG went unasked and
unanswered for a long time. It also gives us our
first problem: How do we view CGs generatively?
We address this in section 2.

2 Generative Constraint Grammar

We view a constraint grammar CG as generating
a formal language . over an alphabet X as fol-
lows. We encode words w € X* as a sequence of
cohorts, each of which has one of the symbols of
w as a reading. A constraint grammar CG rejects
a word if, when we pass its encoding through the

Inari Listenmaa
University of Gothenburg
inari.listenmaa@cse.gu.se

CG, we get back the cohort "<REJECT>". A con-
straint grammar CG accepts a word if it does not
reject it. We generate the language .Z by passing
every w € X* through the CG, and keeping those
which are accepted.

As an example, consider the language a* over
Y. = {a,b}. This language is encoded by the fol-
lowing constraint grammar:

LIST A = "a";

LIST B = "b";

SET LETTER = A OR B;
SELECT A;

ADDCOHORT ("<REJECT>")
BEFORE LETTER
IF (-1 (>>>) LINK 1% B);
REMCOHORT LETTER

We then encode the input words as a series
of letter cohorts with readings (e.g. "<1>" "a",
"<1>" "b"), and run the grammar. For instance,
if we wished to know whether either word in
{aaa,aab} is part of the language a*, we would
run the following queries:

Input Output
||<1>II llall ll<l>|| IIall
II<1>II llall ll<l>|| Ilall
|I<1>" "all ll<l>|| IIall
||<1>II Ilall ll<REJECT>II
||<l>ll llall

||<1>" "bll

As CG is a tool meant for disambiguation, we can
leverage its power to run both queries at once:

Input Output

ng1>" gt "<1>" "t
ngl>" nat ng1>" "a
"<I>M gt "h" | "<I>" "a"

This is a powerful feature, because it allows us dis-
ambiguate based on some formal language .Z if
we can find the CG which generates it. However,
the limitations of this style become apparent when
we look at a run of a CG for the language {ab, ba}:

Input ‘
Il<l>ll Ila|| ||bll
ll<l>|l Ila“ ||bll

Output
II<1>II llall llbll
ll<1>ll llall llbll

While the output contains the interpretations ab
and ba, it also includes aa and bb. Therefore,
while this style is useful for disambiguating using
CGs based on formal languages, it is too limited
to be used in defining the language which a CG
generates.

In light of the idea of using CGs based on
formal languages for disambiguating, it seems at
odds with the philosophy of CG to reject by re-
placing the entire input with a single "<REJECT>"
cohort. CG generally refuses to remove the last
possible reading of a cohort, under the philoso-
phy that some information is certainly better than
none. However, for the definition of CG as a for-
mal language, we need some sort of distinctive
output for rejections. Hence, we arrive at two dis-
tinct ways to run generative CGs: the method in
which we input unambiguous strings, and output
"<REJECT>", which is used in the definition of
CG as a formal language; and the method in which
we input ambiguous strings, and simply disam-
biguate as far as possible.

It should be noted that VISL CG-3 (Bick and
Didriksen, 2015; Didriksen, 2014) supports com-
mands such as EXTERNAL, which runs an exter-
nal executable. It should therefore be obvious
that the complete set of VISL CG-3 commands,
at least theoretically, can generate any recursively
enumerable language. For this reason, we will in-
vestigate particular subsets of the commands per-
mitted by CG. In sections 3 and 4, we will restrict
ourselves to the subset of CG which only uses the
REMOVE command with sections, and show this
to at least cover all regular languages and some
context-free and context-sensitive languages. In
section 5, we will restrict ourselves to the sub-
set of CG which only uses the ADDCOHORT and
REMCOHORT commands with sections, and show
this to be Turing complete.

3 A lower bound for CG

In this section, we will only use the REMOVE com-
mand with sections, in addition to a single use of
the ADDCOHORT command to add the special cohort
"<REJECT>", and a single use of the REMCOHORT
command to clean up afterwards. We show that,
using only these commands, CG is capable of gen-
erating some context-free and context-sensitive

languages, which establishes a lower bound on the
expressivity of CG (see Figure 1).

recursively enumerable

context-sensitive

context-free

Figure 1: Lower bound on the expressivity of the
subset of CG using only REMOVE.

