
Modelling Substructural Logics in Agda

Wen Kokke

February 18, 2014

Abstract
In this paper, we will examine models of substructural logics in Agda.

The reason for this is that most existing models formalise intuitionistic
logic and are entirely unsuitable to modelling substructural logics. In
recent years, however, substructural logics have seen a surge in usage.

Concretely we present the reader with an explicit model of intuition-
istic logic, and derive models for linear logic and the Lambek-Grishin
calculus. In addition, we show how to reify proofs in these logics into
terms in Agda. All this is implemented as an Agda library, which is made
available on GitHub.

Finally we conclude with an example from formal linguistics in which
we demonstrate one possible usage of our implemented Agda library.

1 Introduction
You can find implementations of the simply-typed lambda calculus in Agda
all across the web—for instance, the implementations by Mazzoli (2013), Érdi
(2013) or Mu (2008). It is used as a running example in Norell’s Introduction
to Agda, and Érdi goes as far as to call it the “FizzBuzz of dependently-typed
programming”—the problem that any capable programmer in the field should
be able to solve.

Though each of these implementation has its own merits, they are all loosely
based on the following model of the simply-typed lambda calculus.1

data _`_ : {k : N} (Γ : Vec Type k) (A : Type)→ Set where
var : (x : Fin k)→ Γ ` lookup x Γ
abs : A , Γ ` B→ Γ ` A ⇒ B
app : Γ ` A ⇒ B→ Γ ` A→ Γ ` B

The advantages of using such a model are plenty. For instance, you can use
Agda’s built-in type-checker to verify the correctness of your proofs; and you
can use the interactive proof assistant to develop your proofs.

This paper has three main contributions; we will present
1It should be noted that for the sake of readability in this paper implicit arguments are

often left out. Any undefined variable that is encountered upon reading should be considered
implicitly quantified over unless noted otherwise.

1

◦ an investigation into the modelling of logics in Agda;

◦ an investigation into the modelling of substructural logics in Agda;

◦ and—concretely—models of linear logic and of the Lambek-Grishin cal-
culus, and a verification of the correctness of their interpretations in intu-
itionistic logic.

Below we will briefly motivate these contributions separately.

Why model logics in Agda at all? Why should we attempt to model logics
at all? In our opinion there are several good reasons for doing this.

First of all, creating a formal model of a logical system forces you to make
every detail of the system explicit. Not only may this help you by revealing
small errors that would otherwise have gone unnoticed, but it also forces you to
scrutinise the precise formulation of your axioms.2

Secondly, a model of a logical system in Agda is more than just a proof
of its sanity. It is also a direct implementation of the calculus, which allows
you play with your logic in a computational environment, using inference rules
and proofs as first-class citizens. In addition to this, as mentioned before, the
correctness of your proofs is checked by Agda’s type-checker; and you can use
theorem provers built in or for Agda, such as Agsy (Lindblad and Benke, 2006),
to prove theorems in your modelled logic.

Lastly, for logics which have a computational interpretation in intuitionistic
logic, you can translate proofs in the modelled logic to terms in Agda, which
allows you to use Agda’s built-in mechanisms for reduction and evaluation.

Why should we model substructural logics in Agda? As discussed
above, most models of logic currently implemented in Agda formalise intuition-
istic logic. In addition, the manner in which these models are implemented
usually leaves the structural rules implicit, making them unsuitable for formal-
ising substructural rules.

In recent years, however, substructural logics have seen a surge in fields as
diverse as philosophy (relevant logics), linguistics (the Lambek calculus) and
computing science (linear logic) (Restall, 2011). We therefore think it useful to
examine the modelling of such logics in Agda as well.

Furthermore, when viewed from the perspective of Agda, if we can formalise
a logic with certain properties (such as linearity for linear logic), then we can
easily prove that, when we reify terms of this logic back into Agda, the cor-
responding Agda terms will share this property. This allows us to embed, for
instance, provably linear lambda terms in Agda.

2 An example: a common formulation of the exchange principle is Γ, B,A,∆ ` C →
ΓA,B,∆ ` C. However, using this principle to define, for instance, the swapping of two
contexts ∆,Γ ` A → Γ,∆ ` A requires a number of applications quadratic in the lengths of
Γ and ∆.

2

Whymodel the Lambek-Grishin calculus? The formulation of the Lambek-
Grishin calculus (LG) modelled in this paper is quite a complex system. It is
a substructural logic based on the non-associative Lambek calculus (NL), but
adds the dual for each connective (Moortgat and Moot, 2013). It is formulated
in the style of display logic (Belnap, 1982), and uses techniques such as polar-
isation and focusing (Andreoli, 1992). We therefore feel that it would be an
interesting enterprise to model the Lambek-Grishin calculus, as it allows us to
examine not only the formalisation of substructure in isolation, but also in the
presence of other techniques.

And, since LG is a very complex logical system, we hope that an explicit
and interactive formalisation may be able to aid students in understanding it—
especially those coming from a background in computer science.

Since this paper is by no means a complete introduction to Agda or to dependently-
typed programming, we advise the interested reader to refer to Norell (2009)
for a detailed discussion of Agda in general, or to the list of Agda tutorials
maintained on the Agda website.3

Before we start off, it should be mentioned that (although we omit some of the
more tedious parts) this paper is written in literate Agda, and the code has
been made available on GitHub.4

2 Intuitionistic Logic
y

2.1 Modelling IL with de Bruijn indices
If we wish to model the intuitionistic calculus, we first have to do something
about our notation. The reason for this is that the usual notation with named
variables introduces a whole host of problems, such as checking for proper scopal
and binding relations.5

The canonical solution to this is a notation introduced in de Bruijn (1972),
where we instead of using variable names for binding, we will use numbers. The
semantics of these numbers will be that they tell you how many lambdas up the
variable is bound (or, from the perspective of logic, they are indices into the
context). See Figure 1 for an example of how terms in named notation compare
to terms in de Bruijn notation.

