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Abstract. As proofs in type theory become increasingly complex, there
is a growing need to provide better proof automation. This paper shows
how to implement a Prolog-style resolution procedure in the dependently
typed programming language Agda. Connecting this resolution proce-
dure to Agda’s reflection mechanism provides a first-class proof search
tactic for first-order Agda terms. As a result, writing proof automation
tactics need not be different from writing any other program.

1 Introduction

Writing proof terms in type theory is hard and often tedious. Interactive proof
assistants based on type theory, such as Agda [Norell, 2007] or Coq [2004], take
very different approaches to facilitating this process.

The Coq proof assistant has two distinct language fragments. Besides the
programming language Gallina, there is a separate tactic language for writing
and programming proof scripts. Together with several highly customizable tac-
tics, the tactic language Ltac can provide powerful proof automation [Chlipala,
2013]. Having to introduce a separate tactic language, however, seems at odds
with the spirit of type theory, where a single language is used for both proof
and computation. Having a separate language for programming proofs has its
drawbacks: programmers need to learn another language to automate proofs,
debugging Ltac programs can be difficult, and the resulting proof automation
may be inefficient [Braibant, 2012].

Agda does not have Coq’s segregation of proof and programming language.
Instead, programmers are encouraged to automate proofs by writing their own
solvers [Norell, 2009b]. In combination with Agda’s reflection mechanism [Agda
development team, 2013, van der Walt and Swierstra, 2013], developers can
write powerful automatic decision procedures [Allais, 2010]. Unfortunately, not
all proofs are easily automated in this fashion. If this is the case, the user is
forced to interact with the integrated development environment and manually
construct a proof term step by step.

This paper tries to combine the best of both worlds by implementing a library
for proof search within Agda itself. In other words, we have defined a program
for the automatic construction of mathematical proofs. More specifically, this
paper makes several novel contributions:



– We show how to implement a Prolog interpreter in the style of Stutterheim
et al. [2013] in Agda (Section 3). Note that, in contrast to Agda, resolving a
Prolog query need not terminate. Using coinduction, however, we can write
an interpreter for Prolog that is total.

– Resolving a Prolog query results in a substitution that, when applied to the
goal, produces a solution in the form of a term that can be derived from the
given rules. We extend our interpreter to also produce a trace of the applied
rules, which enables it to produce a proof term that shows the resulting
substitution is valid.

– We integrate this proof search algorithm with Agda’s reflection mechanism
(Section 4). This enables us to quote the type of a lemma we would like to
prove, pass this term as the goal of our proof search algorithm, and finally,
unquote the resulting proof term, thereby proving the desired lemma.

Although Agda already has built-in proof search functionality [Lindblad and
Benke, 2004], our approach has several key advantages over most existing ap-
proaches to proof automation:

– Our library is highly customizable. We may parametrize our tactics over the
search depth, hint database, or search strategy. Each of these is itself a first-
class Agda value, that may be inspected or transformed, depending on the
user’s needs.

– Although we limit ourself in the paper to a simple depth-first search, different
proofs may require a different search strategy. Such changes are easily made
in our library. To illustrate this point, we will develop a variation of our
tactic which allows the user to limit the number of times certain rules may
be applied (Section 5).

– Users need not learn a new programming language to modify existing tactics
or develop tactics of their own. They can use a full-blown programming
language to define their tactics, rather than restrict themselves to a domain-
specific tactic language such as Ltac.

– Finally, users can use all the existing Agda technology for testing and debug-
ging programs when debugging the generation of proofs. Debugging complex
tactics in Coq requires a great deal of expertise – we hope that implementing
tactics as a library will make this process easier.

We will compare our library with the various alternative forms of proof automa-
tion in greater depth in Section 6, after we have presented our development.

All the code described in this paper is freely available from GitHub.1 It is
important to emphasize that all our code is written in the safe fragment of Agda:
it does not depend on any postulates or foreign functions; all definitions pass
Agda’s termination checker; and all metavariables are resolved.

1 See https://github.com/wenkokke/AutoInAgda.



2 Motivation

Before describing the implementation of our library, we will provide a brief intro-
duction to Agda’s reflection mechanism and illustrate how the proof automation
described in this paper may be used.

Reflection in Agda

Agda has a reflection mechanism2 for compile time metaprogramming in the
style of Lisp [Pitman, 1980], MetaML [Taha and Sheard, 1997], and Template
Haskell [Sheard and Peyton Jones, 2002]. This reflection mechanism makes it
possible to convert a program fragment into its corresponding abstract syntax
tree and vice versa. We will introduce Agda’s reflection mechanism here with
several short examples, based on the explanation in previous work [van der Walt
and Swierstra, 2013]. A more complete overview can be found in the Agda release
notes [Agda development team, 2013] and Van der Walt’s thesis [2012].

The type Term : Set is the central type provided by the reflection mechanism.
It defines an abstract syntax tree for Agda terms. There are several language
constructs for quoting and unquoting program fragments. The simplest example
of the reflection mechanism is the quotation of a single term. In the definition
of idTerm below, we quote the identity function on Boolean values.

idTerm : Term
idTerm = quoteTerm (λ (x : Bool)→ x)

When evaluated, the idTerm yields the following value:

lam visible (var 0 [])

On the outermost level, the lam constructor produces a lambda abstraction. It
has a single argument that is passed explicitly (as opposed to Agda’s implicit
arguments). The body of the lambda consists of the variable identified by the
De Bruijn index 0, applied to an empty list of arguments.

The quote language construct allows users to access the internal represen-
tation of an identifier, a value of a built-in type Name. Users can subsequently
request the type or definition of such names.

