
Races in Classical Linear Logic

Wen Kokke

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science by Research
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh

2017

Abstract
Process calculi based in logic, such as πDILL and CP, provide a foundation
for deadlock-free concurrent programming, but at the cost of excluding non-
determinism and races. We introduce CPND (nodcap), which extends CP with a
novel account of non-determinism. Our approach draws on bounded linear logic
to provide a strongly-typed account of standard process calculus expressions of
non-determinism. We show that our extension is expressive enough to capture
many uses of non-determinism in untyped calculi, such as non-deterministic choice,
while preserving CP’s meta-theoretic properties, including deadlock freedom.

iii

Acknowledgements
I would like to thank Phil Wadler, who taught me that there is no such thing
as too many examples, and who encouraged my tendency to fill all of them with
emoji.

I would like to thank Garrett Morris, who saved my half-baked theories so often
that I’ve lost count, and for the bakeware—thanks!

I would like to thank Simon Fowler, who showed me around the Forum on the
day that I first got to Edinburgh, and who has been wonderfully kind ever since.

And finally, I would like to thank Rudi Horn, Thomas Wright, and all the others
who helped me during the writing of this dissertation by giving me invaluable
feedback or simply clarifying little things. . .

iv

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

—Wen Kokke

v

Contents

1 Introduction 1

2 Background 3
2.1 Classical Processes . 3

2.1.1 Terms and types . 3
2.1.2 Multiplicatives and in- and interdependence 7
2.1.3 Additives and choice . 9
2.1.4 Structural rules and duality 11
2.1.5 Commuting conversions 11
2.1.6 Example . 12
2.1.7 Properties of RCP . 12

2.2 Non-determinism, logic, and session types 16

3 CP as a type system for the π-calculus 21
3.1 Canonical forms . 22
3.2 Evaluation contexts . 24
3.3 Progress . 25
3.4 Rewriting versus commuting . 28

4 Non-deterministic Classical Processes 31
4.1 Terms and types . 32
4.2 Typing clients and servers . 35

4.2.1 Clients and pooling . 36
4.2.2 Servers and contraction . 36

4.3 Running clients and servers . 37
4.4 Properties of CPND . 39

4.4.1 Preservation . 39

vii

4.4.2 Canonical forms and progress 40
4.4.3 Evaluation contexts . 41
4.4.4 Progress . 44
4.4.5 Termination . 47

4.5 CPND and non-deterministic local choice 47

5 Conclusions and future work 53
5.1 Mechanisation of CPND . 53
5.2 Relation to bounded linear logic 53
5.3 Name restriction and parallel composition 54
5.4 Recursion and resource variables 54
5.5 Cuts with leftovers . 55
5.6 Relation to exponentials in CP 55

viii

Chapter 1

Introduction

Consider the following scenario:

John and Mary are working from home one morning when they get
a craving for a slice of cake. Being denizens of the web, they quickly
find the nearest store which does home deliveries. Unfortunately for
them, they both order their cake at the same store, which has only
one slice left. After that, all it can deliver is disappointment.

This is an example of a race condition. We can model this scenario in the π-
calculus, assuming , and are three processes modeling John, Mary and
the store, and and are two channels giving access to a slice of cake and
disappointment, respectively. As expected, this process has two possible outcomes:
either John gets the cake, and Mary gets disappointment, or vice versa.

(x〈 〉.x〈 〉. | x〈y〉. | x〈z〉.)

=⇒
?

(| { /y} | { /z}) or (| { /y} | { /z})

While John or Mary may not like all of the outcomes, it is the store which is
responsible for implementing the online delivery service, and the store is happy
with either outcome. Thus, the above is an interaction we would like to be able
to model.

Now consider another scenario, which takes place after John has already bought
the cake:

Mary is really disappointed when she finds out the cake has sold out.
John, always looking to make some money, offers to sell the slice to

1

2 Chapter 1. Introduction

her for a profit. Mary agrees to engage in a little bit of back-alley cake
resale, but sadly there is no trust between the two. John demands
payment first. Mary would rather get her slice of cake before she gives
John the money.

This is an example of a deadlock. We can also model this scenario in the π-calculus,
assuming that is a channel giving access to some adequate amount of money.

(x〈z〉.y〈 〉. | y〈w〉.x〈 〉.) 6=⇒ ?

The above process does not reduce. As both John and Mary would prefer the
exchange to be made, this interaction is desired by neither. Thus, the above is an
interaction we would somehow like to exclude.

Session types [8] statically guarantee that concurrent programs, such as those above,
respect communication protocols. Session-typed calculi with logical foundations,
such as πDILL [5] and CP [14], obtain deadlock freedom as a result of a close
correspondence with logic. The same correspondence, however, also rules out
non-determinism and race conditions.

In this dissertation, we present CPND (nodcap), an extension of CP [14] with a
novel account of non-determinism and races. Inspired by bounded linear logic [7],
we introduce a form of shared channels, in which the type of a shared channel tracks
how many times it is reused. As in the untyped π-calculus, sharing introduces
the potential for non-determinism. We show that our approach is sufficient to
capture practical examples of races, such as the web store, as well as other formal
characterizations of non-determinism, such as non-deterministic choice. However,
CPND does not lose the metatheoretical benefits of CP: we show that it enjoys
termination and deadlock-freedom.

This dissertation proceeds as follows. In chapter 2, we introduce CP and reproduce
the proofs of some of its meta-theoretical results, and discuss related work which
also addresses the addition of non-determinism to logic-inspired session typed
process calculi. In chapter 3, we introduce an alternative reduction strategy for
CP, which more closely resembles reduction in the π-calculus. In chapter 4, we
introduce CPND. Finally, in chapter 5, we conclude with a discussion of the work
done in this dissertation and potential avenues for future work.

Chapter 2

Background

2.1 Classical Processes

In this section, we will discuss a rudimentary subset of the typed process calculus
CP [9, 14], which we will refer to as RCP. We have chosen to discuss only a
subset in order to keep the discussion of CPND in chapter 4 as simple as possible.
RCP is the subset of CP which corresponds to rudimentary linear logic [7, RLL],
also known as multiplicative-applicative linear logic. We foresee no problems
in extending the proofs from chapter 4 to cover the remaining features of CP,
polymophism and the exponentials !A and ?A.

This chapter proceeds as follows. In section 2.1.1, we introduce the terms, the
structural congruence, and the types of RCP. In sections 2.1.2 to 2.1.5, we discuss
the terms and their corresponding types, in small groups, together with their
typing and reduction rules. In section 2.1.7, we prove preservation, progress and
termination for RCP.

2.1.1 Terms and types

The term language for RCP is a variant of the π-calculus [12]. Its terms are defined
by the following grammar:

3

4 Chapter 2. Background

Definition 2.1 (Terms)

P , Q, R := x↔y link

| νx.(P | Q) parallel composition, or “cut”’

| x[y].(P | Q) “output”

| x(y).P “input”

| x[].0 halt

| x().P wait

| x[inl].P select left choice

| x[inr].P select right choice

| case x {P ; Q} offer binary choice

| case x {} offer nullary choice

The variables x, y, z and w range over channel names. The construct x↔y links
two channels [2, 13], forwarding messages received on x to y and vice versa. The
construct νx.(P | Q) creates a new channel x, and composes two processes, P and
Q, which communicate on x, in parallel. Therefore, in νx.(P | Q) the name x is
bound in both P and Q. In x(y).P and x[y].(P | Q), round brackets denote input,
square brackets denote output. We use bound output [13], meaning that both
input and output bind a new name. In x(y).P the new name y is bound in P . In
x[y].(P | Q), the new name y is only bound in P , while x is only bound in Q.

Terms in RCP are identified up to structural congruence, which states that parallel
compositions νx.(P | Q) are associative and commutative. It is defined as follows:

Definition 2.2 (Structural congruence)
We define the structural congruence ≡ as a reflexive, transitive congruence
over terms which satisfies the following additional axioms:

(↔-comm) x↔y ≡ y↔x

(ν-comm) νx.(P | Q) ≡ νx.(Q | P)
(ν-assoc1) νx.(P | νy.(Q | R)) ≡ νy.(νx.(P | Q) | R) if x 6∈ R and y 6∈ P

We deviate from the original presentation of CP here, as the structural congruence
defined by Wadler [14] does not include (↔-comm). We include it here because

2.1. Classical Processes 5

it fits well with our notion of links, and it simplifies our reduction system and
the proofs of meta-theoretical properties of CP. We do not add an axiom for
(ν-assoc2), as it follows from definition 2.2. Throughout this dissertation, we will
leave uses of the transitivity and congruence rules implicit.

Lemma 2.3 (ν-assoc2)
If x 6∈ R and y 6∈ P , then νy.(νx.(P | Q) | R) ≡ νx.(P | νy.(Q | R)). �

Proof.

νy.(νx.(P | Q) | R) ≡ by (ν-comm)

νy.(νx.(Q | P) | R) ≡ by (ν-comm)

νy.(R | νx.(Q | P)) ≡ by (ν-assoc1)

νx.(νy.(R | Q) | P) ≡ by (ν-comm)

νx.(P | νy.(R | Q)) ≡ by (ν-comm)

νx.(P | νy.(Q | R))

The side conditions for (ν-assoc1) are given. �

Furthermore, structural congruence is a symmetric relation.

Theorem 2.4 (Symmetry)
If P ≡ Q, then Q ≡ P . �

Proof. By induction on the structure of the equivalence proof. The only
interesting case is (ν-assoc1), which follows from lemma 2.3. �

Channels in RCP are typed using a session type system which corresponds to
RLL, the multiplicative, additive fragment of linear logic. The types are defined
by the following grammar:

6 Chapter 2. Background

Definition 2.5 (Types)

A, B, C := A ⊗ B pair of independent processes

| A

&

B pair of interdependent processes

| 1 unit for ⊗

| ⊥ unit for &

| A ⊕ B internal choice

| A & B external choice

| 0 unit for ⊕

| > unit for &

Duality plays a crucial role in both linear logic and session types. In RCP, the two
endpoints of a channel are assigned dual types. This ensures that, for instance,
whenever a process sends across a channel, the process on the other end of that
channel is waiting to receive. Each type A has a dual, written A⊥.

Definition 2.6 (Duality)

(A ⊗ B)⊥ = A⊥ &
B⊥ 1⊥ = ⊥

(A &

B)⊥ = A⊥ ⊗ B⊥ ⊥⊥ = 1
(A ⊕ B)⊥ = A⊥ & B⊥ 0⊥ = >
(A & B)⊥ = A⊥ ⊕ B⊥ >⊥ = 0

Duality is an involutive function.

Lemma 2.7 (Involutive) We have A⊥⊥ = A. �

Proof. By induction on the structure of the type A. �

Environments associate channels with types.

Definition 2.8 (Environments)
We define environments as follows:

Γ, ∆, Θ ::= x1 : A1 . . . xn : An

Names in environments must be unique, and environments Γ and ∆ can only
be combined as Γ, ∆ if fv(Γ) ∩ fv(∆) = ∅.

2.1. Classical Processes 7

Typing judgements associate processes with collections of typed channels.

Definition 2.9 (Typing judgements)
A typing judgement P ` x1 : A1 . . . xn : An denotes that the process P commu-
nicates along channels x1 . . . xn following protocols A1 . . . An. Typing judge-
ments can be constructed using the inference rules in fig. 2.1.

Ax
x↔y ` x : A, y : A⊥

P ` Γ, x : A Q ` ∆, x : A⊥
Cut

νx.(P | Q) ` Γ, ∆

P ` Γ, y : A Q ` ∆, x : B (⊗)
x[y].(P | Q) ` Γ, ∆, x : A ⊗ B

P ` Γ, y : A, x : B (&)
x(y).P ` Γ, x : A

&

B

(1)
x[].0 ` x : 1

P ` Γ (⊥)
x().P ` Γ, x : ⊥

P ` Γ, x : A (⊕1)
x[inl].P ` Γ, x : A ⊕ B

P ` Γ, x : B (⊕2)
x[inr].P ` Γ, x : A ⊕ B

P ` Γ, x : A Q ` ∆, x : B (&)case x {P ; Q} ` Γ, ∆, x : A & B

(no rule for 0) (>)case x {} ` Γ, x : >

Figure 2.1: Typing judgement for the multiplicative applicative subset of RCP.