As a preparation for the modelling of the intuitionistic calculus in Agda, we
can formulate the de Bruijn notation as a set of inference rules; the result of
this can be seen in Figure 2.

3 See http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials.
4 See https://github.com/wenkokke/SubstructuralLogicsInAgda.
5 See Érdi (2013) for an implementation that uses variable names.

3

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials
https://github.com/wenkokke/SubstructuralLogicsInAgda

Named de Bruijn

λx→ x λ 0
λx→ λy → x λ λ 1
λx→ λy → λz → x z (y z) λ λ λ 2 0 (1 0)

Figure 1: Named notation versus de Bruijn notation (Mazzoli, 2013).

AX
Γ ` (var i) : Γi

Γ, A ` t : B
⇒-intro

Γ ` (abs t) : A⇒ B

Γ ` s : A⇒ B Γ ` t : A ⇒-elim
Γ ` (app s t) : B

Γ ` s : A Γ ` t : B ×-intro
Γ ` (pair s t) : A×B

Γ ` s : A×B A,B,Γ ` t : C
×-elim

Γ ` (case s t) : C

Figure 2: Inference rules for IL corresponding to the de Bruijn notation.

As a first step of we will need a representation of the type language/formulas
that we wish to model. In this paper we will limit ourselves to formulas con-
taining implication (written _⇒_) and conjunction (written _×_).

In addition, we will abstract over some type U . The reason for this is that
we do not want to be forced to specify the atomic types—instead we shall allow
the user to provide their own universe of atomic types.6

data Type : Set where
el : (A : U)→ Type
× : Type→ Type→ Type
⇒ : Type→ Type→ Type

All that is left for us to do, is to translate our inference rules as presented
in Figure 2 to an Agda data type. The translation is almost verbatim, save
that we write _→_ for the meta-logical implication (instead of a horizontal
line) and—due to the close relationship between proofs and terms—the term
constructors (var, abs, case, et cetera) become constructors of our data type.

We use vectors7 to model contexts, and finite sets8 to model the de Bruijn
indices. In this way we can ensure that every variable is bound,9 either to a
type in the context or to a lambda abstraction.10 Because of this invariant we
can define a safe lookup function as follows.

6 For an example of this, see §§ 4.5.
7 See http://agda.github.io/agda-stdlib/html/Data.Vec.html#604.
8 See http://agda.github.io/agda-stdlib/html/Data.Fin.html#775.
9 The reason this works is because vectors encode lists of a fixed length k, and finite sets

encode a data type with precisely k inhabitants.
10 It should be stated that throughout this paper we will use an alternative notation for

lists and vectors, using _,_ for the cons operator and ∅ for the empty list (or vector), as we
deem this notation to be better suited to sequent contexts. For the concatenation of contexts,
however, we will stick to using _++_, as usual.

4

http://agda.github.io/agda-stdlib/html/Data.Vec.html#604
http://agda.github.io/agda-stdlib/html/Data.Fin.html#775

lookup : Fin k→ Vec A k→ A
lookup zero (A , Γ) = A
lookup (suc x) (A , Γ) = lookup x Γ

And using this function we can present a full formalisation of our inference
rules.

data _`_ : (Γ : Vec Type k) (A : Type)→ Set where
var : (x : Fin k)→ Γ ` lookup x Γ
abs : A , Γ ` B→ Γ ` A ⇒ B
app : Γ ` A ⇒ B→ Γ ` A→ Γ ` B
pair : Γ ` A→ Γ ` B→ Γ ` A × B
case : Γ ` A × B→ A , B , Γ ` C→ Γ ` C

In § 1 we mentioned that one of the advantages of modelling a logic in Agda
was the use of Agda’s interactive proof assistant. Below we will demonstrate
how the proof assistant might be used to formulate a proof.

Agda allows you to leave holes in expressions; for every hole you leave, Agda
will report the type of the expressions needed to plug that hole. For instance, in
the example below we try to prove the commutativity of _×_. After an initial
lambda abstraction, we leave a hole, and Agda tells us the type it is expecting
at that position.

swap : Γ ` A × B ⇒ B × A
swap = abs { }0
{ }0 : A × B , Γ ` B × A

This provides us with enough information to continue the proof. Let us assume
that after introducing a case statement and a pair introduction, we become
confused about the exact order our variables are in, so we once again ask Agda
to tell us which sub-proofs we need to give.

swap : Γ ` A × B ⇒ B × A
swap = abs (case (var zero) pair ({ }0 { }1))
{ }0 : A , B , A × B , Γ ` B
{ }1 : A , B , A × B , Γ ` A

This gives us enough information to complete the proof entirely—in fact, both
holes can be trivially filled by the Agsy theorem prover,11 resulting in the fol-
lowing proof.

swap : Γ ` A × B ⇒ B × A
swap = abs (case (var zero) (pair (var (suc zero)) (var zero)))

This proof corresponds to the following typeset proof in natural deduction style.