3.1 Example grammar: a"b"

Below, we briefly describe the CG which gener-
ates the language a"b". This CG is defined over
the alphabet X, in addition to a hidden alphabet ¥'.
These hidden symbols are meant to serve as a sim-
ple form of memory. When we encode our input
words, we tag each cohort with every symbol in
the hidden alphabet!, e.g. for some symbol £ € £
and X' = {hy,...,h,} we would create the cohort
nef>n Rt vh, "

The CG for a"b" uses the hidden alphabet {odd,
even, opt_a, opt_b}. These symbols mean that
the cohort they are attached to is in an even or odd
position, and that a or b is a legal option for this
cohort, respectively. The CG operates as follows:

1. Is the number of characters even? We know
the first cohort is odd, and the rest is han-
dled with rules of the form REMOVE even IF
(NOT -1 odd). If the last cohort is odd, then
discard the sentence. Otherwise continue. . .

2. The first cohort is certainly a and last is
certainly b, so we can disambiguate the
edges: REMOVE opt.b IF (NOT -1 (%)),
and REMOVE opt_a IF (NOT 1 (*)).

3. Disambiguate the second cohort as a and
second-to-last as b, the third as a and third-
to-last as b, etc, until the two ends meet in
the middle. If every "<a>" is marked with
opt_a, and every "" with opt_b, we ac-
cept. Otherwise, we reject.

'We can automatically add these hidden symbols to our
cohorts using a single application of the ADD command.

The language a"b" is context-free, and therefore
CG must at least partly overlap with the context-
free languages.

3.2 Example grammar: a"b"c"

We can extend the approach used in the previ-
ous grammar to write a grammar which accepts
a'b"c". Essentially, we can adapt the above gram-
mar to find the middle of any input string. Once
we have the middle, we can “grow” as from the
top and bs up from the middle, and bs down from
the middle and cs up from the bottom, until we di-
vide the input into three even chunks. If this ends
with all "<a>"s marked with opt_a, all ""s
marked with opt_b, and all "<c>"s marked with
opt_c, we accept. Otherwise, we reject.

The language a"b"c" is context-sensitive, and
therefore CG must at least partly overlap with the
context-sensitive languages.

4 Are all regular languages in CG?

In the present section, we propose a method to
transform any finite-state automata into CG. The
translation is implemented in Haskell, and can be
found on GitHub?.

4.1 Finite-state automata

Formally, a finite-state automaton is a 5-tuple
(X,8,50,0,F).

Y is the alphabet of the automaton, S is a set of
states, including a starting state so and a set F' of
final states. O is a transition function, which takes
one state and one symbol from the alphabet, and
returns the state(s) where we can get from the orig-
inal state with that symbol. The automaton in Fig-
ure 2 is presented as follows:

S ={s1,s2} X ={det, adj, n}
det

so =s1 0 ={s1 —{s2},
F ={s1} s2 %% (52},

noun

s2 — {s1}}

Informally, the automaton describes a simple set
of possible noun phrases: there must be one deter-
miner, one noun, and O or more adjectives in be-
tween. We implement a corresponding CG in the
following sections.

2See https://github.com/inariksit/cgexp

Figure 2: A finite-state automaton describing the
regular language det (adj)* noun.

4.2 Cohorts and sentences

We encode our input as a sequence of state co-
horts and transition cohorts. Initially, a state co-
hort contains the full set S = {s1,s2} as its read-
ings, and a transition cohort contains the alpha-
bet ¥ = {det, adj, noun}, or some subset of it. As
an example, we generate all 2-letter words recog-
nised by the automaton in Figure 2. The initial
maximally ambiguous input for length 2 looks as
follows:
N> N> g N> <g>
sl det sl det si
s2 adj s2 adj s2

noun noun

The grammar disambiguates both transition co-
horts and state cohorts. Thus the desired result
shows both the accepted sequence(s)—det noun in
this case—and their path(s) in the automaton.
N> N> s> > s>

sl det s2 noun sl

We can easily adapt the disambiguation scheme

for real-world ambiguities, such as “the present”.