Dual to quotation, the unquote mechanism allows users to splice in a Term,
replacing it with its concrete syntax. For example, we could give a convoluted
definition of the K combinator as follows:

const : ∀ {A B} → A→ B→ A
const = unquote (lam visible (lam visible (var 1 [])))

2 Note that Agda’s reflection mechanism should not be confused with ‘proof by re-
flection’ – the technique of writing a verified decision procedure for some class of
problems.



The language construct unquote is followed by a value of type Term. In this
example, we manually construct a Term representing the K combinator and splice
it in the definition of const. The unquote construct then type-checks the given
term, and turns it into the definition λ x→ λ y→ x.

The final piece of the reflection mechanism that we will use is the quoteGoal
construct. The usage of quoteGoal is best illustrated with an example:

goalInHole : N
goalInHole = quoteGoal g in { }0

In this example, the construct quoteGoal g binds the Term representing the type
of the current goal, N, to the variable g. When completing this definition by
filling in the hole labeled 0, we may now refer to the variable g. This variable is
bound to def N [], the Term representing the type N.

Using proof automation

To illustrate the usage of our proof automation, we begin by defining a predicate
Even on natural numbers as follows:

data Even : N→ Set where
isEven0 : Even 0
isEven+2 : ∀ {n} → Even n→ Even (suc (suc n))

Next we may want to prove properties of this definition:

even+ : Even n→ Even m→ Even (n + m)
even+ isEven0 e2 = e2
even+ (isEven+2 e1) e2 = isEven+2 (even+ e1 e2)

Note that we omit universally quantified implicit arguments from the typeset ver-
sion of this paper, in accordance with convention used by Haskell [Peyton Jones,
2003] and Idris [Brady, 2013].

As shown by Van der Walt and Swierstra [2013], it is easy to decide the
Even property for closed terms using proof by reflection. The interesting terms,
however, are seldom closed. For instance, if we would like to use the even+ lemma
in the proof below, we need to call it explicitly.

trivial : Even n→ Even (n + 2)
trivial e = even+ e (isEven+2 isEven0)

Manually constructing explicit proof objects in this fashion is not easy. The
proof is brittle. We cannot easily reuse it to prove similar statements such
as Even (n + 4). If we need to reformulate our statement slightly, proving
Even (2 + n) instead, we need to rewrite our proof. Proof automation can make
propositions more robust against such changes.

Coq’s proof search tactics, such as auto, can be customized with a hint
database, a collection of related lemmas. In our example, auto would be able



to prove the trivial lemma, provided the hint database contains at least the
constructors of the Even data type and the even+ lemma. In contrast to the
construction of explicit proof terms, changes to the theorem statement need
not break the proof. This paper shows how to implement a similar tactic as an
ordinary function in Agda.

Before we can use our auto function, we need to construct a hint database:

hints : HintDB
hints = ε « quote isEven0 « quote isEven+2 « quote even+

To construct such a database, we use quote to obtain the names of any terms
that we wish to include in it and pass them to the right-hand side of the _«_
function, which will insert them into a hint database to the left. Note that ε
represents the empty hint database. We will describe the implementation of
_«_ in more detail in Section 4. For now it should suffice to say that, in the
case of even+, after the quote construct obtains an Agda Name, _«_ uses the
built-in function type to look up the type associated with even+, and generates a
derivation rule which states that given two proofs of Even n and Even m, applying
the rule even+ will result in a proof of Even (n + m).

Note, however, that unlike Coq, the hint data base is a first-class value that
can be manipulated, inspected, or passed as an argument to a function.

We now give an alternative proof of the trivial lemma using the auto tactic
and the hint database defined above:

trivial : Even n→ Even (n + 2)
trivial = quoteGoal g in unquote (auto 5 hints g)

Or, using the newly added Agda tactic syntax3:

trivial : Even n→ Even (n + 2)
trivial = tactic (auto 5 hints)

The notation tactic f is simply syntactic sugar for quoteGoal g in unquote (f g),
for some function f.

The central ingredient is a function auto with the following type:

auto : (depth : N)→ HintDB→ Term→ Term

Given a maximum depth, hint database, and goal, it searches for a proof Term
that witnesses our goal. If this term can be found, it is spliced back into our
program using the unquote statement.

Of course, such invocations of the auto function may fail. What happens if
no proof exists? For example, trying to prove Even n → Even (n + 3) in this
style gives the following error:

Exception searchSpaceExhausted !=<
Even .n -> Even (.n + 3) of type Set

3 Syntax for Agda tactics was added in Agda 2.4.2.



When no proof can be found, the auto function generates a dummy term with a
type that explains the reason the search has failed. In this example, the search
space has been exhausted. Unquoting this term, then gives the type error message
above. It is up to the programmer to fix this, either by providing a manual proof
or diagnosing why no proof could be found.

Overview The remainder of this paper describes how the auto function is imple-
mented. Before delving into the details of its implementation, however, we will
give a high-level overview of the steps involved:

1. The tactic keyword converts the goal type to an abstract syntax tree, i.e.,
a value of type Term. In what follows we will use AgTerm to denote such
terms, to avoid confusion with the other term data type that we use.

2. Next, we check the goal term. If it has a functional type, we add the argu-
ments of this function to our hint database, implicitly introducing additional
lambdas to the proof term we intend to construct. At this point we check that
the remaining type and all its original arguments are are first-order. If this
check fails, we produce an error message, not unlike the searchSpaceExhausted
term we saw above. We require terms to be first-order to ensure that the uni-
fication algorithm, used in later steps for proof search, is decidable. If the
goal term is first-order, we convert it to our own term data type for proof
search, PsTerm.

3. The key proof search algorithm, presented in the next section, then tries
to apply the hints from the hint database to prove the goal. This process
coinductively generates a (potentially infinite) search tree. A simple bounded
depth-first search through this tree tries to find a series of hints that can be
used to prove the goal.