AX
A,B,Γ ` (var 1) : B

AX
A,B,Γ ` (var 0) : A

×-intro
A,B,Γ ` (pair (var 1) (var 0)) : B ×A AX

A×B,Γ ` (var 0) : A×B
×-elim

A×B,Γ ` (case (var 0) (pair (var 1) (var 0))) : B ×A
⇒-intro

Γ ` abs (case (var 0) (pair (var 1) (var 0))) : A×B ⇒ B ×A
11 See http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Auto.

5

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Auto

2.2 Exchange as admissible rule
While the above model of IL suffices if all we wish to model is the intuitionistic
calculus, it poses some problems if we wish to model substructural logics such
as linear logic.

The reason for this is that the structural rules (exchange, weakening and
contraction) are admissible rules in our formulation, i.e. they are implicitly
present in our formulation of IL.

We shall demonstrate this by giving an explicit formulation of the following
simple exchange principle: exchange at the i-th position.

Γ, B,A,∆ ` C
Γ, A,B,∆ ` C

We can define this principle in three steps. First we define what exchange does
on the level of contexts.

exch : (i : Fin k)→ Vec Type (suc k)→ Vec Type (suc k)
exch zero (A , B , Γ) = B , A , Γ
exch (suc i) (A , Γ) = A , (exch i Γ)

Secondly, we define what an exchange does at the level of the indices. Note that
the way we implement this is by returning a new index, paired with a proof that
the lookup function will return the same result when we use this new index with
the exchanged context, as when we use the old index with the old context.

lemma-var : ∀ i x→ ∃ λ y→ lookup x Γ ≡ lookup y (exch i Γ)
lemma-var zero zero = suc zero , refl
lemma-var zero (suc zero) = zero , refl
lemma-var zero (suc (suc x)) = suc (suc x) , refl
lemma-var (suc i) zero = zero , refl
lemma-var (suc i) (suc x) = map suc id (lemma-var i x)

Finally, we can define exchange as a recursive function over proofs, where we
recursively apply exchange to every sub-proof until we reach the axioms (or
variables), at which point we use the lemma we defined above.12

exch : ∀ i→ Γ ` A→ exch i Γ ` A
exch i (var x) with lemma-var i x
exch i (var x) | y , p rewrite p = var y
exch i (abs t) = abs (exch (suc i) t)
exch i (app s t) = app (exch i s) (exch i t)
exch i (pair s t) = pair (exch i s) (exch i t)
exch i (case s t) = case (exch i s) (exch (suc (suc i)) t)

12 Note that this is also what makes exchange admissible instead of derivable: we need to
inspect the proof terms in order to be able to define it.

6

2.3 Explicit structural rules
If we wish to make our model of IL suitable for modelling substructural logics,
we will have to remove the implicit exchange, weakening and contraction from
our axioms, and add them as axioms in their own right.

The reason that the structural rules are implicitly present in our logic, is
that all premises in our inference rules share a context. If we make sure that
every premise of a rule has its own context, and all contexts are concatenated in
the conclusion, we will have solved our issue. A surprising side-effect of this is
that variables will no longer be needed—simply marking the position in a term
as an axiom is sufficient. As a consequence of this, we can stop using vectors
for modelling contexts, and switch to using simple lists.

Below you will find a model of IL in which the structural rules have been
made explicit.13

data _`_ : ∀ (X : List Type) (A : Type)→ Set where
var : A , ∅ ` A
abs : A , X ` B→ X ` A ⇒ B
app : X ` A ⇒ B→ Y ` A→ X ++ Y ` B
pair : X ` A→ Y ` B→ X ++ Y ` A × B
case : X ` A × B→ A , B , Y ` C→ X ++ Y ` C
weak : X ` A→ X ++ Y ` A
cont : A , A , X ` B→ A , X ` B
exch : (X ++ Z) ++ (Y ++ W) ` A

→ (X ++ Y) ++ (Z ++ W) ` A

Using this model we can once again prove our running example—the com-
mutativity of _×_.14

swap : X ` A × B ⇒ B × A
swap = abs (case var (exch0 (pair var (weak var))))

2.4 Reification into Agda
Another advantage of modelling logics we mentioned in § 1 is that one can reify
proofs in the modelled system back into Agda terms, and in this way piggyback
on Agda’s evaluation mechanisms.

In this section we will present a reification of our explicit IL terms into Agda
terms. But first we will give a general definition of what a reification is.

A reification generally consists of two parts:15

◦ a translation function (written J_K) that sends types in the source logic
to types in the target logic;

13 Note that the exchange principle we chose here is slightly different from the exchange
principle we proved above, in that it allows the exchange of entire contexts.

14 In the proof we use a derived inference rule, exch0, which has the type B,A,X ` C →
A,B,X ` C, i.e. it exchanges the first two types in the context.

15 Implicit in the below definition are the data types for the types of the source and target
logics, and the data types for the proofs or terms of the source and target logics.

7

◦ a translation function (written [_]) that sends terms in the source logic
to terms in the target logic.

First of all, let us look at the translation of our IL types into Agda’s Set. Since
we cannot know what to map types in the user-provided universe U to, we
shall require the user to provide us with a translation function J_Ku. With this
function, the full translation is trivial.

J_K : Type→ Set
J el A K = J A Ku

J A × B K = J A K × J B K
J A ⇒ B K = J A K→ J B K

Next we will look at the translation of proofs into Agda terms. Unfortunately
for us, Agda has no explicit notion of contexts. We could therefore require
that the proofs we translate are closed terms, i.e. of the form ∅ ` A. Another
solution, however, is to invent our own encoding of contexts.