The state cohorts are identical, but the transition

cohorts contain now some actual word form, and

the initial ambiguity is not over the whole X, but

some subset of it.

"<g>" '"<the>" "<s>" "<present>" "<s>"

si det si adj s1
s2 s2

The disambiguation process goes exactly like in

the first version, with full X in the transition co-

horts. Depending on how much the initial input

contains ambiguity, the result may be the same, or

more disambiguated. For our example, the output

is identical.

"<g>" "<the>" "<s>" "<present>" "<s>"

sl det s2

noun s2

noun si

4.3 Rules

Given that every transition happens between two
states, and every state has an incoming and out-

going transition, every rule needs only positions
-1 and 1 in its contextual tests. The semantics of
the rules are “remove a transition, if it is not sur-
rounded by allowed states”, and “remove a state,
if it is not surrounded by allowed transitions”. For
the example automaton, the rules are as follows:

REMOVE Det # Transition rules

IF (NEGATE -1 S1 LINK 2 S2) ;
REMOVE Adj

IF (NEGATE -1 S2 LINK 2 S2) ;
REMOVE Noun

IF (NEGATE -1 S2 LINK 2 S1) ;

REMOVE S1 # State rules
IF (NEGATE -1 >>> OR Noun
LINK 2 Det) ;
REMOVE S2

IF (NEGATE -1 Det OR Adj
LINK 2 Adj OR Noun) ;

The start and end states naturally correspond to
the first and last state cohort, and can be trivially
disambiguated, in this case both into s1. Once
we remove a reading from either side of a cohort,
some more rules can take action—the context “s2
on the left side and s1 on the right side” may be
broken by removing either s2 or s1. One by one,
these rules disambiguate the input, removing im-
possible states and transitions from the cohorts.

4.4 Result

For the final result of the disambiguation, we con-
sider three options: the cohorts may contain the
whole alphabet, a well-formed subset or a mal-
formed subset.

Full ¥ If there is only one allowed word of
length 7 in the language, then the result will con-
tain only fully disambiguated transition cohorts.
Furthermore, if there is only path in the automaton
that leads to this word, then also the state cohorts
are fully disambiguated.

If there are multiple words of the same length
in the language, then we have to relax our criteria:
every transition cohort and state cohort in the re-
sult may contain multiple readings, but all of them
must contribute to some valid word of length n,
and its path in the automaton.

Well-formed subset of X With well-formed
subset, we mean that each cohort contains at least
one of the correct readings: {det} for “the”, and
{adj,noun} for “present”. If the initial input is

well-formed, then the result will be correct, and
may even be disambiguated further than with the
full X in the transition cohorts.

Malformed subset of ¥ Malformed subset has
at least one cohort without any correct readings,
for example, “the” is missing a det reading. This
will lead to arbitrary disambiguations, which do
not correspond to the automaton. Without a det
reading in “the”, the rule which removes s2 would
trigger in the middle state, leaving us with three
s1 states. s1-s1-s1 is an impossible path in the
automaton, so it would trigger all of the transition
rules, and stop only when there is one, arbitrary,
reading left in the transition cohorts.

5 Turing Machines in CG?

In the previous sections, we have assumed that CG
refers to the subset of VISL CG-3 which uses only
the REMOVE command. In this section, we will take
CG to refer to the subset of VISL CG-3 which uses
only the ADDCOHORT and REMCOHORT commands,
and show that this subset is Turing complete. We
will do this by implementing a procedure which
translates arbitrary Turing machines to CG, tak-
ing VISL CG-3 itself as sufficient evidence of the
fact that Turing machines can simulate constraint
grammars.

The translation we present in this section has
been implemented in Haskell, and can be found
on GitHub?

5.1 A sample Turing machine

We will discuss our translation by means of an ex-
ample Turing machine. Before we delve into this,
however, we will briefly remind the reader of the
definition of a Turing machine. A Turing machine
is a 7-tuple

M= <Q7r7ba2757q07F>'

Q is a finite, non-empty set of states, with a desig-
nated starting state go € Q, and a subset ' C Q
of accepting states. I is a set of tape symbols,
with a designated blank symbol b and a subset
Y CT'\ {b} of input symbols. Lastly, 6 is a transi-
tion function of the type

(Q\F) xT — Q x T x {Left,Right}.