4. If such a proof is found, this is converted back to an AgTerm; otherwise,
we produce an erroneous term describing that the search space has been
exhausted. Finally, the unquote keyword type checks the generated AgTerm
and splices it back into our development.

The rest of this paper will explain these steps in greater detail.

3 Proof search in Agda

The following section describes our implementation of proof search à la Prolog
in Agda. This implementation abstracts over two data types for names—one for
inference rules and one for term constructors. These data types will be referred
to as RuleName and TermName, and will be instantiated with concrete types
(with the same names) in section 4.

Terms and unification

The heart of our proof search implementation is the structurally recursive unifi-
cation algorithm described by McBride [2003]. Here the type of terms is indexed



by the number of variables a given term may contain. Doing so enables the for-
mulation of the unification algorithm by structural induction on the number of
free variables. For this to work, we will use the following definition of terms

data PsTerm (n : N) : Set where
var : Fin n→ PsTerm n
con : TermName→ List (PsTerm n)→ PsTerm n

We will use the name PsTerm to stand for proof search term to differentiate
them from the terms from Agda’s reflection mechanism, AgTerm. In addition to
variables, represented by the finite type Fin n, we will allow first-order constants
encoded as a name with a list of arguments.

For instance, if we choose to instantiate TermName with the following Arith
data type, we can encode numbers and simple arithmetic expressions:

data Arith : Set where
Suc : Arith
Zero : Arith
Add : Arith

The closed term corresponding to the number one could be written as follows:

One : PsTerm 0
One = con Suc (con Zero [] :: [])

Similarly, we can use the var constructor to represent open terms, such as x + 1.
We use the prefix operator # to convert from natural numbers to finite types:

AddOne : PsTerm 1
AddOne = con Add (var (# 0) :: One :: [])

Note that this representation of terms is untyped. There is no check that en-
forces addition is provided precisely two arguments. Although we could add
further type information to this effect, this introduces additional overhead with-
out adding safety to the proof automation presented in this paper. For the sake
of simplicity, we have therefore chosen to work with this untyped definition.

We shall refrain from further discussion of the unification algorithm itself.
Instead, we restrict ourselves to presenting the interface that we will use:

unify : (t1 t2 : PsTerm m)→ Maybe (∃[ n ] Subst m n)

The unify function takes two terms t1 and t2 and tries to compute a substitution—
the most general unifier. Substitutions are indexed by two natural numbers m
and n. A substitution of type Subst m n can be applied to a PsTerm m to produce
a value of type PsTerm n. As unification may fail, the result is wrapped in the
Maybe type. In addition, since the number of variables in the terms resulting
from the unifying substitution is not known a priori, this number is existentially
quantified over. For the remainder of the paper, we will write ∃[ x ] B to mean a
type B with occurrences of an existentially quantified variable x, or ∃ (λ x→ B)
in full.



Inference rules

The hints in the hint database will form inference rules that we may use to prove
a goal term. We represent such rules as records containing a rule name, a list of
terms for its premises, and a term for its conclusion:

record Rule (n : N) : Set where
field
name : RuleName
premises : List (PsTerm n)
conclusion : PsTerm n

arity : N
arity = length premises

Once again the data-type is quantified over the number of variables used in the
rule. Note that the number of variables in the premises and the conclusion is the
same.

Using our newly defined Rule type we can give a simple definition of addition.
In Prolog, this would be written as follows.

add(0, X, X).
add(suc(X), Y, suc(Z)) :- add(X, Y, Z).

Unfortunately, the named equivalents in our Agda implementation given in Fig-
ure 1 are a bit more verbose. Note that we have, for the sake of this example,
instantiated the RuleName and TermName to String and Arith respectively.

A hint database is nothing more than a list of rules. As the individual rules
may have different numbers of variables, we existentially quantify these:

HintDB : Set
HintDB = List (∃[ n ] Rule n)

Generalised injection and raising

Before we can implement some form of proof search, we need to define a pair
of auxiliary functions. During proof resolution, we will work with terms and
rules containing a different number of variables. We will use the following pair
of functions, inject and raise, to weaken bound variables, that is, map values of
type Fin n to some larger finite type.

inject : ∀ {m} n→ Fin m→ Fin (m + n)
inject n zero = zero
inject n (suc i) = suc (inject n i)
raise : ∀ m {n} → Fin n→ Fin (m + n)
raise zero i = i
raise (suc m) i = suc (raise m i)



AddBase : Rule 1
AddBase = record {
name = "AddBase"
conclusion = con Add ( con Zero []

:: var (# 0)
:: var (# 0)
:: [])

premises = []
}

AddStep : Rule 3
AddStep = record {
name = "AddStep"
conclusion = con Add ( con Suc (var (# 0) :: [])

:: var (# 1)
:: con Suc (var (# 2) :: [])
:: [])

premises = con Add ( var (# 0)
:: var (# 1)
:: var (# 2)
:: [])

:: []
}

Fig. 1. Agda representation of example rules

On the surface, the inject function appears to be the identity. When you make
all the implicit arguments explicit, however, you will see that it sends the zero
constructor in Fin m to the zero constructor of type Fin (m + n). Hence, the inject
function maps Fin m into the first m elements of the type Fin (m + n). Dually,
the raise function maps Fin n into the last n elements of the type Fin (m + n) by
repeatedly applying the suc constructor.

We can use inject and raise to define similar functions that work on our Rule
and PsTerm data types, by mapping them over all the variables that they contain.

Constructing the search tree

Our proof search procedure is consists of two steps. First, we coinductively con-
struct a (potentially infinite) search space; next, we will perform a bounded
depth-first traversal of this space to find a proof of our goal.