Reductions relate processes with their reduced forms. They are defined as follows:

Definition 2.10 (Term reduction)
A reduction P =⇒ P ′ denotes that the process P can reduce to the process P ′

in a single step. Reductions can only be constructed using the rules in figs. 2.2
and 2.3. The relation =⇒? is the reflexive, transitive closure of =⇒.

We will discuss the interpretations of each connective, together with their typing
and reduction rules, in sections 2.1.2 to 2.1.4.

2.1.2 Multiplicatives and in- and interdependence

The multiplicatives (⊗,

&) deal with independence and interdependence:

8 Chapter 2. Background

(↔1) νx.(w↔x | P) =⇒ P{w/x}
(↔2) νx.(x↔w | P) =⇒ P{w/x}
(β⊗

&) νx.(x[y].(P | Q) | x(z).R) =⇒ νy.(P | νx.(Q | R{y/z}))
(β1⊥) νx.(x[].0 | x().P) =⇒ P

(β⊕&1) νx.(x[inl].P | case x {Q; R}) =⇒ νx.(P | Q)
(β⊕&2) νx.(x[inr].P | case x {Q; R}) =⇒ νx.(P | R)

P =⇒ P ′
(γν)

νx.(P | Q) =⇒ νx.(P ′ | Q)
P ≡ Q Q =⇒ Q′ Q′ ≡ P ′

(γ≡)
P =⇒ P ′

Figure 2.2: Term reduction rules for RCP.

(κ⊗1) νx.(y[z].(P | Q) | R) =⇒ y[z].(νx.(P | R) | Q) if x 6∈ Q

(κ⊗2) νx.(y[z].(P | Q) | R) =⇒ y[z].(P | νx.(Q | R)) if x 6∈ P

(κ &) νx.(y(z).P | R) =⇒ y(z).νx.(P | R)
(κ⊥) νx.(y().P | R) =⇒ y().νx.(P | R)
(κ⊕1) νx.(y[inl].P | R) =⇒ y[inl].νx.(P | R)
(κ⊕2) νx.(y[inr].P | R) =⇒ y[inr].νx.(P | R)
(κ&) νx.(case y {P ; Q} | R) =⇒ case y {νx.(P | R); νx.(Q | R)}
(κ>) νx.(case y {} | R) =⇒ case y {}

Figure 2.3: Commutative conversions for CP.

• A channel of type A ⊗ B represents a pair of channels, which communicate
with two independent processes—that is to say, two processes who share no
channels. A process acting on a channel of type A⊗B will send one endpoint
of a fresh channel, and then split into a pair of independent processes. One
of these processes will be responsible for an interaction of type A over the
fresh channel, while the other process continues to interact as B.

• A channel of type A

&

B represents a pair of interdependent channels, which
are used within a single process. A process acting on a channel of type
A

&

B will receive a channel to act on, and communicate on its channels
in whatever order it pleases. This means that the usage of one channel can

2.1. Classical Processes 9

depend on that of another—e.g. the interaction of type B could depend on
the result of the interaction of type A, or vise versa, and if A and B are
complex types, their interactions could likewise interweave in complex ways.

While the rules for ⊗ and &introduce input and output operations, these are
inessential—the essential distinction lies two in the fact that (⊗) composes two
independent processes, and therefore must split the environment between them,
whereas (&) uses a single process, which then can—and must—use all the channels
in the environment.

P ` Γ, y : A Q ` ∆, x : B (⊗)
x[y].(P | Q) ` Γ, ∆, x : A ⊗ B

P ` Γ, y : A, x : B (&)
x(y).P ` Γ, x : A

&

B

The β-reduction rule for terms introduced by (⊗) and (&) implements the behaviour
outlined above:

νx.(x[y].(P | Q) | x(z).R) =⇒ νy.(P | νx.(Q | R{y/z}))

The function P{x/y} denotes the substitution of the name x for the name y in
the term P . The rules for the multiplicative units (1, ⊥) follow the same pattern,
except for the nullary instead of the binary case:

• A term constructed by (1) must composes zero independent processes, and
thus must halt. Furthermore, it must be able to split its environment
between zero processes, and thus its environment must be empty.

• A term constructed by (⊥), on the other hand, consists of a single process,
which is not further restricted.

The rules for 1 and ⊥ introduce a nullary send and receive operation, such as
those found in the polyadic π-calculus [11].

(1)
x[].0 ` x : 1

P ` Γ (⊥)
x().P ` Γ, x : ⊥

The β-reduction rule for terms introduced by (1) and (⊥) implements the behaviour
outlined above:

νx.(x[].0 | x().P) =⇒ P

2.1.3 Additives and choice

The additives (⊕, &) deal with choice:

10 Chapter 2. Background

• A process acting on a channel of type A ⊕ B either sends the value inl to
select an interaction of type A or the value inr to select one of type B.

• A process acting on a channel of type A & B receives such a value, and then
offers an interaction of either type A or B, correspondingly.

In essence, the additive operations implement sending and receiving of a single
bit of information (inl or inr) and branching based on the value of that bit.

P ` Γ, x : A (⊕1)
x[inl].P ` Γ, x : A ⊕ B

P ` Γ, x : A Q ` ∆, x : B (&)case x {P ; Q} ` Γ, ∆, x : A & B

The rule for constructing a process which sends inr, (⊕2), has been omitted, but
can be found in fig. 2.1. The β-reduction rules for terms introduced by (⊕1), (⊕2)
and (&) implement the behaviour outlined above.

νx.(x[inl].P | case x {Q; R}) =⇒ νx.(P | Q)
νx.(x[inr].P | case x {Q; R}) =⇒ νx.(P | R)

The rules for the additive units (0, >) follow the same pattern, except for a nullary
choice:

• There is no rule for 0, as a process acting on a channel of that type would
have to select one of zero options, which is clearly impossible.

• A process acting on a channel of type > will wait to receive a choice of out
zero options. Since this will clearly never arrive, we have two options: either
we block, waiting forever, or we simply crash.

It may seem odd at first to include a type for the process which cannot possibly
exist, and for the process which waits forever, but these make sensible units for
choice. When offered a choice of type A ⊕ 0, one can either choose to interact as
A, or choose to commit to doing the impossible. Similarly, when offering a choice
of type A & >, one can safely implement the right branch with a process which
waits forever, as no sound process will ever be able to select that branch anyway.

(no rule for 0) (>)case x {} ` Γ, x : >

As there is no way to construct a process of type 0, there is no reduction rule for
the additive units.

2.1. Classical Processes 11

2.1.4 Structural rules and duality

Duality plays a crucial role in session type systems. In section 2.1.3, we saw
that duality ensures a process offering a choice is always matched with a process
making a choice. In section 2.1.2, we saw that it also ensures that, for instance a
process which uses communication on x to decide what to send on y is matched
with a pair of independent processes on x and y, a property which is crucial to
deadlock freedom, as it prevents circular dependencies.

Duality appears in the typing rules for two RCP term constructs. Forwarding, x↔y,
connects two dual channels with dual endpoints, while composition, νx.(P | Q),
composes two processes P and Q with a shared channel x, requiring that they
follow dual protocols on x.

Ax
x↔y ` x : A, y : A⊥

P ` Γ, x : A Q ` ∆, x : A⊥
Cut

νx.(P | Q) ` Γ, ∆
There are two reduction rules which deal with the interactions between forwarding
and compositions. These implement the intuition that if a process is meant to
communicate on x, x is forwarding to y, and nobody else is listening on x, then
the process might as well start communicating on y.

νx.(w↔x | P) =⇒ P{w/x}

We can do this because RCP implements a binary session type system, meaning
that each communication has only two participants, and therefore we know that
no other process is communicating on x.

Wadler [14] has two reduction rules which deal with links. The first of these can
be seen above, and the second of these deals with the case in which the link is
flipped. As we consider links commutative, this rule is derivable.

2.1.5 Commuting conversions

The commuting conversions are not reductions typically found in the π-calculus.
Instead, they are based on permutation cuts, which are commonly used in logic
to define a procedure for cut elimination. These cut elimination steps push
a cut deeper into a term, past unrelated inference rules. When viewed from
the perspective of process calculus, they allow us to pull actions upwards, past
unrelated cuts. The commuting conversion are defined in fig. 2.3.

12 Chapter 2. Background

2.1.6 Example

The multiplicatives are responsible for structuring communication, and it is this
structure which rules out deadlocked interactions. Let us go back to our example
of a deadlocked interaction from chapter 1:

(x〈z〉.y〈 〉. | y〈w〉.x〈 〉.)

If we want to translate this interaction to CP, we run into a problem: there is no
plain sending construct in CP—we only have x[y].(P | Q), which requires that the
remainder of the interaction is split in two independent processes. This enforces
a certain structure on the program. Either John will already have to have the
cake in his hands, or Mary will already have to have the money in the bank. We
model the second scenario below, assuming , and are processes modeling
John, Mary, and Mary’s bank, and and are the types of two channels which
give access to a slice of cake and appropriate payment.

` Γ, y : ⊥, x : &

x(y). ` Γ, x : ⊥ &

` ∆, z : ` Θ, x : ⊥

⊗
x[z].(|) ` ∆, x : ⊗ ⊥

Cut
νx.(x(y). | x[z].(|)) ` Γ, ∆, Θ

The resulting process reduces, as expected:

νx.(x(y). | x[z].(|)) =⇒ νy.(| νx.(|))

2.1.7 Properties of RCP

In this section, we will prove three important properties of RCP, namely preserva-
tion, progress and termination.

2.1.7.1 Preservation

Preservation is the fact that term reduction preserves typing. In order to prove
this, we will first need to prove that structural congruence preserves typing.

Theorem 2.11 (Preservation for ≡)
If P ` Γ and P ≡ Q, then Q ` Γ. �

2.1. Classical Processes 13

Proof. By induction on the structure of the equivalence. The cases for reflex-
ivity, transitivity and congruence are trivial. The two interesting cases, for
(ν-comm) and (ν-assoc1) are given in fig. 2.4 �

(↔-comm) Ax
x↔y ` x : A, y : A⊥

≡
Ax

y↔x ` y : A⊥, x : A⊥⊥
lemma 2.7

y↔x ` y : A⊥, x : A

(ν-comm) P ` Γ, x : A Q ` ∆, x : A⊥
Cut

νx.(P | Q) ` Γ, ∆

≡ Q ` ∆, x : A⊥
P ` Γ, x : A lemma 2.7

P ` Γ, x : A⊥⊥
Cut

νx.(Q | P) ` Γ, ∆

(ν-assoc1) P ` Γ, x : A

Q ` ∆, x : A⊥, y : B R ` Θ, y : B⊥
Cut

νy.(Q | R) ` ∆, Θ, x : A⊥

Cut
νx.(P | νy.(Q | R)) ` Γ, ∆, Θ

≡
P ` Γ, x : A Q ` ∆, x : A⊥, y : B

Cut
νx.(P | Q) ` Γ, ∆, y : B R ` Θ, y : B⊥

Cut
νy.(νx.(P | Q) | R) ` Γ, ∆, Θ

Figure 2.4: Type preservation for the structural congruence of RCP

Then, we can prove preservation.

Theorem 2.12 (Preservation)
If P ` Γ and P =⇒ Q, then Q ` Γ. �

Proof. By induction on the structure of the reduction. See fig. 2.5 for (↔1),
(↔2), and the β-reduction rules, and figs. 2.6 and 2.7 for the commutative
conversions. The case for (γν) is trivial by the induction hypothesis, and the
case for (γ≡) is trivial by the induction hypothesis and theorem 2.11. �

14 Chapter 2. Background

2.1.7.2 Progress

Progress is the fact that every term is either in some canonical form, or can be
reduced further. In order for a statement of progress to make sense, we need a
definition of canonical form. The canonical form used by CP is “any term which
is not a cut.” We will refer to this canonical form as weak head normal form, for
its relation to the eponymous λ-calculus normal form.

Definition 2.13 (Weak head normal form)
A process P is in weak head normal form if it is not a cut.

As CP has a tight correspondence with classical linear logic, so does its proof of pro-
gress have a tight correspondence with (part of) the procedure proof normalisation
for classical linear logic for classical linear logic [6].