So let us ask ourselves, what is a context? The answer: a context is a list of
types associated with a list of values of those types. Or to phrase it the other
way around: a list of values typed by a list of types. This means we can use
heterogeneous lists (Kiselyov et al., 2004) to encode our contexts.

data Ctxt : ∀ (X : List Set)→ Set1 where
∅ : Ctxt ∅
, : A→ Ctxt X→ Ctxt (A , X)

Using this definition, our representation of a sequent X ` A in Agda will be the
type Ctxt JXK→ JAK.

Next we need a few simple functions to work with these contexts. Specifically,
an exch function, which applies our exchange principle to the context, and a split
function, which splits a context into two parts (for binary rules).

exch : Ctxt ((X ++ Y) ++ (Z ++ W))→ Ctxt ((X ++ Z) ++ (Y ++ W))
split : Ctxt (X ++ Y)→ (Ctxt X) × (Ctxt Y)

For brevity’s sake, we will omit the definitions for these functions. The interested
reader can refer to the code for a full account. Instead we will present the reader
with the full reification into Agda.

The reification is fairly straightforward: we simply have to map the con-
structors of our model to the corresponding constructs in Agda.

In the case of variables, we know that the environment will contain exactly
one value of exactly the right type, for lambda abstractions, we abstract over a
value, which we insert into the context, et cetera. Note that for binary rules
we have to split the context, and pass the two parts down the corresponding
branches of the proof during reification.

reify : X ` A→ (Ctxt J X K→ J A K)
reify var (x , ∅) = x
reify (abs t) E = λ x→ reify t (x , E)

8

reify (app s t) E with split E
... | Es , Et = (reify s Es) (reify t Et)
reify (pair s t) E with split E
... | Es , Et = (reify s Es , reify t Et)
reify (case s t) E with split E
... | Es , Et = case reify s Es of λ {(x , y)→ reify t (x , y , Et)}
reify (weak s) E with split E
... | Es , Et = reify s Es

reify (cont t) (x , E) = reify t (x , x , E)
reify (exch t) E = reify t (exch E)

We can now define the reification function [_] as a simple alias.

[_] : X ` A→ (Ctxt J X K→ J A K)
[_] = reify

And translate our running example into Agda. Note that we can already insert
the empty context, as our example is a closed term.

swap′ : J A K × J B K→ J B K × J A K
swap′ = [swap] ∅

3 Linear Logic

3.1 Moving down to linear logic
As we have taken care to make all structural rules explicit, moving down to
intuitionistic linear logic (LP) from our current model of IL is trivial. As a
first step we define a new model for our types, to match the conventions of
linear logic (we are adding bottom as an atomic type here, as we will need it
later on).

data Type : Set where
el : (A : U)→ Type
⊥ : Type
⊗ : Type→ Type→ Type
(: Type→ Type→ Type

Next we can create the model of LP by copying our explicit model for IL, and
simply removing the axioms for weakening and contraction.

data _`_ : ∀ (X : List Type) (A : Type)→ Set where
var : A , ∅ ` A
abs : A , X ` B→ X ` A (B
app : X ` A (B→ Y ` A→ X ++ Y ` B
pair : X ` A→ Y ` B→ X ++ Y ` A ⊗ B
case : X ` A ⊗ B→ A , B , Y ` C→ X ++ Y ` C

9

exch : (X ++ Z) ++ (Y ++ W) ` A
→ (X ++ Y) ++ (Z ++ W) ` A

And, since we added an atomic type for bottom, we can also add the usual
definition for negation.

¬_ : Type→ Type
¬ A = A (⊥

Now we can define our running example. In fact, the definition has hardly
changed since § 2. The only difference is that now the term has to be closed, as
swapping in the presence of a context is not linear.

swap : ∅ ` A ⊗ B (B ⊗ A
swap = abs (case var (exch0 (pair var var)))

As a new example, we can also give a proof for the validity of type-raising.

raise : X ` A→ X ` (A (B) (B
raise t = abs (app var t)

3.2 Reification into IL
We could define the reification of LP into Agda as we showed for IL, but it
is much easier to translate our proofs to IL and use the previously defined
reification.

We first define a translation of our types into the types of IL. Note that we
have abstracted over an element of the user-provided type universe U—called
R—to which we will map bottom in the translation of our types.

J_K : Type→ TypeIL

J ⊥ K = el R
J el A K = el A
J A ⊗ B K = J A K × J B K
J A (B K = J A K ⇒ J B K

Next we define a translation function that maps contexts in LP to contexts IL.
Note that the implementation simply applies the translation function to every
element in the context.

J_K : List Type→ List TypeIL

J_K = map J_K

Last, we define a translation from LP to IL. The translation is almost able
to reconstruct the proof in IL verbatim, though we are omitting some minor
details.16

16 The problematic details have to do with the application of J_K to contexts; we have
to rewrite using a lemma that states that JX ++ Y K ≡ JXK ++ JY K, i.e. that our translation
commutes over context concatenation, for every binary rule.

10

toIL : X ` A→ J X K `IL J A K
toIL var = var
toIL (abs t) = abs (toIL t)
toIL (app s t) = app (toIL s) (toIL t)
toIL (pair s t) = pair (toIL s) (toIL t)
toIL (case s t) = case (toIL s) (toIL t)
toIL (exch t) = exch (toIL t)

Then we can define the reification of closed terms into Agda by simple function
composition.