We will represent the search space as a (potentially) infinitely deep, but
finitely branching rose tree.



data SearchTree (A : Set) : Set where
leaf : A→ SearchTree A
node : List (∞ (SearchTree A))→ SearchTree A

We will instantiate the type parameter A with a type representing proof terms.
These terms consist of applications of rules, with a sub-proof for every premise.

data Proof : Set where
con : (name : RuleName) (args : List Proof)→ Proof

Unfortunately, during the proof search we will have to work with partially com-
plete proof terms.

Such partial completed proofs are represented by the PartialProof type. In
contrast to the Proof data type, the PartialProof type may contain variables,
hence the type takes an additional number as its argument:

PartialProof : N→ Set
PartialProof m = ∃[ k ] Vec (PsTerm m) k × (Vec Proof k→ Proof)

A value of type PartialProof m records three separate pieces of information:

– a number k, representing the number of open subgoals;
– a vector of length k, recording the subgoals that are still open;
– a function that, given a vector of k proofs for each of the subgoals, will

produce a complete proof of the original goal.

Next, we define the following function to help construct partial proof terms:

apply : (r : Rule n)→ Vec Proof (arity r + k)→ Vec Proof (suc k)
apply r xs = new :: rest
where
new = con (name r) (toList (take (arity r) xs))
rest = drop (arity r) xs

Given a Rule and a list of proofs of subgoals, this apply function takes the required
sub-proofs from the vector, and creates a new proof by applying the argument
rule to these sub-proofs. The result then consists of this new proof, together with
any unused sub-proofs. This is essentially the ‘unflattening’ of a rose tree.

We can now finally return to our proof search algorithm. The solveAcc func-
tion forms the heart of the search procedure. Given a hint database and the
current partially complete proof, it produces a SearchTree containing completed
proofs.

solveAcc : HintDB → PartialProof (δ + m)→ SearchTree Proof
solveAcc rules (0 , [] , p) = leaf (p [])
solveAcc rules (suc k , g :: gs , p) = node (map step rules)

If there are no remaining subgoals, i.e., the list in the second component of the
PartialProof is empty, the search is finished. We construct a proof p [], and wrap



this in the leaf constructor of the SearchTree. If we still have open subgoals, we
have more work to do. In that case, we will try to apply every rule in our hint
database to resolve this open goal—our rose tree has as many branches as there
are hints in the hint database. The real work is done by the step function, locally
defined in a where clause, that given the rule to apply, computes the remainder
of the SearchTree.

Before giving the definition of the step function, we will try to provide some
intuition. Given a rule, the step function will try to unify its conclusion with
the current subgoal g. When this succeeds, the premises of the rule are added
to the list of open subgoals. When this fails, we return a node with no children,
indicating that applying this rule can never prove our current goal.

Carefully dealing with variables, however, introduces some complication, as
the code for the step function illustrates:

step : ∃[ δ ] (Rule δ)→∞ (SearchTree Proof)
step (δ , r)

with unify (inject δ g) (raise m (conclusion r))
... | nothing = ] node []
... | just (n , mgu) = ] solveAcc prf
where
prf : PartialProof n
prf = arity r + k , gs′ , (p ◦ apply r)
where
gs′ : Vec (Goal n) (arity r + k)
gs′ = map (sub mgu) (raise m (fromList (premises r)) ++ inject δ gs)

Note that we use the function sub to apply a substitution to a term. This function
is defined by McBride [2003].

The rule given to the step function may have a number of free variables of
its own. As a result, all goals have to be injected into a larger domain which
includes all current variables and the new rule’s variables. The rule’s premises
and conclusion are then also raised into this larger domain, to guarantee freshness
of the rule variables.

The definition of the step function attempts to unify the current subgoal g
and conclusion of the rule r. If this fails, we can return node [] immediately. If
this succeeds, however, we build up a new partial proof, prf. This new partial
proof, once again, consists of three parts:

– the number of open subgoals is incremented by arity r, i.e., the number of
premises of the rule r.

– the vector of open subgoals gs is extended with the premises of r, after
weakening the variables of appropriately.

– the function producing the final Proof object will, given the proofs of the
premises of r, call apply r to create the desired con node in the final proof
object.

The only remaining step, is to kick-off our proof search algorithm with a
partial proof, consisting of a single goal.



solve : (goal : PsTerm m)→ HintDB→ SearchTree Proof
solve g rules = solveAcc (1 , g :: [] , head)

Searching for proofs

After all this construction, we are left with a simple tree structure, which we can
traverse in search of solutions. For instance, we can define a bounded depth-first
traversal.

dfs : (depth : N)→ SearchTree A→ List A
dfs zero = []
dfs (suc k) (leaf x) = return x
dfs (suc k) (node xs) = concatMap (λ x→ dfs k ([ x)) xs

It is fairly straightforward to define other traversal strategies, such as a breadth-
first search. Similarly, we could define a function which traverses the search tree
aided by some heuristic. We will explore further variations on search strategies
in Section 5.

4 Adding reflection

To complete the definition of our auto function, we still need to convert between
Agda’s built-in AgTerm data type and the data type required by our unification
and resolution algorithms, PsTerm. Similarly, we will need to transform the Proof
produced by our solve function to an AgTerm that can be unquoted. These are
essential pieces of plumbing, necessary to provide the desired proof automation.
While not conceptually difficult, this does expose some of the limitations and de-
sign choices of the auto function. If you are unfamiliar with the precise workings
of the Agda reflection mechanism, you may want to skim this section.