Theorem 2.14 (Progress, WHNF)
If P ` Γ, then either P is in weak head normal form, or there exists a P ′ such
that P =⇒ P ′. �

Proof. By induction on the structure of P . The only interesting case is the
case where P is a cut νx.(P ′ | Q′). In every other case, P is in weak head
normal form. There are three possibilities:

• Both P ′ and Q′ act on x.
We apply one of the β-reduction rules.

• Either P ′ or Q′ acts on an external channel.
We apply one of the commuting conversions.

• Otherwise one or both of P ′ and Q′ are themselves cuts.
We apply the induction hypothesis. �

If we extend the reduction system with all congruence rules—not just (γν) for
reduction under cuts, but for reduction under any term context—then we can
strengthen our canonical form, and extend our proof for progress to the full proof
normalisation procedure.

Definition 2.15 (Normal form)
A process P is in normal form if it does not contain any cuts.

2.1. Classical Processes 15

Theorem 2.16 (Progress, NF)
If P ` Γ, then either P is in normal form, or there exists a P ′ such that
P =⇒ P ′. �

Proof. Either P is in normal form, or there is a cut somewhere in P . If there
is a cut, then we obtain a reduction by theorem 2.14 and congruence. �

Wadler [14] opts to leave these additional congruence rules out, because “such
rules do not correspond well to our notion of computation on processes”, and his
choice is analogous to a common practice in the λ-calculus to not allow reduction
under lambdas.

It might not be so odd to allow these reductions in the context of CP. If one
conceives of the two sides of a parallel composition in y(z).νx.(P | Q) as separate
processes, both waiting on an external communication on y, it does not seem
odd to allow the communication on x to happen. It is simply eager a form of
evaluation.

2.1.7.3 Termination

Termination is the fact that if we iteratively apply progress to obtain a reduction,
and apply that reduction, we will eventually end up with a term in canonical
form. Its proof is quite simple, owing to the fact that our reduction rules were all
inspired by cut reductions from classical linear logic.

Theorem 2.17 (Termination)
If P ` Γ, then there are no infinite =⇒ reduction sequences. �

Proof. Every reduction reduces a single cut to zero, one or two cuts. However,
each of these cuts is smaller, in the sense that the type of the channel on
which the communication takes place is smaller, as each reduction eliminates
a connective—see figs. 2.5 to 2.7. Furthermore, each instance of the structural
congruence preserves the size of the cut—see fig. 2.4. Therefore, there cannot
be an infinite reduction sequence. �

16 Chapter 2. Background

2.2 Non-determinism, logic, and session types

In recent work, we have seen the extension of πDILL and CP with operators for
non-deterministic behaviour [1, 3, 4]. These extensions all implement an operator
known as non-deterministic local choice. While this operator is written as P + Q,
it should not be confused with input-guarded choice [12] from the π-calculus.
Essentially, non-deterministic local choice can be summarised by the following
typing and reduction rules:

P ` Γ Q ` Γ
P + Q ` Γ

P + Q =⇒ P

P + Q =⇒ Q

There are some problems with non-deterministic local choice. First of all, the non-
determinism arises from the fact that for any term P + Q, two different reduction
rules apply simultaneously. These reduction rules are written specifically to
introduce non-determinism. This is unlike the π-calculus, where non-determinism
arises due to multiple processes communicating on a single, shared channel. We can
easily implement this operator in the π-calculus, using a nullary communication:

(x〈〉.0 | x〈〉.P | x〈〉.Q)

=⇒
?

(P | x〈〉.Q) or (x〈〉.P | Q)

In this implementation, the process x〈〉.0 will “unlock” either P or Q, leaving the
other process deadlocked. Or we could use input-guarded choice:

(x〈〉.0 | (x〈〉.P + x〈〉.Q))

However, there are many non-deterministic processes in the π-calculus which
are awkward to encode using non-deterministic local choice. Let us look at our
example:

(x〈 〉.x〈 〉. | x〈y〉. | x〈z〉.)

=⇒
?

(| { /y} | { /z}) or (| { /y} | { /z})

This non-deterministic interaction involves communication. If we wanted to write
down a process which reduced to the same result using non-deterministic local

2.2. Non-determinism, logic, and session types 17

choice, we would have to write the following process:

(| { /y} | { /z}) + (| { /y} | { /z})

=⇒
?

(| { /y} | { /z}) or (| { /y} | { /z})

In essence, instead of modelling a non-deterministic interaction, we are enumerating
the outcomes of such an interaction. This means non-deterministic local choice
does not adequately model non-determinism in the way the π-calculus does.
Enumerating all possible outcomes becomes worse the more processes are involved
in an interaction. Imagine a scenario the following scenario:

Three customers, Alice, John and Mary, have a craving for cake.
Should cake be sold out, however, well... a doughnut will do. They
prepare to order their goods via an online store. Unfortunately, they
all decide to use the same shockingly under-stocked store, which has
only one slice of cake, and a single doughnut. After that, all it can
deliver is disappointment.

We can model this scenario in the π-calculus, assuming , , , and are four
processes modelling Alice, John, Mary and the store, and , , and are three
channels giving access to a slice of cake, a so-so doughnut, and disappointment,
respectively.

(x〈 〉.x〈 〉.x〈 〉. | x〈y〉. | x〈z〉. | x〈w〉.)

=⇒
?

(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})

(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})

(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})

With the addition of one process, Alice, we have increased the number of possible
outcomes enormously! In general, the number of outcomes for these types of
scenarios is n!, where n is the number of processes. This means that if we wish
to translate any non-deterministic process to one using non-deterministic local
choice, we can expect a factorial growth in the size of the term!

18 Chapter 2. Background

(↔1)
Ax

w↔x ` w : A, x : A⊥ R ` x : A, Γ
Cut

νx.(w↔x | R) ` w : A, Γ

=⇒ R{w/x} ` w : A, Γ

(β⊗

&)
P ` Γ, x : A⊥, y : B⊥ &

y(x).P ` Γ, y : A⊥ &

B⊥
Q ` ∆, x : A R ` Θ, y : B ⊗

y[x].((| Q) | R) ` ∆, Θ, y : A ⊗ B
Cut

νy.(y(x).P | y[x].(Q | R)) ` Γ, ∆, Θ

=⇒
P ` Γ, x : A⊥, y : B⊥ Q ` ∆, x : A

Cut
νx.(P | Q) ` Γ, ∆, y : B⊥ R ` Θ, y : B

Cut
νy.(νx.(P | Q) | R) ` Γ, ∆, Θ

(β1⊥)
P ` Γ ⊥

x().P ` Γ, x : ⊥ 1
x[].0 ` x : 1

Cut
νx.(x[].0 | x().P) ` Γ

=⇒ P ` Γ

(β⊕&1)
P ` Γ, x : A⊥ Q ` Γ, x : B⊥

&case x {P ; Q} ` Γ, x : A⊥ & B⊥
R ` ∆, x : A ⊕1

x[inl].R ` ∆, x : A ⊕ B
Cut

νx.(case x {P ; Q} | x[inl].R) ` Γ, ∆

=⇒ P ` Γ, x : A⊥ R ` ∆, x : A
Cut

νx.(P | R) ` Γ, ∆

(β⊕&2) (as above)

Figure 2.5: Type preservation for the (↔1) and β-reduction rules of RCP

2.2. Non-determinism, logic, and session types 19

(κ⊗1)
P ` Γ, x : A, z : B Q ` ∆, y : C ⊗

y[z].(P | Q) ` Γ, ∆, y : B ⊗ C R ` Θ, x : A⊥

Cut
νx.(y[z].(P | Q) | R) ` Γ, ∆, Θ, y : B ⊗ C

=⇒
P ` Γ, x : A, z : B R ` Θ, x : A⊥

Cut
νx.(P | Q) ` Γ, Θ, z : B Q ` ∆, y : C

⊗
y[z].(νx.(P | Q) | R) ` Γ, ∆, Θ, y : B ⊗ C

(κ⊗2) (as above)

(κ &)
P ` Γ, x : A, z : B, y : C &

y(z).P ` Γ, x : A, y : B

&

C R ` Θ, x : A⊥

Cut
νx.(y(z).P | R) ` Γ, Θ, y : B

&

C

=⇒
P ` Γ, x : A, z : B, y : C R ` Θ, x : A⊥

Cut
νx.(P | R) ` Γ, Θ, z : B, y : C &

y(z).νx.(P | R) ` Γ, Θ, y : B

&

C

(κ⊥)
P ` Γ, x : A

⊥
y().P ` Γ, x : A, y : ⊥ R ` Θ, x : A⊥

Cut
νx.(y().P | R) ` Γ, Θ, y : ⊥

=⇒
P ` Γ, x : A R ` Θ, x : A⊥

Cut
νx.(P | R) ` Γ, Θ

⊥
y().νx.(P | R) ` Γ, Θ, y : ⊥

Figure 2.6: Type preservation for the commuting conversions of CP

20 Chapter 2. Background

(κ⊕1)
P ` Γ, x : A, y : B ⊕1

y[inl].P ` Γ, x : A, y : B ⊕ C R ` Θ, x : A⊥

Cut
νx.(y[inl].P | R) ` Γ, Θ, y : B ⊕ C

=⇒
P ` Γ, x : A, y : B R ` Θ, x : A⊥

Cut
νx.(P | R) ` Γ, Θ, y : B ⊕1

y[inl].νx.(P | R) ` Γ, Θ, y : B ⊕ C

(κ⊕2) (as above)

(κ&)
P ` Γ, x : A, y : B Q ` Γ, x : A, y : C

&case y {P ; Q} ` Γ, x : A, y : B & C R ` Θ, x : A⊥

Cut
νx.(case y {P ; Q} | R) ` Γ, Θ, y : B & C

=⇒
P ` Γ, x : A, y : B R ` Θ, x : A⊥

Cut
νx.(P | R) ` Γ, Θ, y : B

Q ` Γ, x : A, y : C R ` Θ, x : A⊥
Cut

νx.(Q | R) ` Γ, Θ, y : C
&case y {νx.(P | R); νx.(Q | R)} ` Γ, Θ, y : B & C

(κ>)
>case y {} ` Γ, x : A, y : > R ` Θ, x : A⊥

Cut
νx.(case y {} | R) ` Γ, Θ, y : >

=⇒ >case y {} ` Γ, Θ, y : >

Figure 2.7: Type preservation for the commuting conversions of CP (cont’d)

Chapter 3

CP as a type system for the
π-calculus

CP has a tight correspondence with classical linear logic. This has many advantages.
It is deadlock free and terminating, and as seen in section 2.1.7, the proofs of
its meta-theoretical properties are concise and elegant. The price paid for this
is a weaker correspondence with the π-calculus. It would be useful to be able to
think of CP as a type system for the π-calculus. However, as it stands there are
many differences between these systems. For instance, in CP name restriction
and parallel composition are considered a single, atomic construct, and it uses
case statements instead of input-guarded choice. Most prominent among the
differences, however, are the commuting conversions. These reduction rules are
taken directly from the proof normalisation procedure of classical linear logic, and
do not correspond to any reductions in the π-calculus.

Lindley and Morris [9] observed that, using a different reduction strategy, which
more closely resembles that of the π-calculus, we can ensure that the commuting
conversions are always applied last. That is to say, they define two separate
reduction relations: −→C for (↔1) and β-reductions, and −→CC for commuting
conversions, and show that any sequence of reductions is equivalent to one of the
form:

P −→C · · · −→C Q −→CC · · · −→CC R

In this dissertation, we use a reduction strategy which follows Lindley and Morris
[9], but drop the suffix of commutative conversions. Consequently, we can drop

21

22 Chapter 3. CP as a type system for the π-calculus

the commuting conversions from our reduction system, which therefore more
tightly corresponds to that of the π-calculus. The price we pay for this is a weaker
correspondence to classical linear logic. This shows in our notion of canonical
form, which is weaker, and in our proof of progress, which is much more involved.

Whenever we refer to CP or RCP, for the remainder of this dissertation, we refer to
the variant without commuting conversions, i.e. which uses the following definition
of term reduction.