For the remainder of this section, we will use the
Turing machine which computes the successors of

3See https://github.com/wenkokke/cgtm.

binary numbers as an example. This machine is
given as follows:

0 ={s0,81,82,Halt} £ ={0,1}
r ={,0,1} g0 = SO
b =_ F = {Halt}

The transition function & is described in table 1.
What do these various states do? SO and S2 both
move the head of the Turing machine to the start of
the number. This leaves S1 for the actual computa-
tion. While in state S1, the head will move right-
wards, overwriting any 1 it encounters with a O,
until it reaches either a O or the end of the number.
It then overwrites this final symbol with a 1. Ta-
ble 2 shows the execution trace of our sample Tur-
ing machine for the input 1101, writing the current
state before the current position of the head.

5.2 Representing the tape and state

We will represent the tape of the Turing machine
using the sequence of cell cohorts (written "<c>"):

II<C>II ll<c>|| ll<c>|l “<C>"
lllll lllll lloll lllll

We will store the current state in a special cohort
(written "<s>") which we insert right before the
cell the Turing machine is currently reading. This
means that, e.g. the middle row in table 2 is repre-
sented by the following cohorts:

“<C>" II<C>II II<C>II II<C>II II<S>H II<C>II II<C>II
"nn "nn ||Oll IIOII IISlH IlOll ll1||

5.3 Simulating the Turing machine

We start the Turing machine by inserting a cohort
with the starting state at the beginning of our input.
The starting state for our sample machine is S0, so
we add the following code to our CG:

BEFORE-SECTIONS
ADDCOHORT ("<s>" "SO0")
BEFORE ("<c>") IF (-1 (>>>));

Now for the main portion of the Turing machine—
simulating the transition function. Since this func-
tion is applied iteratively, we will wrap our code
in a SECTION. We need some way to simulate an
infinite tape. Therefore, the first thing we do in
each section is check if the current head is near
the edge of the tape. If it is, we simply add a new,
blank cell:

ADDCOHORT ("<c>" "_")
BEFORE ("<s>")

IF (-1 (O>>));
ADDCOHORT ("<c>" "_")
AFTER ("<c>")
IF (0 (<<<) LINK -1 ("<s>"));

We also need some way to distinguish input from
output, so before we apply our transition rules, we
mark the old state and the old input symbol with
the tag "OLD":

ADD ("<S>" "OLD") ("<S>");
ADD ("<C>" "OLD") ("<C>")
IF (_1 ("<S>" HULD"));

We are using an ADD command here for clarity,
though it is possible to encode this usage of ADD
using ADDCOHORT by simply inserting a special-
ized cohort (e.g. "<old>") after the cohort we
wish to mark, and adjusting all indices and ranges
accordingly.

Next, we encode our transition rules. We will
translate every entry in our transition function to
a pair of rules. The first of these inserts the new
state, and the second of these inserts a new cell,
with whatever we wish to write, after the old cell.
For instance, the sixth rule in table 1, which says
that “if we are in state 1, and we read a 1, then we
write a 0, move the tape to the right, and continue
in state 1,” is compiled to the following two rules:

ADDCOHORT ("<s>" "S1")
BEFORE ("<c>")
IF (-2 ("<s>" "Si" "OLD") LINK
1 ("<c>" "1" "OLD"));
ADDCOHORT ("<c>" "0")
AFTER ("<c>" "1" "QOLD")
IF (-1 ("<s>" "S1" "OLD"));

Note that the first of these rules is in effect respon-
sible for moving the head over the tape. Because
of this, a rule for left movement will look slightly
different. For instance, the rule which says that “if
we are in state 1, and we read a blank, then we
write a 1, move the tape to the left, and change to
state 2" is compiled to the following two rules:

ADDCOHORT ("<s>" "S2")
BEFORE ("<c>")
IF (1 ("<s>" "S1" "QLD") LINK

1 ("<C>" non "OLD"));
ADDCOHORT ("<ec>" "1")
AFTER (H<C>" u_n HOLDH)