The first thing we will need are concrete definitions for the TermName and
RuleName data types, which were parameters to the development presented in
the previous section. It would be desirable to identify both types with Agda’s
Name type, but unfortunately Agda does not assign a name to the function space
type operator, _→_; nor does Agda assign names to locally bound variables.
To address this, we define two new data types TermName and RuleName.
First, we define the TermName data type.

data TermName : Set where
name : Name→ TermName
pvar : N→ TermName
impl : TermName

The TermName data type has three constructors. The name constructor embeds
Agda’s built-in Name in the TermName type. The pvar constructor describes
locally bound variables, represented by their De Bruijn index. Note that the



pvar constructor has nothing to do with PsTerm’s var constructor: it is not used
to construct a Prolog variable, but rather to be able to refer to a local variable
as a Prolog constant. Finally, impl explicitly represents the Agda function space.

We define the RuleName type in a similar fashion.

data RuleName : Set where
name : Name→ RuleName
rvar : N→ RuleName

The rvar constructor is used to refer to Agda variables as rules. Its argument i
corresponds to the variable’s De Bruijn index – the value of i can be used directly
as an argument to the var constructor of Agda’s Term data type.

As we have seen in Section 2, the auto function may fail to find the desired
proof. Furthermore, the conversion from AgTerm to PsTerm may also fail for
various reasons. To handle such errors, we will work in the Error monad defined
below:

Error : (A : Set a)→ Set a
Error A = Message ] A

Upon failure, the auto function will produce an error message. The corresponding
Message type simply enumerates the possible sources of failure:

data Message : Set where
searchSpaceExhausted : Message
unsupportedSyntax : Message

The meaning of each of these error messages will be explained as we encounter
them in our implementation below.

Finally, we will need one more auxiliary function to manipulate bound vari-
ables. The match function takes two bound variables of types Fin m and Fin n
and computes the corresponding variables in Fin (m t n) – where m t n denotes
the maximum of m and n:

match : Fin m→ Fin n→ Fin (m t n) × Fin (m t n)

The implementation is reasonably straightforward. We compare the numbers n
and m, and use the inject function to weaken the appropriate bound variable. It
is straightforward to use this match function to define similar operations on two
terms or a term and a list of terms.

Constructing terms

We now turn our attention to the conversion of an AgTerm to a PsTerm. There
are two problems that we must address.

First of all, the AgTerm type represents all (possibly higher-order) terms,
whereas the PsTerm type is necessarily first-order. We mitigate this problem by



allowing the conversion to ‘fail’, by producing a term of the type Exception, as
we saw in the introduction.

Secondly, the AgTerm data type uses natural numbers to represent variables.
The PsTerm data type, on the other hand, represents variables using a finite type
Fin n, for some n. To convert between these representations, the function keeps
track of the current depth, i.e. the number of Π-types it has encountered, and
uses this information to ensure a correct conversion. We sketch the definition of
the main function below:

convert : (binders : N)→ AgTerm→ Error (∃ PsTerm)
convert b (var i []) = inj2 (convertVar b i)
convert b (con n args) = convertName n ◦ convert b 〈$〉 args
convert b (def n args) = convertName n ◦ convert b 〈$〉 args
convert b (pi (arg (arg-info visible ) (el t1)) (el t2))
with convert b t1 | convert (suc b) t2

... | inj1 msg | = inj1 msg

... | | inj1 msg = inj1 msg

... | inj2 (n1 , p1) | inj2 (n2 , p2)
with match p1 p2

... | (p1′ , p2′) = inj2 (n1 t n2 , con impl (p1′ :: p2′ :: []))
convert b (pi (arg ) (el t2)) = convert (suc b) t2
convert b = inj1 unsupportedSyntax

We define special functions, convertVar and name2term, to convert variables and
constructors or defined terms respectively. The arguments to constructors or
defined terms are processed using the convertChildren function defined below.
The conversion of a pi node binding an explicit argument proceeds by converting
the domain and then codomain. If both conversions succeed, the resulting terms
are matched and a PsTerm is constructed using impl. Implicit arguments and
instance arguments are ignored by this conversion function. Sorts, levels, or any
other Agda feature mapped to the constructor unknown of type Term triggers a
failure with the message unsupportedSyntax.

The convertChildren function converts a list of Term arguments to a list of Pro-
log terms, by stripping the arg constructor and recursively applying the convert
function. We only give its type signature here, as the definition is straightfor-
ward:

convertChildren : N→ List (Arg Term)→ Error (∃ (List ◦ PsTerm))

To convert between an AgTerm and PsTerm we simply call the convert func-
tion, initializing the number of binders encountered to 0.

agda2term : AgTerm→ Error (∃ PsTerm)
agda2term t = convert 0 t



Constructing rules

Our next goal is to construct rules. More specifically, we need to convert a list
of quoted Names to a hint database of Prolog rules. To return to our example in
Section 2, the definition of even+ had the following type:

even+ : Even n→ Even m→ Even (n + m)

We would like to construct a value of type Rule that expresses how even+ can
be used. In Prolog, we might formulate the lemma above as the rule:

even(add(M,N)) :- even(M), even(N).

In our Agda implementation, we can define such a rule manually:

Even+ : Rule 2
Even+ = record {
name = name even+
conclusion = con (name (quote Even)) (

con (name (quote _+_)) (var (# 0) :: var (# 1) :: [])
:: []
)

premises = con (name (quote Even)) (var (# 0) :: [])
:: con (name (quote Even)) (var (# 1) :: [])
:: []

}

In the coming subsection, we will show how to generate the above definition from
the Name representing even+.

This generation of rules is done in two steps. First, we will convert a Name
to its corresponding PsTerm:

name2term : Name→ Error (∃ PsTerm)
name2term = agda2term ◦ unel ◦ type

The type construct maps a Name to the AgTerm representing its type; the unel
function discards any information about sorts; the agda2term was defined previ-
ously.