Definition 3.1 (Term reduction)
A reduction P =⇒ P ′ denotes that the process P can reduce to the process P ′

in a single step. Reductions can only be constructed using the rules in fig. 2.2.
The relation =⇒? is the reflexive, transitive closure of =⇒.

This chapter will proceed as follows. In section 3.1, we will describe what it
means for a term to be in canonical form. In section 3.2, we will define evaluation
contexts. In section 3.3, we will give a new proof of progress, which follows Lindley
and Morris [9].

3.1 Canonical forms

The reduction strategy described by Lindley and Morris applies (↔1) and β-
reductions until the process blocks on one or more external communications,
and then applies the commuting conversions to bubble one of those external
communications to the front of the term. This allows them to define canonical
forms as any term which is not a cut. For us, terms in canonical form will be those
terms which are blocked on an external communication, before any commuting
conversions are applied. In this section, we will describe the form of such terms.

We have informally used the phrase “act on” in previous sections. It is time to
formally define what it means when we say a process acts on some channel.

Definition 3.2 (Action)
A process P acts on a channel x if it is in one of the following forms:

• x↔y

• y↔x

• x[y].(P ′ | Q′)

• x(y).P ′

• x[].0
• x().P ′

• x[inl].P ′

• x[inr].P ′

• case x {P ′; Q′}

3.1. Canonical forms 23

• case x {}

We say a process P is an action if it acts on some channel x.

Furthermore, we will need the notion of an evaluation prefix. Intuitively, evaluation
prefixes are multi-holed contexts consisting solely of cuts. We will use evaluation
prefixes in order to have a view of every action in a process at once.

Definition 3.3 (Evaluation prefixes)
We define evaluation prefixes as:

G, H := � | νx.(G | H)

The � construct represents a hole.

Definition 3.4 (Plugging)
We define plugging for an evaluation prefix with n holes as:

�[R] := R

νx.(G | H)[R1 . . . Rm, Rm+1 . . . Rn] := νx.(G[R1 . . . Rm] | H[Rm+1 . . . Rn])

Note that in the second case, G is an evaluation prefix with m holes, and H is
an evaluation prefix with (n − m) holes.

Intuitively, we can say that every term of the form G[P1 . . . Pn] is equivalent
to some term of the form νx1.(P1 | νx2.(P2 | . . . νxn.(Pn−1 | Pn) . . .)) where
x1 . . . xn−1 are the channels bound in G. In fact, a similar equivalence was used
by Lindley and Morris [9] in their semantics for CP.

Definition 3.5 (Maximum evaluation prefix)
We say that G is the evaluation prefix of P when there exist terms P1 . . . Pn

such that P = G[P1 . . . Pn]. We say that G is the maximum evaluation prefix
if each Pi is an action.

Lemma 3.6 Every term P has a maximum evaluation prefix. �

Proof. By induction on the structure of P . �

We can now define what it means for a term to be in canonical form. Intuitively,
a process is in canonical form either when there is no top-level cut, or when it is
blocked on an external communication. We state this formally as follows:

24 Chapter 3. CP as a type system for the π-calculus

Definition 3.7 (Canonical forms)
A process P is in canonical form if it is an action, or if it is of the form
G[P1 . . . Pn], where G is the maximum evaluation prefix of P , no Pi is a link,
and no Pi and Pj act on the same channel.

3.2 Evaluation contexts

Intuitively, evaluation contexts are one-holed term contexts under which reduction
can take place. For RCP, these consist solely of cuts.

Definition 3.8 (Evaluation contexts)
We define evaluation contexts as:

E := � | νx.(E | P) | νx.(P | E)

Definition 3.9 (Plugging)
We define plugging for evaluation contexts as:

�[R] := R

νx.(E | P)[R] := νx.(E[R] | P)
νx.(P | E)[R] := νx.(P | E[R])

We can prove that we can push any cut downwards under an evaluation context,
as long as the channel it binds does not occur in the context itself. In proofs
throughout this dissertation, we will leave uses of theorem 2.11 and theorem 2.12
implicit.

Lemma 3.10
If νx.(E[P] | Q) ` Γ and x 6∈ E, then νx.(E[P] | Q) ≡ E[νx.(P | Q)]. �

Proof. By induction on the structure of the evaluation context E.

• Case �. By reflexivity.

3.3. Progress 25

• Case νy.(E | R).

νx.(νy.(E[P] | R) | Q) ≡ by (ν-comm)
νx.(νy.(R | E[P]) | Q) ≡ by (ν-assoc2)
νy.(R | νx.(E[P] | Q)) ≡ by (ν-comm)
νy.(νx.(E[P] | Q) | R) ≡ by the induction hypothesis
νy.(E[νx.(P | Q)] | R)

• Case νy.(R | E).

νx.(νy.(R | E[P]) | Q) ≡ by (ν-assoc2)
νy.(R | νx.(E[P] | Q)) ≡ by the induction hypothesis
νy.(R | E[νx.(P | Q)])

In each case, the side conditions for (ν-assoc2), x 6∈ R and y 6∈ Q, can be
inferred from x 6∈ E and the fact that νx.(E[P] | Q) is well-typed. �

And vice versa. However, we will not use the following lemma in this dissertation,
and leave its proof as an exercise to the reader.

Lemma 3.11
If E[νx.(P | Q)] ` Γ and x 6∈ E, then E[νx.(P | Q)] ≡ νx.(E[P] | Q). �

3.3 Progress

Progress is the fact that every term is either in some canonical form, or can
be reduced further. There are two important lemmas which we will need in
order to prove progress. These relate evaluation prefixes to evaluation contexts.
Specifically, if a process under an evaluation prefix is a link, we can rewrite the
entire process in such a way as to reveal the cut which introduced one of the
channels acted upon by that link.

Lemma 3.12
If G[P1 . . . Pn] ` Γ, and some Pi is a link x↔y, then either x and y are
not bound by G, or there exist E, E ′ and Q such that G[P1 . . . Pn] ≡
E[νx.(E ′[x↔y] | Q)]. �

Proof. By induction on the structure of G.

26 Chapter 3. CP as a type system for the π-calculus

• Case �. Clearly x and y are not bound.

• Case νz.(G′[P1 . . . Pi . . . Pm] | G′′[Pm+1 . . . Pn]).
Case νz.(G′[P1 . . . Pm] | G′′[Pm+1 . . . Pi . . . Pn]).
We apply the induction hypothesis. There are two cases:

– If x and y were not bound, they remain unbound.

– If x or y is bound deeper in G, we prepend one of νz.(� | G′′[Pm+1 . . . Pn]),
νz.(G′[P1 . . . Pm] | �), (� | G′′[Pm+1 . . . Pn]), or (G′[P1 . . . Pm] | �)
to E. The desired equivalence follows by congruence.

• Case νx.(G′[P1 . . . Pi . . . Pm] | G′′[Pm+1 . . . Pn]).
Case νy.(G′[P1 . . . Pi . . . Pm] | G′′[Pm+1 . . . Pn]).
Case νx.(G′[P1 . . . Pm] | G′′[Pm+1 . . . Pi . . . Pn]).
Case νy.(G′[P1 . . . Pm] | G′′[Pm+1 . . . Pi . . . Pn]).
Let E := � and
let E ′ := G′[P1 . . . Pi−1,�, Pi+1, . . . Pm]

or G′′[Pm+1 . . . Pi−1,�, Pi+1, . . . Pn]
By reflexivity and (ν-comm). �

If two processes under an evaluation prefix act on the same channel, then we can
rewrite the entire process in such a way as to reveal the cut that introduced the
channel.

Lemma 3.13
If G[P1 . . . Pn] ` Γ, and some Pi and Pj, on different sides of at least one cut,
act on the same bound channel x, then there exist E, Ei and Ej such that
G[P1 . . . Pn] = E[νx.(Ei[Pi] | Ej[Pj])]. �

Proof. By induction on the structure of G.

• Case νx.(G′[P1 . . . Pi . . . Pm] | G′′[Pm+1 . . . Pj . . . Pn]).
Let E := �,

Ei := G′[P1 . . . Pi−1,�, Pi+1 . . . Pm],
Ej := G′′[Pm+1 . . . Pj−1,�, Pj+1 . . . Pn].

By reflexivity.

• Case νx.(G′[P1 . . . Pj . . . Pm] | G′′[Pm+1 . . . Pi . . . Pn]).
As above.

3.3. Progress 27

• Case νy.(G′[P1 . . . Pi . . . Pj . . . Pm] | G′′[Pm+1 . . . Pn]).
Case νy.(G′[P1 . . . Pm] | G′′[Pm+1 . . . Pi . . . Pj . . . Pn]).
We obtain E, E1 and E2 from the induction hypothesis and theorem 2.11,
and then prepend either νy.(� | G′′[Pm+1 . . . Pn]) or νy.(G′[P1 . . . Pm] |
�) to E. The desired equality follows by congruence.

The case for � is excluded because n > 1. The cases in which Pi and Pj are
on the same side of the cut, but the cut binds x, and the cases in which Pi

and Pj are on different sides of the cut, but the cut binds some other channel
y, are excluded by the type system. �

Finally, we are ready to prove progress. In proofs throughout this dissertation, we
will leave uses of (γ≡) and the congruence rules for reductions implicit.

Theorem 3.14 (Progress)
If P ` Γ, then either P is in canonical form, or there exists a P ′ such that
P =⇒ P ′. �

Proof. By induction on the structure of derivation for P ` Γ. The only inter-
esting case is when the last rule of the derivation is Cut—in every other case,
the typing rule constructs a term in which is in canonical form.
We consider the maximum evaluation prefix G of P , such that P = G[P1 . . . Pn+1]
and each Pi is an action. The prefix G consists of n cuts, and introduces n

channels, but composes n + 1 actions. Therefore, one of the following must be
true:

• One of the processes is a link x↔y acting on a bound channel. We have:

G[P1 . . . x↔y . . . Pn+1] ≡ by lemma 3.12
E[νz.(E ′[x↔y] | Q)] ≡ by lemma 3.10
E[E ′[νz.(x↔y | Q)]]

Where z = x or z = y. We then apply (↔1).

• Two of the processes, Pi and Pj, act on the same bound channel x. We
have:

G[P1 . . . Pi . . . Pj . . . Pn+1] = by lemma 3.13
G[νx.(Ei[Pi] | Ej[Pj])] ≡ by lemma 3.10
G[Ei[νx.(Pi | Ej[Pj])]] ≡ by lemma 3.10
G[Ei[Ej[νx.(Pi | Pj)]]]

28 Chapter 3. CP as a type system for the π-calculus

We then apply one of the β-reduction rules.

• Otherwise (at least) one of the processes acts on an external channel.
No process Pi is a link. No two processes Pi and Pj act on the same
channel x. Therefore, P is canonical. �

The proof of progress described in this section is novel, though it takes inspiration
from the reduction system for CP described by Lindley and Morris [9]. The proof
itself is somewhat involved. The reason for this is that we want our reduction
strategy to match that of the π-calculus as closely as possible. It is also for this
reason that our proof of progress involves some non-determinism. For instance, in
the second case of the proof, we do not specify how to select the two processes Pi

and Pj if there are multiple options available.

3.4 Rewriting versus commuting

Let’s have a look at the differences between the reduction strategy we have defined
in this chapter, and the reduction strategy which Wadler [14] defines. Let’s
imagine the following scenario:

Alice, John, and Mary went on a lovely trip together. However, John
and Mary can be a bit scatterbrained sometimes, and it just so happens
that they both forgot to bring their wallets. They both owe Alice
some money, which they’re now trying to pay back at the same time.

We can model this interaction in CP as the following term, assuming , , and
are three processes representing Alice, John and Mary, and and are two
processes representing John and Mary’s respective banks. To simplify notation,
we will adopt an “anti-Barendregt” convention in our examples. This means that
if two channel names will be identified after a reduction, we will preemptively give
them the same name, for instance, z and w in the example below.

νx.(νy.(x(z).y(w). | y[w].(|)) | x[z].(|))

In the above interaction, no β-reduction rule applies immediately. This means
that using the reduction strategy described by Wadler [14], we apply a commuting

3.4. Rewriting versus commuting 29

conversion.