[_] : X ` A→ (Ctxt J J X K K→ J J A K K)
[_] = [_]IL ◦ toIL

And again, we can reify our (now linear) swap function back into Agda.

swap′ : J J A K K × J J B K K→ J J B K K × J J A K K
swap′ = [swap] ∅

4 Lambek-Grishin Calculus
The Lambek-Grishin calculus finds its origins in formal linguistics, where it
is used to model natural language syntax. It is a symmetric version of the
Lambek calculus, which means that in addition to left and right implication and
conjunction, we have left and right difference (the operators dual to left and
right implication) and disjunction (dual to conjunction). The basic inference
rules for these (dual) connectives, together with a set of interaction principles
between the connectives and their duals, allow for the treatment of patterns
beyond the context-free, which cannot be satisfactorily handled in traditional
Lambek calculus.

The formulation of the Lambek-Grishin calculus that we will model is the
formulation developed in Moortgat and Moot (2013), which uses the mechanisms
of polarity and focusing together with concepts from display logics to ensure,
amongst others, that all proof terms are in normal form.

Below we will present a formalisation of LG, discussing the roles these mech-
anisms play in our model in turn.

Since this paper is not by far a complete discussion of the Lambek-Grishin
calculus, we refer the interested reader to Moortgat and Moot (2013) or Bas-
tenhof (2013).

4.1 Basic types and polarisation
The Lambek-Grishin calculus as developed in Moortgat and Moot (2013) is a
polarised logic. Therefore, we will have to define a notion of polarity.

11

data Polarity : Set where
+ : Polarity
− : Polarity

Using this definition, we can define our types as below.

data Type : Set where
el : (A : U)→ (p : Polarity)→ Type
⊗ : Type→ Type→ Type
_ _ : Type→ Type→ Type
_ /_ : Type→ Type→ Type
⊕ : Type→ Type→ Type
� : Type→ Type→ Type
; : Type→ Type→ Type

While the atomic types are assigned a polarity, the polarity of complex types is
implicit in the connectives. We shall therefore define a pair of predicates that
have inhabitants only if their argument is a positive or negative type.

data Pos : Type→ Set where
el : ∀ A→ Pos (el A +)
⊗ : ∀ A B→ Pos (A ⊗ B)
� : ∀ B A→ Pos (B � A)
; : ∀ A B→ Pos (A ; B)

data Neg : Type→ Set where
el : ∀ A→ Neg (el A −)
⊕ : ∀ A B→ Neg (A ⊕ B)
_ _ : ∀ A B→ Neg (A \ B)
_ /_ : ∀ B A→ Neg (B / A)

We can trivially show that polarity is a decidable property, and that every type
is either positive or negative.

Pol? : ∀ A→ Pos A] Neg A
Pol? (el A +) = inj1 (el A)
Pol? (el A −) = inj2 (el A)
Pol? (A ⊗ B) = inj1 (A ⊗ B)
Pol? (A � B) = inj1 (A � B)
Pol? (A ; B) = inj1 (A ; B)
Pol? (A ⊕ B) = inj2 (A ⊕ B)
Pol? (A \ B) = inj2 (A \ B)
Pol? (A / B) = inj2 (A / B)

We also define Pos? and Neg?, which are decision procedures for the predicates
Pos and Neg. Using these decision procedures, we can implicitly restrict the
usage of inference rules to types of a certain polarity using a well-known Agda
trick. For instance, the full type of the μ-rule (see §§ 4.3) is:

µ : ∀ {X A} {p : True (Neg? A)} → X ` · A · → X `[A]

12

The idea behind this type is that, since we know that the decision procedure
Neg? terminates, we can run it during type-checking to see if we can construct
a witness of Neg A. If we can, True (Neg? A) reduces to to the unit type >, and
its value is trivially inferred; if we cannot, it reduces to the empty type ⊥—for
which we know that we cannot construct an inhabitant—and a type-error is
raised.17

4.2 Contexts and the display property
Since the Lambek-Grishin calculus is a display calculus, we will also have to
model polarised structures (positive/input structures for the antecedent, nega-
tive/output structures for the succedent). In this case, the formulas that can
appear as arguments to a connective are actually limited by their polarity, so
we can encode the polarities at the type-level.

mutual
data Struct+ : Set where
·_· : Type→ Struct+

⊗ : Struct+ → Struct+ → Struct+

� : Struct+ → Struct− → Struct+

; : Struct− → Struct+ → Struct+

data Struct− : Set where
·_· : Type→ Struct−

⊕ : Struct− → Struct− → Struct−

_ _ : Struct+ → Struct− → Struct−

_ /_ : Struct− → Struct+ → Struct−

As a consequence of this, we do not have to bother with predicates for polarity
in the case of structures, as a structure’s polarity is immediately obvious from
its type.

As LG is formulated as a display logic, we define a left and a right inference
rule for each connective, where the one is a rule that simply structuralises the
formula, and the other eliminates the connective when it appears as the outer-
most connective on both sides. Which is which depends on the polarity of the
connective (i.e. on which side it naturally occurs). As an example, the left and
right rules for _⊗_ are presented below.

⊗ L : · A · ⊗ · B · ` X→ · A ⊗ B · ` X
⊗ R : X `[A]→ Y `[B]→ X ⊗ Y `[A ⊗ B]

4.3 Inference rules for focused sequents
Since LG is a focused calculus, and thus has several kinds of sequents, we will
have to define its inference rules in several data types. Every inference rule is
defined in the data type corresponding to the sequent-type of its conclusion.