IF (_1 ("<S>" "Sl" "OLD“));

State In Symbol In | Symbol Out State Out Move
Read "_" Write "_" "S1" Right

"S0" Read "0" | Write "0O" "so" Left
Read "1" | Write "1" "so" Left

Read "_" Write "1" nson Left

"S1 Read "0" Write "1" "s2" Left
Read "1" | Write "0" "siv Right

Read "_" Write "_" Halt Right

"s2 Read "0" Write "0" s Left
Read "1" | Write "1" "S2" Left

Table 1: Sample Turing machine (binary successor function)

II<C>II II<S>H Il<c>|| |I<S>ll ll<c>n
Ilill llill ||SOII lllll
llill IISOII llill ll1"
Ilill llill ||Slll ll1ll
"," llill IIO"
llill llill IIOII
117" "," IIO"
llill llill ||82ll IIOII
Ilill IISQH llill IIOII
llill llill ||82|| IIOII

ll<s>ll

HS:LH

HSQH

||<C>II II<S>|| "<C>ll II<S>II ll<c>||
n 1" IIOll lllll
n 1" IIO|| "1II
n 1" IIOll ll1||
n 1" |IO|| "1"
llOll llSlH IIOll ll1||
llOll n 1" "1"
||Oll n 1|| ll1||
llOll n 1|| ll1||
||Oll n 1|| ll1||

Table 2: Execution trace of a Turing machine (see table 1) for input 1101

We run such a pair of rules for each element
in the transition function, and then we finish the
SECTION by removing the old state and input cell:

REMCOHORT ("<s>" "QLD");
REMCOHORT ("<c>" "QOLD");

If we wish to know where the head of the machine
was located when the program terminated, we can
alter these lines to remove any state except for the
halting states. However, in this instance, we will
opt instead to truncate the tape after the execution
finishes, by removing any leading or trailing blank
cells:

AFTER-SECTIONS
REMCOHORT ("<c>" "_") IF (NOT -1* SYM);
REMCOHORT ("<c>" "_") IF (NOT 1% SYM);

6 Linear-Bounded Automata in CG?

Linear-bounded automata (LBA) are important,
because they accept exactly the class of context-
sensitive languages. They are defined as Turing
machines whose tape is restricted to the portion
containing the input. It therefore seems obvious
that we can simulate an LBA by removing the two

rules which expand the tape from the transforma-
tion outlined in section 5. However, this is not in-
credibly interesting, as we already know the subset
of CG using only ADDCOHORT and REMCOHORT is
Turing complete. In this section, we will discuss a
different subset of CG which we believe to be suf-
ficiently expressive to cover all context-sensitive
grammars. This is the subsets using only ADD and
REPLACE.

6.1 LBAs using ADD and REPLACE

In the encoding for Turing machines in section 5
we use ADDCOHORT, as it is the most obvious way
to simulate an infinite tape. However, for LBAs,
we no longer need an infinite tape. We can re-
quire the machine to do all its work with the lim-
ited number of cohorts it has been given as its in-
put. This means we can do all the computation by
adding and removing tags. We can retain much of
the structure we set up for simulating Turing ma-
chines:

1. we start by marking the cohort we are cur-
rently reading—i.e. the only cohort with a
state tag—with "OLD"; then

2. we ADD the next state tag to the cohort to

which we are moving; then

3. we REPLACE all tags on the cohort which we
left with the output symbol.

And we repeat the above steps until we reach a
halting state. This way, we can implement any
linear-bounded automaton as a constraint gram-
mar using only ADD and REPLACE.

We can take this idea one step further by replac-
ing any usage of ADD with a usage of REPLACE.
We can do this, because LBAs use a finite set of
states and a finite alphabet. For instance, we can
mark the cohort we are currently reading as "OLD"
using a series of REPLACE rules,

Vg € Q,VaeT,
REPLACE ("<C>“ llqll Ilall ||DLDII)

("<C>" uqn "(l");

Similarly for tagging the next state. However, this
does result in a huge blowup in the number of
rules, as instead of writing a single rule for each
of these uses of ADD, we now write |Q| - |['| rules,
to test every single combination of state and sym-
bol.