νx.(νy.(x(z).y(w). | y[w].(|)) | x[z].(|)) =⇒ by (κ &)
νx.(x(z).νy.(y(w). | y[w].(|)) | x[z].(|)) =⇒ by (β⊗

&)
νz.(νx.(νy.(y(w). | y[w].(|)) |) |) =⇒ by (β⊗

&)
νz.(νx.(νw.(νy.(|) |) |) |)

On the other hand, using the reduction strategy described in this chapter, we will
rewrite using structural congruence.

νx.(νy.(x(z).y(w). | y[w].(|)) | x[z].(|)) ≡ by lemma 3.10
νy.(νx.(x(z).y(w). | x[z].(|)) | y[w].(|)) =⇒ by (β⊗

&)
νy.(νz.(νx.(y(w). |) |) | y[w].(|)) ≡ by lemma 3.10
νz.(νx.(νy.(y(w). | y[w].(|)) |) |) =⇒ by (β⊗

&)
νz.(νx.(νw.(νy.(|) |) |) |)

Note that the second reduction sequence is a valid reduction sequence in the either
reduction system—it is simply not the sequence chosen by the reduction strategy
described by Wadler [14]. In fact, the structural congruence is only used in a
single instance in the original reduction strategy for CP—to derive the flipped
version of (γν).

Chapter 4

Non-deterministic Classical
Processes

In this section, we will discuss our main contribution: an extension of CP which
allows for races while still excluding deadlocks. We have seen in section 2.1.6 how
CP excludes deadlocks, but how exactly does CP exclude races? Let us return to
our first example from chapter 1, to the interaction between John, Mary and the
store.

(x〈 〉.x〈 〉. | x〈y〉. | x〈z〉.)

=⇒
?

(| { /y} | { /z}) or (| { /y} | { /z})

Races occur when more than two processes attempt to communicate simultaneously
over the same channel. However, the Cut rule of CP requires that exactly two
processes communicate over each channel:

P ` Γ, x : A Q ` ∆, x : A⊥
Cut

νx.(P | Q) ` Γ, ∆

We could attempt write down a protocol for our example, stating that the store
has a pair of channels x, y : with which it communicates with John and Mary,
taking to be the type of interactions in which cake may be obtained, i.e. of
both and , and state that the store communicates with John and Mary over
a channel of type & . However, this only models interactions such as the
following:

31

32 Chapter 4. Non-deterministic Classical Processes

` Γ, x : ⊥ ` ∆, y : ⊥

⊗
y[x].(|) ` Γ, ∆, y : ⊥ ⊗ ⊥

` Θ, x : , y : &

y(x). ` Θ, y : &

Cut
νy.(y[x].(|) | y(x).) ` Γ, ∆, Θ

Note that in this interaction, John will get whatever the store decides to send on
x, and Mary will get whatever the store decides to send on y. This means that
this interactions gives the choice of who receives what to the store. This is not an
accurate model of our original example, where the choice of who receives the cake
is non-deterministic and depends on factors outside of any of the participants’
control! And to make matters worse, the term which models our example is
entirely different from the one we initially wrote down in the π-calculus!

The ability to model racy behaviour, such as that in our example, is essential
to describing the interactions that take place in realistic concurrent systems.
Therefore, we would like to extend CP to allow such races. Specifically, we would
like to do it in a way which mirrors the way in which the π-calculus handles
non-determinism. We will base our extension on RCP, a subset of CP which
we introduced in chapter 2. We have chosen to do this to keep our discussion
as simple as possible. Furthermore, as compatibility with the π-calculus is of
interest, we will use the reduction system without commuting conversions, which
we introduced in chapter 3.

This chapter proceeds as follows. In section 4.1, we introduce the extensions to
the terms, structural congruence and types of CP. In section 4.2, we introduce
the typing rules for CPND. In section 4.3, we introduce the reduction rules for
CPND. In section 4.4, we prove that our extension preserves the meta-theoretical
of CP. Finally, in section 4.5, we discuss the relation between non-determinism in
CPND and the non-determinism introduced by the addition of non-deterministic
local choice.

4.1 Terms and types

Let us return, briefly, to our example.

(x〈 〉.x〈 〉. | x〈y〉. | x〈z〉.)

In this interaction, we see that the channel x is used only as a way to connect the
various clients, John and Mary, to the store. The real communication, sending

4.1. Terms and types 33

the slice of cake and disappointment, takes places on the channels , , y and z.

Inspired by this, we add two new constructs to the term language of CP: sending
and receiving on a shared channel. These actions are marked with a ? in order
to distinguish them syntactically from ordinary sending and receiving. To group
clients, we add another form of parallel composition, which we refer to as pooling.

Definition 4.1 (Terms)
We extend definition 2.1 with the following constructs:

P , Q, R := . . .

| ?x[y].P client creation

| ?x(y).P server interaction

| (P | Q) parallel composition of clients

As before, round brackets denote input, square brackets denote output. Note that
?x[y].P , much like x[y].(P | Q), is a bound output—this means that both client
creation and server interaction bind a new name.

In RCP, we terms are identified up to the commutativity and associativity of
parallel composition. In CPND, we add another form of parallel composition, and
therefore must extend our structural congruence:

Definition 4.2 (Structural congruence)
We extend definition 2.2 with the following equivalences:

(|-comm) (P | Q) ≡ (Q | P)
(|-assoc1) (P | (Q | R)) ≡ ((P | Q) | R)
(|-extrusion1) νx.((P | Q) | R) ≡ (P | νx.(Q | R)) if x 6∈ P

(|-extrusion2) (P | νx.(Q | R)) ≡ νx.((P | Q) | R)

We add axioms for the commutativity and associativity of pooling. We do not add
an axiom for (|-assoc2), as it follows from definition 4.2, see lemma 4.3. It should
be noted that νx.(P | Q) is considered a single, atomic construct. Therefore you
cannot use (|-assoc1) to rewrite νx.(P | (Q | R)) to νx.((P | Q) | R). We do,
however, add two axioms which relate cuts and pool. We call these extrusion,
because they closely resemble the π-calculus axiom for scope extrusion. We add
both (|-extrusion1) and (|-extrusion2), as these relate two different constructs, and
therefore we cannot use the one to derive the other.

34 Chapter 4. Non-deterministic Classical Processes

Lemma 4.3 (|-assoc2)
We have ((P | Q) | R) ≡ (P | (Q | R)). �

Proof.

((P | Q) | R) ≡ by (|-comm)

((Q | P) | R) ≡ by (|-comm)

(R | (Q | P)) ≡ by (|-assoc1)

((R | Q) | P) ≡ by (|-comm)

(P | (R | Q)) ≡ by (|-comm)

(P | (Q | R)) �

Furthermore, the extensions to structural congruence preserve symmetry.

Theorem 4.4 (Symmetry)
If P ≡ Q, then Q ≡ P . �

Proof. By induction on the structure of the equivalence proof. �

We can make another observation from our examples. In every example in which
a server interacts with a pool of clients, and which does not deadlock, there are
exactly as many clients as there are server interactions. Therefore, we add two new
dual types for client pools and servers, which track how many clients or server
interactions they represent.

Definition 4.5 (Types)
We extend definition 2.5 with the following types:

A, B, C := . . .

| !nA pool of n clients

| ?nA n server interactions

Definition 4.6 (Duality)
We extend definition 2.6 with the following cases:

(!nA)⊥ = ?nA⊥ (?nA)⊥ = !nA⊥

With these new types, duality remains an involutive function.

4.2. Typing clients and servers 35

Lemma 4.7 (Duality is involutive) We have A⊥⊥ = A. �

Proof. By induction on the structure of the type A. �

4.2 Typing clients and servers

We have to add typing rules to associate our new client and server interactions
with their types. The definition for environments will remain unchanged, but we
will extend the definition for the typing judgement. To determine the new typing
rules, we essentially have to answer the question “What typing constructs do we
need to complete the following proof?”

` Γ, y : ⊥

...
` ∆, y′ : ⊥

...
` Θ, z : , z′ :...

νx.((?x[y]. | ?x[y′].) | ?x(z).?x(z′).) ` Γ, ∆, Θ

Ideally, we would still like the composition of the client pool and the server to
be a cut. This seems reasonable, as the left-hand side of the term above has 2
clients, and the right-hand side has two server interactions, so x is used at type
!2 ⊥ on the left, and as ?2 on the right.

` Γ, y : ⊥

...
` ∆, y′ : ⊥

...
(?x[y]. | ?x[y′].) ` Γ, ∆, x : !2 ⊥

` Θ, z : , z′ :...
?x(z).?x(z′). ` Θ, x : ?2 Cut

νx.((?x[y]. | ?x[y′].) | ?x(z).?x(z′).) ` Γ, ∆, Θ

We will define the typing judgement, and then discuss servers and clients, the two
sides of the above cut, describe the rules we add, and show how they allow us to
complete our proof.

Definition 4.8 (Typing judgements)
A typing judgement P ` x1 : A1 . . . xn : An denotes that the process P commu-
nicates along channels x1 . . . xn following protocols A1 . . . An. Typing judge-
ments can be constructed using the inference rules in figs. 2.1 and 4.1.

36 Chapter 4. Non-deterministic Classical Processes

4.2.1 Clients and pooling

A client pool represents a number of independent processes, each wanting to
interact with the server. Examples of such a pool include John and Mary from
our example, customers for online stores in general, and any number of processes
which interact with a single, centralised server.

We introduce two new rules: one to construct clients, and one to pool them together.
The first rule, (!1), marks interaction over some channel as a client interaction.
It does this by receiving a channel y over a shared channel x. The channel y is
the channel across which the actual interaction will eventually take place. The
second rule, Pool, allows us to pool together clients. This is implemented, as in
the π-calculus, using parallel composition.

P ` Γ, y : A (!1)
?x[y].P ` Γ, x : !1A

P ` Γ, x : !mA Q ` ∆, x : !nA
Pool(P | Q) ` Γ, ∆, x : !m+nA

Using these rules, we can derive the left-hand side of our proof by marking John
and Mary as clients, and pooling them together.

` Γ, y : ⊥

(!1)
?x[y]. ` Γ, z : !1 ⊥

` ∆, y′ : ⊥

(!1)
?x[y′]. ` ∆, y′ : !1 ⊥

Pool
(?x[y]. | ?x[y′].) ` Γ, ∆, x : !2 ⊥

4.2.2 Servers and contraction

Dual to a pool of clients is a server. Our interpretation of a server is a process
which offers up some number of interdependent interactions of the same type.

P ` Γ, y : A (!1)
?x[y].P ` Γ, x : !1A

P ` Γ, y : A (?1)
?x(y).P ` Γ, x : ?1A

P ` Γ, x : !mA Q ` ∆, x : !nA
Pool(P | Q) ` Γ, ∆, x : !m+nA

P ` Γ, x : ?mA, y : ?nA
Cont

P{x/y} ` Γ, x : ?m+nA

Figure 4.1: Typing judgement for CPND extending that of Figure 2.1

4.3. Running clients and servers 37

Examples include the store from our example, which gives out slices of cake and
disappointment, online stores in general, and any central server which interacts
with some number of client processes.

We introduce two new rules to construct servers. The first rule, (?1), marks a
interaction over some channel as a server interaction. It does this by sending a
channel y over a shared channel x. The channel y is the channel across which the
actual interaction will eventually take place. The second rule, Cont, short for
contraction, allows us to contract several server interactions into a single server.
This allows us to construct a server which has multiple interactions of the same
type, across the same shared channel.1

P ` Γ, y : A (?1)
?x(y).P ` Γ, x : ?1A

P ` Γ, x : ?mA, y : ?nA
Cont

P{x/y} ` Γ, x : ?m+nA

Using these rules, we can derive the right-hand side of our proof, by marking each
of the store’s interactions as server interactions, and then contracting them.

` Θ, z : , z′ : (?1)
?x′(z′). ` Θ, z : , x′ : ?1 (?1)

?x(z).?x′(z′). ` Θ, x : ?1 , x′ : ?1 Cont
?x(z).?x(z′). ` Θ, x : ?2

Thus, we complete the typing derivation of our example.

4.3 Running clients and servers

Once we have a client/server interaction, how do we run it? Ideally, we would
simply use the reduction rule closest to the one used in the π-calculus.