17 See http://agda.github.io/agda-stdlib/html/Relation.Nullary.Decidable.html#
783 for the complete implementation.

13

http://agda.github.io/agda-stdlib/html/Relation.Nullary.Decidable.html#783
http://agda.github.io/agda-stdlib/html/Relation.Nullary.Decidable.html#783

Though it is a bit verbose, due to LG’s many inference rules, we would like
to present the reader with the complete definition below.

Note we use the technique discussed in §§ 4.1 to restrict the applications of
µ̃ and µ∗ to the cases where A is positive and of µ and µ̃∗ those where A is
negative. We will discuss the motives behind this in §§ 4.4.

mutual
data _`[_] : Struct+ → Type→ Set where
var : · A · `[A]
µ : X ` · A · → X `[A]
⊗ R : X `[A]→ Y `[B]→ X ⊗ Y `[A ⊗ B]
� R : X `[A]→ [B]` Y→ X � Y `[A � B]
; R : [A]` X→ Y `[B]→ X ; Y `[A ; B]

data [_]`_ : Type→ Struct− → Set where
covar : [A]` · A ·
µ̃ : · A · ` X→ [A]` X
⊕ L : [A]` Y→ [B]` X→ [A ⊕ B]` X ⊕ Y
\ L : X `[A]→ [B]` Y→ [A \ B]` X \ Y
/ L : [A]` Y→ X `[B]→ [A / B]` Y / X

data _`_ : Struct+ → Struct− → Set where
µ∗ : X `[A]→ X ` · A ·
µ̃∗ : [A]` X→ · A · ` X
⊗ L : · A · ⊗ · B · ` X→ · A ⊗ B · ` X
� L : · A · � · B · ` X→ · A � B · ` X
; L : · A · ; · B · ` X→ · A ; B · ` X
⊕ R : X ` · A · ⊕ · B · → X ` · A ⊕ B ·
\ R : X ` · A · \ · B · → X ` · A \ B ·
/ R : X ` · A · / · B · → X ` · A / B ·
res1 : Y ` X \ Z→ X ⊗ Y ` Z
res2 : X ⊗ Y ` Z→ Y ` X \ Z
res3 : X ` Z / Y→ X ⊗ Y ` Z
res4 : X ⊗ Y ` Z→ X ` Z / Y
dres1 : Z � X ` Y→ Z ` Y ⊕ X
dres2 : Z ` Y ⊕ X→ Z � X ` Y
dres3 : Y ; Z ` X→ Z ` Y ⊕ X
dres4 : Z ` Y ⊕ X→ Y ; Z ` X
dist1 : X ⊗ Y ` Z ⊕ W→ X � W ` Z / Y
dist2 : X ⊗ Y ` Z ⊕ W→ Y � W ` X \ Z
dist3 : X ⊗ Y ` Z ⊕ W→ Z ; X `W / Y
dist4 : X ⊗ Y ` Z ⊕ W→ Z ; Y ` X \ W

As we have dropped exchange, we will have to let go of our running example.
Instead we will present the proof of the law of raising, and its dual law of
lowering.

raise : · A · ` · (B / A) \ B ·
raise = \ R (res2 (res3 (µ̃∗ (/ L covar var))))

lower : · B � (A ; B) · ` · A ·
lower = �L (dres2 (dres3 (µ∗ (;R covar var))))

14

4.4 Reification into LP
Finally, we will present the reification of LG terms into LP, as we did for LP
to IL in §§ 3.2. Since LG is a classical logic, in the sense that every connective
has a dual, we cannot give it a direct interpretation in the intuitionistic LP.

The term language of LG, however, is a refinement of the λ̄µµ̃-calculus as
developed in Curien and Herbelin (2000), which has a known computational
interpretation through translation to Parigot’s λµ-calculus. Therefore, we can
give an interpretation through a CPS-translation.

Below we formalise the CPS-translation of LG as presented in Moortgat and
Moot (2013). The idea of the CPS-translation is to interpret all connectives as
a conjunctions, and use the polarities of the connectives and their argument
positions to guide the introduction of negations—when the natural polarity of
an argument position clashes with the polarity of its inhabitant, we lift the
inhabitant’s type to a continuation.

mutual
J_K+ : Type→ TypeLP

J el A + K+ = el A
J el A − K+ = ¬ (¬ el A)
J A ⊗ B K+ = J A K+ ⊗ J B K+

J A � B K+ = J A K+ ⊗ J B K−

J A ; B K+ = J A K− ⊗ J B K+

J A ⊕ B K+ = ¬ (J A K− ⊗ J B K−)
J A \ B K+ = ¬ (J A K+ ⊗ J B K−)
J A / B K+ = ¬ (J A K− ⊗ J B K+)

J_K− : Type→ TypeLP

J el A + K− = ¬ el A
J el A − K− = ¬ el A
J A ⊗ B K− = ¬ (J A K+ ⊗ J B K+)
J A � B K− = ¬ (J A K+ ⊗ J B K−)
J A ; B K− = ¬ (J A K− ⊗ J B K+)
J A ⊕ B K− = J A K− ⊗ J B K−

J A \ B K− = J A K+ ⊗ J B K−

J A / B K− = J A K− ⊗ J B K+

In addition to this, we define a CPS-translation of positive and negative struc-
tures. This translation is much the same, but since the structures’ types enforce
that no clashes in polarity occur, no negations are introduced.

Below we will present an implementation of the reification function up to
exchange (that is, we do not show applications of the exchange principle).

As we stated above, we interpret all connectives as pairs. Therefore, all left
and right rules are interpreted as ⊗-introduction or ⊗-elimination.