In the next step, we process this PsTerm. The split function, defined below,
splits a PsTerm at every top-most occurrence of the function symbol impl. Note
that it would be possible to define this function directly on the AgTerm data
type, but defining it on the PsTerm data type is much cleaner as we may assume
that any unsupported syntax has already been removed.

split : PsTerm n→ ∃ (λ k→ Vec (PsTerm n) (suc k))
split (con impl (t1 :: t2 :: [])) = Product.map suc (_::_ t1) (split t2)
split t = (0 , t :: [])

Using all these auxiliary functions, we now define the name2rule function
below that constructs a Rule from an Agda Name.



name2rule : Name→ Error (∃ Rule)
name2rule nm with name2term nm
... | inj1 msg = inj1 msg
... | inj2 (n , t) with split t
... | (k , ts) with initLast ts
... | (prems , concl , ) = inj2 (n , rule (name nm) concl (toList prems))

We convert a name to its corresponding PsTerm, which is converted to a vector
of terms using split. The last element of this vector is the conclusion of the rule;
the prefix constitutes the premises. We use the initLast function from the Agda
standard library, to decompose this vector accordingly.

Constructing goals

Next, we turn our attention to converting a goal AgTerm to a PsTerm. While
we could use the agda2term function to do so, there are good reasons to explore
other alternatives.

Consider the example given in Section 2. The goal AgTerm we wish to prove
is Even n → Even (n + 2). Calling agda2term would convert this to a PsTerm,
where the function space has been replaced by the constructor impl. Instead,
however, we would like to introduce arguments, such as Even n, as assumptions
to our hint database.

In addition, we cannot directly reuse the implementation of convert that was
used in the construction of terms. The convert function maps every AgTerm
variable is mapped to a Prolog variable that may still be instantiated. When
considering the goal type, however, we want to generate skolem constants for
our variables. To account for this difference we have two flavours of the convert
function: convert and convert4Goal. Both differ only in their implementation of
convertVar.

agda2goal×premises : AgTerm→ Error (∃ PsTerm × HintDB)
agda2goal×premises t with convert4Goal 0 t
... | inj1 msg = inj1 msg
... | inj2 (n , p) with split p
... | (k , ts) with initLast ts
... | (prems , goal , ) = inj2 ((n , goal) , toPremises k prems)

Fortunately, we can reuse many of the other functions we have defined above,
and, using the split and initLast functions, we can get our hands on the list
of premises prems and the desired return type goal. The only missing piece of
the puzzle is a function, toPremises, which converts a list of PsTerms to a hint
database containing rules for the arguments of our goal.

toPremises : ∀ {k} → N→ Vec (PsTerm n) k→ HintDB
toPremises i [] = []
toPremises i (t :: ts) = (n , rule (rvar i) t []) :: toPremises (suc i) ts

The toPremises converts every PsTerm in its argument list to a rule, using the
argument’s De Bruijn index as its rule name.



Reification of proof terms

Now that we can compute Prolog terms, goals and rules from an Agda Term,
we are ready to call the resolution mechanism described in Section 3. The only
remaining problem is to convert the witness computed by our proof search back
to an AgTerm, which can be unquoted to produce the desired proof. This is
done by the reify function that traverses its argument Proof; the only interesting
question is how it handles the variables and names it encounters.

The Proof may contain two kinds of variables: locally bound variables, rvar i,
or variables storing an Agda Name, name n. Each of these variables is treated
differently in the reify function.

reify : Proof→ AgTerm
reify (con (rvar i) ps) = var i []
reify (con (name n) ps) with definition n
... | function x = def n (toArg ◦ reify 〈$〉 ps)
... | constructor′ = con n (toArg ◦ reify 〈$〉 ps)
... | = unknown
where
toArg : AgTerm→ Arg AgTerm
toArg = arg (arg-info visible relevant)

Any references to locally bound variables are mapped to the var constructor of
the AgTerm data type. These variables correspond to usage of arguments to the
function being defined. As we know by construction that these arguments are
mapped to rules without premises, the corresponding Agda variables do not need
any further arguments.

If, on the other hand, the rule being applied is constructed using a name,
we do disambiguate whether the rule name refers to a function or a construc-
tor. The definition function, defined in Agda’s reflection library, tells you how
a name was defined (i.e. as a function name, constructor, etc). For the sake of
brevity, we restrict the definition here to only handle defined functions and data
constructors. It is easy enough to extend with further branches for postulates,
primitives, and so forth.

We will also need to wrap additional lambdas around the resulting term, due
to the premises that were introduced by the agda2goal×premises function. To do
so, we define the intros function that repeatedly wraps its argument term in a
lambda.

intros : AgTerm→ AgTerm
intros = introsAcc (length args)
where
introsAcc : N→ AgTerm→ AgTerm
introsAcc zero t = t
introsAcc (suc k) t = lam visible (introsAcc k t)



Hint databases

Users to provide hints, i.e., rules that may be used during resolution, in the form
of a hint database. These hint databases consist of an (existentially quantified)
a list of rules. We can add new hints to an existing database using the insertion
operator, «, defined as follows:

_«_ : HintDB→ Name→ HintDB
db « n with name2rule n
db « n | inj1 msg = db
db « n | inj2 r = db ++ [ r ]

If the generation of a rule fails for whatever reason, no error is raised, and the
rule is simply ignored. Our actual implementation requires an implicit proof ar-
gument that all the names in the argument list can be quoted successfully. If you
define such proofs to compute the trivial unit record as evidence, Agda will fill
them in automatically in every call to the _«_ function on constant arguments.
This simple form of proof automation is pervasive in Agda programs [Oury and
Swierstra, 2008, Swierstra, 2010].

This is the simplest possible form of hint database. In principle, there is no
reason not to define alternative versions that assign priorities to certain rules
or limit the number of times a rule may be applied. We will investigate some
possibilities for extensible proof search in section 5.