νx.(?x[y].P | ?x(z).R) =⇒ νy.(P | R{y/z})

However, our case is complicated by the fact that in νx.(P | Q) the name restriction
is an inseparable part of the composition, and therefore has to be part of our
reduction rule. Because of this, the above reduction can only apply in the singleton
case. If the client pool contains more than one client, such as in the term below,

1While it ultimately does not matter whether (?1) and (!1) are implemented with a send or a
receive action, it feels more natural to have the server do the sending. Clients indicate their
interest in interacting with the server by connecting to the shared channel, but it is up to the
server to decide when to interact with each channel.

38 Chapter 4. Non-deterministic Classical Processes

then there is no way to isolate a single client together with the server, because x

occurs in both ?x[y].P and ?x[z].Q.

νx.((?x[y].P | ?x[z].Q) | ?x(w).R) 6=⇒

Therefore, we add a second reduction rule, which handles communication between
a one client in a pool of multiple clients and a server.

νx.((?x[y].P | Q) | ?x(z).R) =⇒ νx.(Q | νy.(P | R{y/z}))

Lastly, because we have added another form of parallel composition, we add
another congruence rule, to allow for reduction inside client pools.

Definition 4.9 (Term reduction)
We extend definition 3.1 with the following reductions:

(β?1) νx.(?x[y].P | ?x(z).R) =⇒ νy.(P | R{y/z})
(β?n+1) νx.((?x[y].P | Q) | ?x(z).R) =⇒ νx.(Q | νy.(P | R{y/z}))

P =⇒ P ′
(γ|)(P | Q) =⇒ (P ′ | Q)

The rules (β?1) and (β?n+1) seem like the elimination rules for a list-like construct.
This may come as a surprise, as our client pools are built up like binary trees, and
the typing rules for both sides are tree-like, with (!1) and (?1) playing the role
of leaves, and Pool and Cont merging two trees with m and n leaves into one
with m + n leaves. However, the server process imposes a sequential ordering on
its interactions, and it is because of this that we have to use list-like elimination
rules.

So where does the non-determinism in CPND come from? Let us say we have a
term of the following form:

νx.((?x[y1].P1 | · · · | ?x[yn].Pn) | ?x(y).Q)

Because pooling is commutative and associative, we can rewrite this term to bring
any client in the pool to the front, before applying (β?n+1). Thus, like in the
π-calculus, the non-determinism is introduced by the structural congruence.

Does this mean that, for an arbitrary client pool P in νx.(P | ?x(z).Q), every
client in that pool is competing for the server interaction on x? Not necessarily,

4.4. Properties of CPND 39

as some portion of the clients can be blocked on an external communication. For
instance, in the term below, clients ?x[yn+1].Pn+1 . . . ?x[ym].Pm are blocked on a
communication on the external channel a.

νx.(((?x[y1].P1 | · · · | ?x[yn].Pn)
| a().(?x[yn+1].Pn+1 | · · · | ?x[ym].Pm))
| ?x(y1). . . . ?x(ym).Q)

If we reduce this term, then only the clients ?x[y1].P1 . . . ?x[yn].Pn will be assigned
server interactions, and we end up with the following canonical form term.

νx.(a().(?x[yn+1].Pn+1 | · · · | ?x[ym].Pm)
| ?x(yn+1). . . . ?x(ym).Q)

This matches the reduction behaviour of the π-calculus, and it fits with out notion
of computation with processes.

4.4 Properties of CPND

In this section, we will revisit the proofs for three important properties of RCP,
namely preservation, progress, and termination, and show that our extensions
preserve these properties.

4.4.1 Preservation

Preservation is the fact that term reduction preserves typing. There are two proofs
involved in this. First, we show that structural congruence preserves typing.

Theorem 4.10 (Preservation for ≡)
If P ` Γ and P ≡ Q, then Q ` Γ. �

Proof. By induction on the structure of the equivalence. The cases for re-
flexivity, transitivity and congruence are trivial. The cases for (ν-comm) and
(ν-assoc1) are given in fig. 2.4. The cases for (|-comm) and (|-assoc1) are given
in fig. 4.2. �

Secondly, we prove that term reduction preserves typing.

40 Chapter 4. Non-deterministic Classical Processes

Theorem 4.11 (Preservation)
If P ` Γ and P =⇒ Q, then Q ` Γ. �

Proof. By induction on the structure of the reduction. See fig. 2.5 for (↔1),
(↔2), and the β-reduction rules from CP. See fig. 4.3 for the β-reduction rules
of CPND. The cases for (γν) and (γ|) are trivial by call to the induction
hypothesis, and the case for (γ≡) is trivial by call to the induction hypothesis
and theorem 4.10. �

4.4.2 Canonical forms and progress

In this section, we will extend the definition of canonical forms and the proof of
progress progress given in chapter 3.

4.4.2.1 Canonical forms

First, we extend the definitions of actions with our actions for client and server
creation.

Definition 4.12 (Action)
We extend definition 3.2 with the following cases:

• ?x[y].P ′

• ?x(y).P ′

Secondly, as we can reduce inside client pools, we will add pooling to our definition
of evaluation prefixes.

Definition 4.13 (Evaluation prefixes)
We extend definition 3.3 with the following constructs:

G, H := · · · | (G | H)

We also define a special case of evaluation prefixes, which we will refer to as
pooling prefixes. These are evaluation prefixes which consist solely of pooling
operators and holes.

4.4. Properties of CPND 41

Definition 4.14 (Plugging)
We extend definition 3.4 with the following case:

(G | H)[R1 . . . Rm, Rm+1 . . . Rn] := (G[R1 . . . Rm] | H[Rm+1 . . . Rn])

Note that in the this case, G is an evaluation prefix with m holes, and H is
an evaluation prefix with (n − m) holes.

The definition for the maximum evaluation prefix is unchanged.

There are some subtleties to our definition of canonical forms. The type system
for CP guarantees that all links directly under an evaluation context act on a
bound channel. Not so for CPND.

Ax
x↔y ` x : !mA, y : ?mA⊥ P ` Γ, x : !nA

Pool(x↔y | P) ` Γ, x : !m+nA, y : ?mA⊥

There is no way to sensibly reduce this link. Furthermore, in CP, if two processes
act on the same channel, then they must be on different sides of the cut introducing
that channel. The addition of shared channels and client pools invalidates this
property. Therefore, we will have to be more careful about the way we define
canonical forms. We restate the definition of canonical forms below. The additions
have been italicised.

Definition 4.15 (Canonical forms)
A process P is in canonical form if it is an action, or if it is of the form
G[P1 . . . Pn], where G is the maximum evaluation prefix of P , no Pi is a link
which acts on a bound channel, and no Pi and Pj , on different sides of at least
one cut, act on the same channel.

4.4.3 Evaluation contexts

Evaluation contexts are one-holed term contexts under which reduction can take
place. Since we have added another congruence rule, stating that reduction can
take place inside client pools, we extend our definition of evaluation contexts to
match this.

Definition 4.16 (Evaluation contexts)
We extend definition 3.8 with the following constructs:

E := · · · | (E | P) | (P | E)

42 Chapter 4. Non-deterministic Classical Processes

We also define a special case of evaluation contexts, which we will refer to as
pooling contexts. These are evaluation contexts which consist solely of pooling
operators and holes.

Definition 4.17 (Plugging)
We extend definition 3.9 with the following cases:

(E | P)[R] := (E[R] | P)
(P | E)[R] := (P | E[R])

We also restate lemma 3.10, and prove that our extension preserves the property.

Lemma 4.18
If νx.(E[P] | Q) ` Γ and x 6∈ E, then νx.(E[P] | Q) ≡ E[νx.(P | Q)]. �

Proof. By induction on the structure of the evaluation context E.

• Case �, νy.(H | R), and νy.(R | H). See lemma 3.10.

• Case (E | R).

νx.((E[P] | R) | Q) ≡ by (|-comm)
νx.((R | E[P]) | Q) ≡ by (|-extrusion1)
(R | νx.(E[P] | Q)) ≡ by (|-comm)
(νx.(E[P] | Q) | R) ≡ by the induction hypothesis
(E[νx.(P | Q)] | R)

• Case (R | E).

νx.((R | E[P]) | Q) ≡ by (|-extrusion1)
(R | νx.(E[P] | Q)) ≡ by the induction hypothesis
(R | E[νx.(P | Q)])

In each case, the side condition for (|-extrusion1), x 6∈ R, can be inferred from
x 6∈ E, and the side conditions for the induction hypothesis can be inferred
from theorem 4.10 and x 6∈ E. �

Furthermore, it will be useful to prove a similar lemma, which shows that we can
push any pooling downwards under an evaluation context.

Lemma 4.19
If (E[P] | Q) ` Γ, then (E[P] | Q) ≡ E[(P | Q)]. �

4.4. Properties of CPND 43

Proof. By induction on the structure of the evaluation context E.

• Case �. By reflexivity.

• Case νy.(E | R).

(νy.(E[P] | R) | Q) ≡ by (|-comm)
(Q | νy.(E[P] | R)) ≡ by (|-extrusion2)
νy.((Q | E[P]) | R) ≡ by (ν-comm)
νy.((E[P] | Q) | R) ≡ by the induction hypothesis
νy.(E[(P | Q)] | R)

• Case νy.(R | E).

(νy.(R | E[P]) | Q) ≡ by (|-comm)
(Q | νy.(E[P] | R)) ≡ by (|-extrusion2)
νy.((Q | E[P]) | R) ≡ by (ν-comm)
νy.(R | (Q | E[P])) ≡ by the induction hypothesis
νy.(R | E[(P | Q)])

• Case (E | R).

((E[P] | R) | Q) ≡ by (|-comm)
((R | E[P]) | Q) ≡ by (|-assoc2)
(R | (E[P] | Q)) ≡ by (|-comm)
((E[P] | Q) | R) ≡ by the induction hypothesis
(E[(P | Q)] | R)

• Case (R | E).

((R | E[P]) | Q) ≡ by (|-assoc2)
(R | (E[P] | Q)) ≡ by the induction hypothesis
(R | E[(P | Q)])

In each case, the side conditions for (|-extrusion2), y 6∈ Q, can be inferred
from the fact that (Q | νy.(E[P] | R)) is well-typed; the side conditions for
(ν-assoc2), x 6∈ R and y 6∈ Q, can be inferred from x 6∈ E and the fact that
(E[P] | Q) is well-typed; and the side conditions for the induction hypothesis
can be inferred from the fact that (E[P] | Q) is well-typed, theorem 4.10 and
x 6∈ E. �

44 Chapter 4. Non-deterministic Classical Processes

4.4.4 Progress

Progress is the fact that every term is either in some canonical form, or can be
reduced further. First, we will restate lemma 3.12 and lemma 3.13, which relate
evaluation prefixes and evaluation contexts, and show that our extension preserves
these properties.

Lemma 4.20
If G[P1 . . . Pn] ` Γ, and some Pi is a link x↔y, then either x and y are
not bound by G, or there exist E, E ′ and Q such that G[P1 . . . Pn] ≡
E[νx.(E ′[x↔y] | Q)]. �

Proof. As lemma 3.12. The two cases for (G′[P1 . . . Pi . . . Pm] | G′′[Pm+1 . . . Pn])
and (G′[P1 . . . Pm] | G′′[Pm+1 . . . Pi . . . Pn]) are handled exactly as the cases for
cuts which do not bind x or y. �

Lemma 4.21
If G[P1 . . . Pn] ` Γ, and some Pi and Pj, on different sides of at least one cut,
act on the same bound channel x, then there exist E, Ei and Ej such that
G[P1 . . . Pn] = E[νx.(Ei[Pi] | Ej[Pj])]. �

Proof. As lemma 3.12. The two cases for (G′[P1 . . . Pi . . . Pj . . . Pm] | G′′[Pm+1 . . . Pn])
and (G′[P1 . . . Pm] | G′′[Pm+1 . . . Pi . . . Pj . . . Pn]) are handled exactly as the
cases for cuts which do not bind x. The case where Pi and Pj are on different
sides of a pool is excluded by the type system. �

In essence, lemma 4.20 and lemma 4.21 cover the cases in which either (↔1)
or a β-reduction rule will be applied. However, after applying lemma 4.21, we
cannot immediately apply (β?n+1). For that, we must uncover at least one layer
of pooling. We prove a lemma which states that if we have an interaction on a
shared channel x, we can push all pooling rules which pool clients communicating
on x inwards.