The µ- and µ̃-rules are translated as lambda abstractions, and the µ∗ and
µ̃-rules are translated as applications. However, if you look closely at the types,
you will notice that the sequents µ and µ̃ are translated to do not necessarily

15

derive function types—and neither do the sequents for the first arguments of µ∗
or µ̃. This is where the polarity restrictions come in: we restrict the application
of these rules to a certain polarity, so we can later use this fact to prove that a
clash in polarities must occur during the CPS-translation, and therefore that a
function-type must be generated, using the following lemmas.

Neg-≡ : Neg A→ J A K+ ≡ J A K− (⊥
Pos-≡ : Pos A → J A K− ≡ J A K+ (⊥

Lastly, variables and co-variables are both simply translated as variables.18

mutual
reifyr : ∀ {X A} → X `[A]→ J X K `LP J A K+

reifyr var = var
reifyr (µ t) rewrite Neg-≡ = abs (reify t)
reifyr (⊗R s t) = pair (reifyr s) (reifyr t)
reifyr (�R s t) = pair (reifyr s) (reifyl t)
reifyr (;R s t) = pair (reifyl s) (reifyr t)

reifyl : ∀ {A Y} → [A]` Y→ J Y K `LP J A K−

reifyl covar = var
reifyl (µ̃ t) rewrite Pos-≡ = abs (reify t)
reifyl (⊕L s t) = pair (reifyl s) (reifyl t)
reifyl (\ L s t) = pair (reifyr s) (reifyl t)
reifyl (/ L s t) = pair (reifyl s) (reifyr t)

reify : ∀ {X Y} → X ` Y→ J X K ++ J Y K `LP ⊥
reify (µ∗ t) rewrite Pos-≡ = app var (reifyr t)
reify (µ̃∗ t) rewrite Neg-≡ = app var (reifyl t)
reify (⊗L t) = case var (reify t)
reify (�L t) = case var (reify t)
reify (;L t) = case var (reify t)
reify (⊕R t) = case var (reify t)
reify (\ R t) = case var (reify t)
reify (/ R t) = case var (reify t)

Using the above definition, we can now define the function for CPS-interpretation
of LG by composition.

[_] : X `[A]→ (Ctxt J X K→ J A K)
[_] = [_]LP ◦ reifyr

18 In Moortgat and Moot (2013), applications of the var and covar rules is also limited to
certain polarities. However, we do not need this fact to implement the CPS-translation, and
therefore we have chosen not to add this restriction. A benefit of this is that defining derived
inference rules becomes much more manageable, as we no longer have to ensure that the used
variables have a certain polarity.

16

4.5 Examples from natural language
In this final section we will demonstrate a possible usage of our model of LG.
We will derive the denotation of the following example sentence.

“Everyone finds some unicorn.”

First, we define a couple of meaning postulates. For brevity’s sake, we will also
postulate the existence of an Entity type with the corresponding universal and
existential quantifiers, though we could trivially define this ourselves.

postulate
Entity : Set
⊃ : Bool→ Bool→ Bool
FORALL : (Entity→ Bool)→ Bool
EXISTS : (Entity→ Bool)→ Bool
PERSON : Entity→ Bool
FIND : Entity→ Entity→ Bool
UNICORN : Entity→ Bool

Secondly, we must define our type universe. In this case we will define it to be
the usual set of atomic syntactic types.

data U : Set where S N NP : U

J_Ku : U→ Set
J S Ku = Bool
J N Ku = Entity→ Bool
J NP Ku = Entity

Next, we define our lexicon. The entries of our lexicon are lambda terms typed
by the translations of their syntactic types.

everyone : J (el NP + / el N +) ⊗ el N + K
everyone = ((λ {(A , B)→ FORALL (λ x→ B x ⊃ A x)}) , PERSON)
finds : J (el NP + \ el S −) / el NP + K
finds = λ {((x , k) , y)→ k (FIND y x)}
some : J el NP + / el N + K
some = λ {(A , B)→ EXISTS (λ x→ A x ∧ B x)}
unicorn : J el N + K
unicorn = UNICORN

Last, since we have not yet proven decidability, we have to give a proof that our
sentence structure is syntactically correct.

sent :
· (el NP + / el N +) ⊗ el N + -- everyone
· ⊗ (· (el NP + \ el S −) / el NP + -- finds
· ⊗ (· el NP + / el N + -- some
· ⊗ · el N + · -- unicorn
)) `[el S −]

sent =

17

µ (res3 (⊗L (res3 (µ̃∗ (/ L (
µ̃ (res4 (res1 (res1 (res3 (µ̃∗ (/ L (

µ̃ (res2 (res3 (µ̃∗ (/ L (\ L var covar) var))))) var))))))) var)))))

With all these components, we can finally compute the meaning of our sentence,
leaving our meaning postulates unevaluated as usual.

[sent] (everyone , finds , some , unicorn , ∅) β
λ k→ FORALL (λ x1 → PERSON x1 ⊃ EXISTS (λ x2 → k (FIND x2 x1) ∧ UNICORN x2))

5 Future work
Reification of properties. When we reify a term in a substructural logic
into Agda, we lose the information regarding its behaviour. For instance, if we
have an proof in the presented model of LP, we would like to be able to obtain
a proof of linearity for the reified term.

Decidability of focus shifting. If we could implement a decision procedure
for the focus shifting principles (not discussed in this paper; a sequence of unfo-
cused rules, started by a μ-application and terminated by a μ-abstraction), we
could add them as derived rules to our model of LG. This would make writ-
ing proofs much easier, and would be a good step in the direction of proving
decidability of LG in general.