It is worth repeating that hint databases are first-class objects. We can com-
bine hints databases, filter certain rules from a hint database, or manipulate
them in any way we wish.

Error messages

Lastly, we need to decide how to report error messages. Since we are going
to return an AgTerm, we need to transform the Message type we saw previously
into an AgTerm. When unquoted, this term will cause a type error, reporting the
reason for failure. To accomplish this, we introduce a dependent type, indexed
by a Message:

data Exception : Message→ Set where
throw : (msg : Message)→ Exception msg

The message passed as an argument to the throw constructor, will be recorded
in the Exception’s type, as we intended.

Next, we define a function to produce an AgTerm from a Message. We could
construct such terms by hand, but it is easier to just use Agda’s quoteTerm
construct:

quoteError : Message→ Term
quoteError searchSpaceExhausted =
quoteTerm (throw searchSpaceExhausted)

quoteError unsupportedSyntax =
quoteTerm (throw unsupportedSyntax)



Putting it all together

Finally, we can present the definition of the auto function used in the examples
in Section 2:

auto : N→ HintDB→ AgTerm→ AgTerm
auto depth rules goalType
with agda2goal×premises goalType

... | inj1 msg = quoteError msg

... | inj2 ((n , g) , args)
with dfs depth (solve g (args ++ rules))

... | [] = quoteError searchSpaceExhausted

... | (p :: ) = intros (reify p)

The auto function takes an AgTerm representing the goal type, splits it into
PsTerms representing the goal g and a list of arguments, args. These arguments
are added to the initial hint database. Calling the solve function with this hint
database and the goal g, constructs a proof tree, that we traverse up to the given
depth in search of a solution. If this proof search succeeds, the Proof is converted
to an AgTerm, a witness that the original goal is inhabited. There are two places
where this function may fail: the conversion to a PsTerm may fail because of
unsupported syntax; or the proof search may not find a result.

5 Extensible proof search

As we promised in the previous section, we will now explore several variations
and extensions to the auto tactic described above.

Custom search strategies

The simplest change we can make is to abstract over the search strategy used by
the auto function. In the interest of readability we will create a simple alias for
the types of search strategies. A Strategy represents a function which searches a
SearchTree up to depth, and returns a list of the leaves (or Proofs) found in the
SearchTree in an order which is dependent on the search strategy.

Strategy = (depth : N)→ SearchTree A→ List A

The changed type of the auto function now becomes.

auto : Strategy→ N→ HintDB→ AgTerm→ AgTerm

This will allow us to choose whether to pass in dfs, breadth-first search or even
a custom user-provided search strategy.



Custom hint databases

In addition, we have developed a variant of the auto tactic described in the paper
that allows users to define their own type of hint database, provided they can
implement the following interface:

HintDB : Set
Hint : N→ Set
getHints : HintDB→ Hints
getRule : Hint k→ Rule k
getTr : Hint k→ (HintDB→ HintDB)

Besides the obvious types for hints and rules, we allow hint databases to evolve
during the proof search. The user-defined getTr function describes a transforma-
tion that may modify the hint database after a certain hint has been applied.

Using this interface, we can implement many variations on proof search.
For instance, we could implement a ‘linear’ proof search function that removes
a rule from the hint database after it has been applied. Alternatively, we may
want to assign priorities to our hints. To illustrate one possible application of this
interface, we will describe a hint database implementation that limits the usage
of certain rules. Before we do so, however, we need to introduce a motivating
example.

Example: limited usage of hints

We start by defining the following sublist relation, taken from the Agda tuto-
rial [Norell, 2009a]:

data _⊆_ : List A→ List A→ Set where
stop : [] ⊆ []
drop : xs ⊆ ys→ xs ⊆ y :: ys
keep : xs ⊆ ys→ x :: xs ⊆ x :: ys

It is easy to show that the sublist relation is both reflexive and transitive—and
using these simple proofs, we can build up a small hint database to search for
proofs on the sublist relation.

hintdb : HintDB
hintdb = ε « quote drop « quote keep « quote ⊆-refl « quote ⊆-trans

Our auto tactic quickly finds a proof for the following lemma:

lemma1 : ws ⊆ 1 :: xs→ xs ⊆ ys→ ys ⊆ zs→ ws ⊆ 1 :: 2 :: zs
lemma1 = tactic (auto dfs 10 hintdb)

The following lemma, however, is false.

lemma2 : ws ⊆ 1 :: xs→ xs ⊆ ys→ ys ⊆ zs→ ws ⊆ 2 :: zs
lemma2 = tactic (auto dfs 10 hintdb)



Indeed, this example does not type check and our tactic reports that the search
space is exhausted. As noted by Chlipala [2013] when examining tactics in Coq,
auto will nonetheless spend a considerable amount of time trying to construct
a proof. As the trans rule is always applicable, the proof search will construct a
search tree up to the full search depth—resulting in an exponental running time.

We will use a variation of the auto tactic to address this problem. Upon
constructing the new hint database, users may assign limits to the number of
times certain hints may be used. By limiting the usage of transitivity, our tactic
will fail more quickly.

To begin with, we choose the representation of our hints: a pair of a rule and
a ‘counter’ that records how often the rule may still be applied:

record Hint (k : N) : Set where
field
rule : Rule k
counter : Counter

These counter values will either be a natural number n, representing that the rule
can still be used at most n times; or >, when the usage of the rule is unrestricted.

Counter : Set
Counter = N ] >

Next, we define a decrementing function, decrCounter, that returns nothing when
a rule can no longer be applied:

decrCounter : Counter→ Maybe Counter
decrCounter (inj1 0) = nothing
decrCounter (inj1 1) = nothing
decrCounter (inj1 x) = just (inj1 (pred x))
decrCounter (inj2 tt) = just (inj2 tt)

Given a hint h, the transition function will now simply find the position of h
in the hint database and decrement the hint’s counter, removing it from the
database if necessary.