Lemma 4.22
If G[P] ` Γ, x : !nA and x ∈ P , then there exists an E and R1 . . . Rn−1 such
that G[P] ≡ E[(P | (R1 | (. . . | Rn−1) . . .))], where x 6∈ E and x ∈ R1, . . . , x ∈
Rn−1. �

Proof. By induction on the structure of the evaluation context G.

4.4. Properties of CPND 45

• Case �. By reflexivity.

• Case νy.(G | R).
Case νy.(R | G).
By the induction hypothesis.

• Case (G | R). There are two cases:

– Case x ∈ R.

(G[P] | Rn−1)
≡ by the induction hypothesis

(E[(P | (R1 | (. . . | Rn−2) . . .))] | Rn−1)
≡ by lemma 4.19

E[(P | (R1 | (. . . | (Rn−2 | Rn−1)) . . .))]

– Case x 6∈ R. By the induction hypothesis.

• Case (R | G). There are two cases:

– Case x ∈ R.

(Rn−1 | G[P])
≡ by (|-comm)

(G[P] | Rn−1)
≡ by the induction hypothesis

(E[(P | (R1 | (. . . | Rn−2) . . .))] | Rn−1)
≡ by lemma 4.19

E[(P | (R1 | (. . . | (Rn−2 | Rn−1)) . . .))]

– Case x 6∈ R. By the induction hypothesis. �

Finally, we are ready to extend our proof of progress. The overall structure of
the proof remains the same, though the addition of pooling makes the wording
slightly more subtle.

Theorem 4.23 (Progress)
If P ` Γ, then either P is in canonical form, or there exists a P ′ such that
P =⇒ P ′. �

Proof. By induction on the structure of derivation for P ` Γ. The only
interesting cases are when the last rule of the derivation is Cut or Pool. In

46 Chapter 4. Non-deterministic Classical Processes

every other case, the typing rule constructs a term in which is in canonical
form.
If the last rule in the derivation is Cut or Pool, we consider the maximum
evaluation prefix G of P , such that P = G[P1 . . . Pm+n+1] and each Pi is an
action. The prefix G consists of m pools, n cuts, and introduces n channels,
but composes m + n + 1 actions, at most m + 1 of which are on the same side
of all cuts. Therefore, one of the following must be true:

• One of the processes is a link x↔y acting on a bound channel.
We proceed as in theorem 3.14, replacing lemma 3.10 and lemma 3.12
with lemma 4.18 and lemma 4.20.

• Two of the processes, Pi and Pj, on different sides of at least one cut,
act on the same bound channel x. We have:

G[P1 . . . Pi . . . Pj . . . Pm+n+1] ≡ by lemma 4.21
E[νx.(Ei[Pi] | Ej[Pj])]

There are two cases:

– If x is a shared channel, we have x : !nA with n > 1 in either Ei[Pi]
or Ej[Pj]. Assume the former. We can infer x 6∈ Ej. We have:

E[νx.(Ei[Pi] | Ej[Pj])] ≡ by lemma 4.19
E[Ej[νx.(Ei[Pi] | Pj)]] ≡ by lemma 4.22
E[Ej[E ′

i[νx.((Pi | (R1 | (. . . | Rn−1) . . .)) | Pj)]]]

We apply (β?n+1). Similarly if x : !nA in Ej[Pj].

– Otherwise, we can infer y 6∈ Ei and y 6∈ Ej.
We proceed as in theorem 3.14, including (β?1) in the β-reduction
rules, and replacing lemma 3.10 and lemma 3.13 with lemma 4.18
and lemma 4.21.

• Otherwise (at least) one of the actions acts on a free variable.
No process Pi is a link acting on a bound channel. No two processes Pi

and Pj act on the same channel x. Therefore, P is canonical. �

4.5. CPND and non-deterministic local choice 47

4.4.5 Termination

Termination is the fact that if we iteratively apply progress to obtain a reduction,
and apply that reduction, we will eventually end up with a term in canonical
form. We restate its proof here for the sake of completeness, but its wording is
unchanged, modulo references to figures.

Theorem 4.24 (Termination)
If P ` Γ, then there are no infinite =⇒ reduction sequences. �

Proof. Every reduction reduces a single cut to zero, one or two cuts. However,
each of these cuts is smaller, in the sense that the type of the channel on which
the communication takes place is smaller. Each reduction either eliminates
a connective, or decreases a resource index on the type of a shared channel.
See figs. 2.5 and 4.3. Furthermore, each instance of the structural congruence
preserves the size of the cut—see figs. 2.4 and 4.2. Therefore, there cannot be
an infinite =⇒ reduction sequence. �

4.5 CPND and non-deterministic local choice

In section 2.2, we discussed the non-deterministic local choice operator, which is
used in several extensions of πDILL and CP [1, 3, 4]. This operator is admissible
in CPND. We can derive the non-deterministic choice P + Q by constructing the
following term:

νx.((?x[y].y[inr].y[].0
| ?x[z].z[inr].z[].0)
| ?x(y).?x(z).case y { y().case y {y().P ; y().P}

; y().case y {y().Q; y().Q} })

The term is a cut between two processes. Both sides are well-typed, see fig. 4.4.
Let us unpack what each side is doing. On the left-hand side, we have a pool of
two processes, ?x[y].y[inr].y[].0 and ?x[z].z[inr].z[].0. Each makes a choice—the
first sends inl, the second sends inr. On the right-hand side, we have a server with
both P and Q. This server has two channels on which a choice is offered, y and z.
However, the choice on z does not affect the outcome of the process. When these
clients and the server are put together, the choices offered by the server will be

48 Chapter 4. Non-deterministic Classical Processes

non-deterministically lined up with the clients which make choices, and either P

or Q will run.

While there is a certain amount of overhead involved in this encoding, it scales
linearly in terms of the number of processes. The reverse—encoding the non-
determinism present in CPND using non-deterministic local choice—scales expo-
nentially, as with the π-calculus.

Nonetheless, it is worrying that we duplicate each program P and Q in order to
encode non-deterministic local choice. However, we can replace the each term
of the form case y {y().P ; y().P} with νw.(case z {z().w[].0; z().w[].0} | w().P).
This process is also well-typed, see below.

(1)
w[].0 ` w : 1 (⊥)

z().w[].0 ` w : 1, z : ⊥

(1)
w[].0 ` w : 1 (⊥)

z().w[].0 ` w : 1, z : ⊥ (&)case z {z().w[].0; z().w[].0} ` w : 1, z : ⊥ & ⊥
P ` Γ (⊥)

w().P ` Γ, w : ⊥
Cut

νw.(case z {z().w[].0; z().w[].0} | w().P) ` Γ, z : ⊥ & ⊥

4.5. CPND and non-deterministic local choice 49

(|-comm) P ` Γ, x : !mA Q ` ∆, x : !nA
Pool(P | Q) ` Γ, ∆, !m+nA

≡ Q ` ∆, x : !nA P ` Γ, x : !mA
Pool(Q | P) ` Γ, ∆, x : !m+nA

(|-assoc1) P ` Γ, x : !lA
Q ` ∆, x : !mA R ` Θ, x : !nA

Pool(Q | R) ` ∆, Θ, x : !m+nA
Pool(P | (Q | R)) ` Γ, ∆, Θ, x : !l+m+nA

≡
P ` Γ, x : !lA Q ` ∆, x : !mA

Pool(P | Q) ` Γ, ∆, x : !l+mA R ` Θ, x : !nA
Pool((P | Q) | R) ` Γ, ∆, Θ, x : !l+m+nA

or

(|-assoc1) P ` Γ, x : !kA

Q ` ∆, x : !lA, y : !mB R ` Θ, x : !nB
Pool(Q | R) ` ∆, Θ, x : !lA, y : !m+nB

Pool(P | (Q | R)) ` Γ, ∆, Θ, x : !k+lA, y : !m+nB

≡
P ` Γ, x : !kA Q ` ∆, x : !lA, y : !mB

Pool(Q | R) ` Γ, ∆, x : !k+lA, y : !mB R ` Θ, x : !oB Pool(P | (Q | R)) ` Γ, ∆, Θ, x : !k+lA, y : !m+nB

(|-extrusion1) P ` Γ, y : !mB

Q ` ∆, x : A, y : !nB R ` Θ, x : A⊥
Cut

νx.(Q | R) ` Γ, ∆, Θ, y : !nB
Pool(P | νx.(Q | R)) ` Γ, ∆, Θ, y : !m+nB

≡
P ` Γ, y : !mB Q ` ∆, x : A, y : !nB

Pool(P | Q) ` Γ, ∆, y : !m+nB R ` Θ, x : A⊥

Cut
νx.((P | Q) | R) ` Γ, ∆, Θ, y : !m+nB

(|-extrusion2) (as above)

Figure 4.2: Type preservation for the structural congruence of CPND

50 Chapter 4. Non-deterministic Classical Processes

(β?1)
P ` Γ, y : A !1

?x[y].P ` Γ, x : !1A
Q ` ∆, z : A⊥

?1
?x(z).Q ` ∆, x : ?1A Cut

νx.(?x[y].P | ?x(z).Q) ` Γ, ∆

=⇒ P ` Γ, y : A Q ` ∆, z : A⊥
Cut

νy.(P | Q{y/z}) ` Γ, ∆

(β?n+1)

P ` Γ, y : A !1
?x[y].P ` Γ, x : !1A Q ` ∆, x : !nA

Pool(?x[y].P | Q) ` Γ, ∆, x : !n+1A

R ` Θ, z : A⊥, x : ?nA ?1
?x′(z).Q ` Θ, x′ : ?1A, x : ?nA

Cont
?x(z).Q ` Θ, x : ?n+1A Cut

νx.((?x[y].P | Q) | ?x(z).Q) ` Γ, ∆, Θ

=⇒ Q ` ∆, x : !nA

P ` Γ, y : A R ` Θ, z : A⊥, x : ?nA
Cut

νy.(P | R{y/z}) ` Γ, Θ, x : ?nA
Cut

νx.(Q | νy.(P | R{y/z})) ` Γ, ∆, Θ

Figure 4.3: Type preservation for the β-reduction rules of CPND

4.5. CPND and non-deterministic local choice 51

(1
)

y
[].

0
`

y
:1

(⊕
1)

y
[in

l].
y
[].

0
`

y
:1

⊕
1

(! 1
)

?x
[y

].y
[in

r].
y
[].

0
`

x
:!

11
⊕

1

(1
)

z[
].0

`
z

:1
(⊕

2)
z[

in
r].

z[
].0

`
z

:1
⊕

1
(! 1

)
?x

[z
].z

[in
r].

z[
].0

`
x

:!
11

⊕
1

P
oo

l
(?

x
[y

].y
[in

r].
y
[].

0
|?

x
[y

].y
[in

r].
y
[].

0)
`

x
:!

21
⊕

1

P
`

Γ
(⊥

)
z(

).P
`

Γ,
z

:⊥
P

`
Γ

(⊥
)

z(
).P

`
Γ,

z
:⊥

(&
)

ca
se

z
{z

()
.P

;z
()

.P
}

`
Γ,

z
:⊥

&
⊥

(⊥
)

z(
).c

as
e

z
{z

()
.P

;z
()

.P
}

`
Γ,

z
:⊥

&
⊥

,y
:⊥

Q
`

Γ
(⊥

)
z(

).Q
`

Γ,
z

:⊥
Q

`
Γ

(⊥
)

z(
).Q

`
Γ,

z
:⊥

(&
)

ca
se

z
{z

()
.Q

;z
()

.Q
}

`
Γ,

z
:⊥

&
⊥

(⊥
)

z(
).c

as
e

z
{z

()
.Q

;z
()

.Q
}

`
Γ,

z
:⊥

&
⊥

,y
:⊥

(&
)

ca
se

y
{y

()
.c

as
e

z
{z

()
.P

;z
()

.P
};

y
()

.c
as

e
z

{z
()

.Q
;z

()
.Q

}}
`

Γ,
z

:⊥
&

⊥
,y

:⊥
&

⊥
(?