Decidability of LG. We could implement a decision procedure for LG in
general. Using this procedure we would no longer have to manually prove syn-
tactic correctness. In addition to this, if we implemented decidability of LG
plus associativity, we could use the resulting procedure as an implementation of
parsing-as-deduction.

Mirror symmetries. Another property of LG is that types and proofs obey
certain mirror symmetries (due to the presence of dual operators and directional
implications). Implementing these symmetries as functions on types and proofs
would allow us to easily construct the duals of types and their proofs, and would
aid in the understanding of these dualities.

Extract Haskell library. Since Agda supports the extraction of programs
into several languages (most notably Haskell and JavaScript) we could inves-
tigate the extraction of an optimised Haskell library for LG (and its use in
natural language processing) from our implementation.

18

6 Conclusion
We have presented the reader with several models of intuitionistic logic, and
examined several models for substructural logics (linear logic and the Lambek-
Grishin calculus). We have shown how proofs in these models can be given
an interpretation in Agda through reification and translation. And, last, we
have demonstrated the usage of our models in an example taken from formal
linguistics.

References
Andreoli, J.-M. (1992). Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2:297–347.

Atkey, R. (2006). Parameterized Notions of Computation. In MSFP 2006.

Bastenhof, A. (2012). Polarized montagovian semantics for the lambek-grishin
calculus. In Proceedings of the 15th and 16th International Conference on
Formal Grammar, FG’10/FG’11, pages 1–16, Berlin, Heidelberg. Springer-
Verlag.

Bastenhof, A. (2013). Categorial symmetry.

Belnap, N. D. (1982). Display logic. Journal of Philosophical Logic, 11(4):375–
417.

Curien, P.-L. and Herbelin, H. (2000). The duality of computation. SIGPLAN
Not., 35(9):233–243.

de Bruijn, N. G. (1972). Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the church-
rosser theorem. INDAG. MATH, 34:381–392.

de Groote, P. (1994). A cps-translation of the λµ-calculus.

de Groote, P. (2001). Towards abstract categorial grammars. In Association for
Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, Proceedings of the Conference, pages 148–155.

Érdi, G. (2013). Simply typed lambda calculus in agda, without short-
cuts. http://gergo.erdi.hu/blog/2013-05-01-simply_typed_lambda_
calculus_in_agda,_without_shortcuts/. Accessed: 2014-01-28.

Girard, J.-Y. (1991). A new constructive logic: classic logic. Mathematical
Structures in Computer Science, 1:255–296.

Kiselyov, O., Lämmel, R., and Schupke, K. (2004). Strongly typed heteroge-
neous collections. In Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell, Haskell ’04, pages 96–107, New York, NY, USA. ACM.

19

http://gergo.erdi.hu/blog/2013-05-01-simply_typed_lambda_calculus_in_agda,_without_shortcuts/
http://gergo.erdi.hu/blog/2013-05-01-simply_typed_lambda_calculus_in_agda,_without_shortcuts/

Lindblad, F. and Benke, M. (2006). A tool for automated theorem prov-
ing in agda. In Proceedings of the 2004 International Conference on Types
for Proofs and Programs, TYPES’04, pages 154–169, Berlin, Heidelberg.
Springer-Verlag.

Martin-Löf, P. (1984). Intuitionistic type theory.

Mazzoli, F. (2013). Agda by example: λ-calculus. http://mazzo.li/posts/
Lambda.html. Accessed: 2014-01-28.

Moortgat, M. (2009). Symmetric categorial grammar. Journal of Philosophical
Logic, 38(6):681–710.

Moortgat, M. and Moot, R. (2013). Proofs nets and the categorial flow of
information.

Mu, S.-C. (2008). Typed λ-calculus interpreter in agda. http://www.iis.
sinica.edu.tw/~scm/2008/typed-lambda-calculus-interprete/. Ac-
cessed: 2014-01-28.

Norell, U. (2009). Dependently typed programming in agda. In Proceedings of
the 4th International Workshop on Types in Language Design and Implemen-
tation, TLDI ’09, pages 1–2, New York, NY, USA. ACM.

Parigot, M. (1992). λμ-calculus: An algorithmic interpretation of classical nat-
ural deduction. In Voronkov, A., editor, Logic Programming and Automated
Reasoning, volume 624 of Lecture Notes in Computer Science, pages 190–201.
Springer Berlin Heidelberg.

Restall, G. (2011). Substructural logics. In Zalta, E. N., editor, The Stanford
Encyclopedia of Philosophy. Summer 2011 edition.

Wadler, P. L. (1993). A Taste of Linear Logic. In Proceedings of the 18th
International Symposium on Mathematical Foundations of Computer Science,
Gdánsk, New York, NY. Springer-Verlag.

20

http://mazzo.li/posts/Lambda.html
http://mazzo.li/posts/Lambda.html
http://www.iis.sinica.edu.tw/~scm/2008/typed-lambda-calculus-interprete/
http://www.iis.sinica.edu.tw/~scm/2008/typed-lambda-calculus-interprete/

	Introduction
	Intuitionistic Logic
	Modelling IL with de Bruijn indices
	Exchange as admissible rule
	Explicit structural rules
	Reification into Agda

	Linear Logic
	Moving down to linear logic
	Reification into IL

	Lambek-Grishin Calculus
	Basic types and polarisation
	Contexts and the display property
	Inference rules for focused sequents
	Reification into LP
	Examples from natural language

	Future work
	Conclusion