Note that we can set up a similar construction
using only the commands APPEND and REMOVE, by
using readings instead of tags.

7 Discussion

We have shown several different constructions, us-
ing different subsets of CG. The resulting gram-
mars are not very readable: they include extra co-
horts and symbols, and the logic is spread across
rules in a rather obscure way—in contrast to a
human-written grammar, where each rule is a self-
contained piece of truth about a language. There-
fore we do not envision the generated grammars
being used as is, but rather as compilation tar-
gets. Such CGs could be used as a part of a
larger constraint grammar: some sections can be
written manually, and others derived from exist-
ing grammars. This could serve as an alternative
to learning grammars from a corpus. So far we
only have a working conversion tool for finite-state
automata, but we are hoping to develop this fur-
ther, to also include context-free or even mildly
context-sensitive grammars.

Another question is, even if we had a working
conversion system for CFGs, would the result be
correct? As Lager and Nivre (2001) point out,

CG has no way of expressing disjunction. Unlike
its close cousin FSIG (Koskenniemi, 1990), which
would represent a language such as {ab,ba} faith-
fully, CG substitutes uncertainty on the sentence
level (“either ab or ba”) with uncertainty in the
cohorts: “the first character may be either a or b,
and the second character may be either a or b”. If
we use such a CG to generate, by feeding it maxi-
mally ambiguous cohorts, the result will be overly
permissive. We acknowledge that this is a limita-
tion in the expressive power: many languages can
only be approximated by CG, not reproduced ex-
actly. Nevertheless, this limitation may not mat-
ter so much when disambiguating real-world text,
because the cohorts are initially less ambiguous,
and leaving genuine ambiguity intact is desired be-
haviour for CG.

8 Related Work

Tapanainen (1999) gives an account of the ex-
pressivity of the contextual tests for 4 different
constraint formalisms, including CG. In addition,
parsing complexity can be easily defined for a
given variant and implementation of CG; see for
instance Nemeskey et al. (2014). Yli-Jyrd, Anssi
(2017) relates CG to early formal language the-
ory, and provides an independent proof of non-
monotonic* CG being Turing-complete.

4A monotonic variant of CG may only remove readings
from cohorts, whereas a non-monotonic variant may add
readings or cohorts.

References

Eckhard Bick and Tino Didriksen. 2015. CG-3 — Be-
yond Classical Constraint Grammar. In Proceed-
ings of the 20th Nordic Conference of Computa-
tional Linguistics (NODALIDA 2015).

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Transactions on Information
Theory, 2(3):113-124, September.

Tino Didriksen, 2014. Constraint Grammar Manual.
Institute of Language and Communication, Univer-
sity of Southern Denmark.

Fred Karlsson, Atro Voutilainen, Juha Heikkild, and
Arto Anttila. 1995. Constraint Grammar:
a language-independent system for parsing unre-
stricted text, volume 4. Walter de Gruyter.

Kimmo Koskenniemi. 1990. Finite-state parsing
and disambiguation. In Proceedings of 13th In-
ternational Conference on Computational Linguis-
tics (COLING 1990), volume 2, pages 229-232,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Torbjorn Lager and Joakim Nivre. 2001. Part of
speech tagging from a logical point of view. In Log-
ical Aspects of Computational Linguistics, 4th Inter-
national Conference (LACL 2001), pages 212-227.

Déavid Mark Nemeskey, Francis Tyers, and Mans
Hulden. 2014. Why implementation matters: Eval-
uation of an open-source constraint grammar parser.
In Proceedings of the 25th International Confer-
ence on Computational Linguistics (COLING 2014),
pages 772-780, Dublin, Ireland, August.

Pasi Tapanainen. 1999. Parsing in two frameworks:
Finite-state and Functional dependency grammar.
Ph.D. thesis, University of Helsinki.

Yli-Jyrd, Anssi. 2017. The Power of Constraint Gram-
mars Revisited. In Proceedings of the Constraint
Grammar workshop at the 21th Nordic Conference
of Computational Linguistics (NODALIDA 2017).