1)
?x

′ (z
).c

as
e

y
{y

()
.c

as
e

z
{z

()
.P

;z
()

.P
};

y
()

.c
as

e
z

{z
()

.Q
;z

()
.Q

}}
`

Γ,
x

′ :
? 1

⊥
&

⊥
,y

:⊥
&

⊥
(?

1)
?x

(y
).?

x
′ (z

).c
as

e
y

{y
()

.c
as

e
z

{z
()

.P
;z

()
.P

};
y
()

.c
as

e
z

{z
()

.Q
;z

()
.Q

}}
`

Γ,
x

′ :
? 1

⊥
&

⊥
,x

:?
1⊥

&
⊥

C
on

t
?x

(y
).?

x
(z

).c
as

e
y

{y
()

.c
as

e
z

{z
()

.P
;z

()
.P

};
y
()

.c
as

e
z

{z
()

.Q
;z

()
.Q

}}
`

Γ,
x

:?
1⊥

&
⊥

,x
:?

1⊥
&

⊥

Fi
gu

re
4.

4:
D

er
iva

tio
ns

fo
rt

he
en

co
di

ng
of

no
n-

de
te

rm
in

ist
ic

lo
ca

lc
ho

ice
in

CP
N

D
.

Chapter 5

Conclusions and future work

We have presented CPND, an extension of CP [14] which permits non-deterministic
communication. We have given proofs for preservation, progress, and termination
for the term reduction system of CPND. We have shown that we can define
non-deterministic local choice in CPND.

We have also presented an alternative reduction system for CP, based on the
work by Lindley and Morris [9], which more closely resembles reduction in the
π-calculus.

5.1 Mechanisation of CPND

We have mechanised a variant of CPND, which has the same terms and types,
but has a different reduction system for the non-deterministic terms. While the
existence of this mechanisation gives us some confidence in the correctness of
the proofs given in this dissertation, and shows that the type system of CPND

corresponds to a sound logical system, it would be worthwhile to extend this
mechanisation to cover the work described in this dissertation.

5.2 Relation to bounded linear logic

We mentioned in chapter 1 that CPND was inspired by bounded linear logic (BLL) [7].
BLL is a typed lambda calculus based on intuitionistic linear logic which guarantees

53

54 Chapter 5. Conclusions and future work

that its programs are polynomial-time functions. It too uses resource-indexed ex-
ponentials. However, instead of interpreting these as client and server interactions,
BLL interprets them as accesses to a memory cell, as is a common interpretation
in linear logic [6]. There are some superficial differences between BLL and CPND,
e.g. the former is intuitionistic while the latter is classical, but the main difference
between the two lies in storage versus pooling. In BLL, !nA denotes a memory
cell which can be accessed n times, whereas in CPND, !nA represents a pool of n

different values, computed independently by n different processes.

5.3 Name restriction and parallel composition

It would be worthwhile to decouple the name restriction from the parallel com-
position in CP, as this would greatly simplify our reduction system. We could
do this, for instance, using a two-layered environment, which tracks which sets of
channels are interdependent.

X, Y , Z := Γ1; . . . ; Γn

P ` X Q ` Y

P | Q ` X; Y
P ` x : A, Γ; x : A⊥, ∆; X

(νx)P ` Γ, ∆; X

This decoupling would allow us to reduce the number of reduction rules for servers
and clients, and strengthen our correspondence to the π-calculus.

5.4 Recursion and resource variables

Our formalism so far has only captured servers that provide for a fixed number
of clients. More realistically, we would want to define servers that provide for
arbitrary numbers of clients. This poses two problems: how would we define
arbitrarily-interacting stateful processes, and how would we extend the typing
discipline of CPND to account for them without losing its static guarantees.

One approach to defining server processes would be to combine CPND with
structural recursion and corecursion, following the µCP extension of Lindley and
Morris [10]. Their approach can express processes which produce streams of

5.5. Cuts with leftovers 55

A channels. Such a process would expose a channel with the corecursive type
νX.A

&(1 ⊕ X). Given such a process, it is possible to produce a channel of type
A

&

A

&

· · ·

&

A for any number of As, allowing us to satisfy the type ?nA for an
arbitrary n.

We would also need to extend the typing discipline to capture arbitrary use of
shared channels. One approach would be to introduce resource variables and
quantification. Following this approach, in addition to having types ?nA and !nA

for concrete n, we would also have types ?xA and !xA for resource variables x.
These variables would be introduced by quantifiers ∀xA and ∃xA. Defining terms
corresponding to ∀xA, and its relationship with structured recursion, presents an
interesting area of further work.

5.5 Cuts with leftovers

So far, our account of non-determinism in client/server interactions only allows
interactions between equal numbers of clients and server interactions. A natural
extension of this would be to investigate if we could define a special case of cut
on a client/server interaction, such that e.g. the clients only consume part of the
server resources.

P ` Γ, x : !nA Q ` ∆, x : ?mA⊥ n < m

νx.(P | Q) ` Γ, ∆, x : ?m−nA⊥

Such an extension would work well together with an extension allowing clients
and servers to provide an arbitrary number of interactions.

5.6 Relation to exponentials in CP

Our account of CP has not included the exponentials ?A and !A. The type !A
denotes arbitrarily many independent instances of A, while the type ?A denotes a
concrete (if unspecified) number of potentially-dependent instances of A. Existing
interpretations of linear logic as session types have taken !A to denote A-servers,
while ?A denotes A-clients. However, the analogy is imperfect: while we expect
servers to provide arbitrarily many instances of their behavior, we also expect
those instances to be interdependent.

56 Chapter 5. Conclusions and future work

With quantification over resource variables, we can give precise accounts of both
CP’s exponentials and idealised servers and clients. CP exponentials could be
embedded into this framework using the definitions !A := ∀n!nA and ?A := ∃n?nA.
We would also have types that precisely matched our intuitions for server and client
behavior: an A server is of type ∀n?nA, being unbounded but dependent, while a
collection of A clients is of type ∃n!nA, being definitely sized by independent.

Bibliography

[1] Robert Atkey, Sam Lindley and J. Garrett Morris. ‘Conflation Confers
Concurrency’. In: A List of Successes That Can Change the World: Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday. Ed. by Sam
Lindley et al. Lecture Notes in Computer Science. 2016. doi: 10.1007/978-

3-319-30936-1_2. url: http://dx.doi.org/10.1007/978-3-319-30936-

1_2.
[2] Michele Boreale. ‘On the expressiveness of internal mobility in name-passing

calculi’. In: Theoretical Computer Science 195.2 (Mar. 1998), pp. 205–226.
doi: 10.1016/s0304-3975(97)00220-x. url: https://doi.org/10.

1016/s0304-3975(97)00220-x.
[3] Luís Caires. ‘Types and Logic, Concurrency and Non-Determinism’. In:

Essays for the Luca Cardelli Fest. Ed. by Martin Abadi et al. Microsoft Re-
search, Sept. 2014. url: https://www.microsoft.com/en-us/research/

publication/essays-for-the-luca-cardelli-fest/.
[4] Luís Caires and Jorge A. Pérez. ‘Linearity, Control Effects, and Behavioral

Types’. In: Programming Languages and Systems - 26th European Sym-
posium on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings. Springer, Apr. 2017.

[5] Luís Caires and Frank Pfenning. ‘Session Types as Intuitionistic Linear
Propositions’. In: CONCUR 2010 - Concurrency Theory: 21th International
Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 222–
236. isbn: 978-3-642-15375-4. doi: 10.1007/978-3-642-15375-4_16. url:
http://dx.doi.org/10.1007/978-3-642-15375-4_16.

57

http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1007/978-3-319-30936-1_2
http://dx.doi.org/10.1016/s0304-3975(97)00220-x
https://doi.org/10.1016/s0304-3975(97)00220-x
https://doi.org/10.1016/s0304-3975(97)00220-x
https://www.microsoft.com/en-us/research/publication/essays-for-the-luca-cardelli-fest/
https://www.microsoft.com/en-us/research/publication/essays-for-the-luca-cardelli-fest/
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-642-15375-4_16

58 BIBLIOGRAPHY

[6] Jean-Yves Girard. ‘Linear logic’. In: Theoretical Computer Science 50.1
(1987), pp. 1–101. doi: 10.1016/0304-3975(87)90045-4. url: http:

//dx.doi.org/10.1016/0304-3975(87)90045-4.
[7] Jean-Yves Girard, Andre Scedrov and Philip J. Scott. ‘Bounded Linear

Logic: A Modular Approach to Polynomial-time Computability’. In: Theor.
Comput. Sci. 97.1 (Apr. 1992), pp. 1–66. issn: 0304-3975. doi: 10.1016/

0304-3975(92)90386-T. url: http://dx.doi.org/10.1016/0304-

3975(92)90386-T.
[8] Kohei Honda. ‘Types for dyadic interaction’. In: CONCUR’93. Springer

Nature, 1993, pp. 509–523. doi: 10 . 1007 / 3 - 540 - 57208 - 2 _ 35. url:
http://dx.doi.org/10.1007/3-540-57208-2_35.

[9] Sam Lindley and J. Garrett Morris. ‘A Semantics for Propositions as Sessions’.
In: Programming Languages and Systems. Springer Nature, 2015, pp. 560–
584. doi: 10.1007/978-3-662-46669-8_23. url: http://dx.doi.org/10.

1007/978-3-662-46669-8_23.
[10] Sam Lindley and J. Garrett Morris. ‘Talking Bananas: Structural Recursion

for Session Types’. In: Proceedings of the 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming. ICFP 2016. Nara, Japan:
ACM, 2016, pp. 434–447. isbn: 978-1-4503-4219-3. doi: 10.1145/2951913.

2951921. url: http://doi.acm.org/10.1145/2951913.2951921.
[11] Robin Milner. ‘The polyadic π-calculus: a tutorial’. In: Logic and algebra of

specification. Springer, 1993, pp. 203–246.
[12] Robin Milner, Joachim Parrow and David Walker. ‘A calculus of mobile

processes, II’. In: Information and Computation 100.1 (Sept. 1992), pp. 41–
77. doi: 10.1016/0890-5401(92)90009-5. url: https://doi.org/10.

1016/0890-5401(92)90009-5.
[13] Davide Sangiorgi. ‘π-calculus, internal mobility, and agent-passing calculi’.

In: Theoretical Computer Science 167.1-2 (1996), pp. 235–274. doi: 10.

1016/0304-3975(96)00075-8. url: https://doi.org/10.1016/0304-

3975(96)00075-8.
[14] Philip Wadler. ‘Propositions As Sessions’. In: Proceedings of the 17th ACM

SIGPLAN International Conference on Functional Programming. ICFP ’12.
Copenhagen, Denmark: ACM, 2012, pp. 273–286. isbn: 978-1-4503-1054-3.
doi: 10.1145/2364527.2364568. url: http://doi.acm.org/10.1145/

2364527.2364568.

http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.1016/0304-3975(92)90386-T
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://dx.doi.org/10.1145/2951913.2951921
http://dx.doi.org/10.1145/2951913.2951921
http://doi.acm.org/10.1145/2951913.2951921
http://dx.doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1016/0304-3975(96)00075-8
http://dx.doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1016/0304-3975(96)00075-8
http://dx.doi.org/10.1145/2364527.2364568
http://doi.acm.org/10.1145/2364527.2364568
http://doi.acm.org/10.1145/2364527.2364568

	Introduction
	Background
	Classical Processes
	Terms and types
	Multiplicatives and in- and interdependence
	Additives and choice
	Structural rules and duality
	Commuting conversions
	Example
	Properties of RCP

	Non-determinism, logic, and session types

	CP as a type system for the -calculus
	Canonical forms
	Evaluation contexts
	Progress
	Rewriting versus commuting

	Non-deterministic Classical Processes
	Terms and types
	Typing clients and servers
	Clients and pooling
	Servers and contraction

	Running clients and servers
	Properties of CPND
	Preservation
	Canonical forms and progress
	Evaluation contexts
	Progress
	Termination

	CPND and non-deterministic local choice

	Conclusions and future work
	Mechanisation of CPND
	Relation to bounded linear logic
	Name restriction and parallel composition
	Recursion and resource variables
	Cuts with leftovers
	Relation to exponentials in CP