We can redefine the default insertion function (_«_) to allow unrestricted
usage of a rule. However, we will define a new insertion function which will allow
the user to limit the usage of a rule during proof search:

_«[_]_ : HintDB→ N→ Name→ HintDB
db «[ 0 ] = db
db «[ x ] n with (name2rule n)
db «[ x ] n | inj1 msg = db
db «[ x ] n | inj2 (k , r) = db ++ [ k , record {rule = r , counter = inj1 x} ]

We now revisit our original hint database and limit the number of times transi-
tivity may be applied:



hintdb : HintDB
hintdb = ε « quote drop

« quote keep
« quote refl
«[ 2 ] quote trans

If we were to search for a proof of lemma2 now, our proof search fails sooner. A
fortiori, if we use this restricted database when searching for a proof of lemma1,
the auto function succeeds sooner, as we have greatly reduced the search space.
Of course, there are plenty of lemmas that require more than two applications of
transitivity. The key insight, however, is that users now have control over these
issues – something which is not even possible in current implementations of auto
in Coq.

6 Discussion

The auto function presented here is far from perfect. This section not only dis-
cusses its limitations, but compares it to existing proof automation techniques
in interactive proof assistants.

Restricted language fragment The auto function can only handle first-order
terms. Even though higher-order unification is not decidable in general, we be-
lieve that it should be possible to adapt our algorithm to work on second-order
goals. Furthermore, there are plenty of Agda features that are not supported
or ignored by our quotation functions, such as universe polymorphism, instance
arguments, and primitive functions.

Even for definitions that seem completely first-order, our auto function can
fail unexpectedly. Consider the following definition of the pair type:

_×_ : (A B : Set)→ Set
A × B = Σ A (λ → B)
pair : {A B : Set} → A → B → A × B
pair x y = x , y

Here a (non-dependent) pair is defined as a special case of the dependent pair
type Σ. Now consider the following trivial lemma:

andIntro : (A : Set) → (B : Set) → A × B

Somewhat surprisingly, trying to prove this lemma using our auto function, pro-
viding the pair function as a hint, fails. The quoteGoal construct always re-
turns the goal in normal form, which exposes the higher-order nature of A × B.
Converting the goal (A × (λ → B)) to a PsTerm will raise the ‘exception’
unsupportedSyntax; the goal type contains a lambda which causes the proof search
to fail before it has even started.



Refinement The auto function returns a complete proof term or fails entirely.
This is not always desirable. We may want to return an incomplete proof, that
still has open holes that the user must complete. The difficulty lies with the
current implementation of Agda’s reflection mechanism, as it cannot generate
an incomplete Term.

In the future, it may be interesting to explore how to integrate proof au-
tomation using the reflection mechanism better with Agda’s IDE. For instance,
we could create an IDE feature which replaces a call to auto with the proof
terms that it generates. As a result, reloading the file would no longer need to
recompute the proof terms.

Metatheory The auto function is necessarily untyped because the interface of
Agda’s reflection mechanism is untyped. Defining a well-typed representation of
dependent types in a dependently typed language remains an open problem, de-
spite various efforts in this direction [Chapman, 2009, Danielsson, 2006, Devriese
and Piessens, 2013, McBride, 2010]. If we had such a representation, however, we
could use the type information to prove that when the auto function succeeds,
the resulting term has the correct type. As it stands, a bug in our auto function
could potentially produce an ill-typed proof term, that only causes a type error
when that term is unquoted.

Variables The astute reader will have noticed that the tactic we have imple-
mented is closer to Coq’s eauto tactic than the auto tactic. The difference be-
tween the two tactics lies in the treatment of unification variables: eauto may
introduce new variables during unification; auto will never do so. It would be
fairly straightforward to restrict our tactic to only apply hints when all variables
known. A suitable instantiation algorithm, which we could use instead of the
more general unification algorithm in this paper, has already been developed in
previous work [Swierstra and van Noort, 2013].

Technical limitations The auto tactic relies on the unification algorithm and
proof search mechanism we have implemented ourselves. These are all run at
compile time, using the reflection mechanism to try and find a suitable proof
term. It is very difficult to say anything meaningful about the performance of
the auto tactic, as Agda currently has no mechanism for debugging or profiling
programs run at compile time. We hope that further advancement of the Agda
compiler and associated toolchain can help provide meaningful measurements of
the performance of auto. Similarly, a better (static) debugger would be invaluable
when trying to understand why a call to auto failed to produce the desired proof.

Related work

There are several other interactive proof assistants, dependently typed program-
ming languages, and alternative forms of proof automation in Agda. In the re-
mainder of this section, we will briefly compare the approach taken in this paper
to these existing systems.



Coq Coq has rich support for proof automation. The Ltac language and the
many primitive, customizable tactics are extremely powerful [Chlipala, 2013].
Despite Coq’s success, it is still worthwhile to explore better methods for proof
automation. Recent work on Mtac [Ziliani et al., 2013] shows how to add a typed
language for proof automation on top of Ltac. Furthermore, Ltac itself is not
designed to be a general purpose programming language. It can be difficult to
abstract over certain patterns and debugging proof automation is not easy. The
programmable proof automation, written using reflection, presented here may
not be as mature as Coq’s Ltac language, but addresses these issues.

More recently, Malecha et al. [2014] have designed a higher-order reflective
programming language (MirrorCore) and an associated tactic language (Rtac).
MirrorCore defines a unification algorithm – similar to the one we have imple-
mented in this paper. Alternative implementations of several familiar Coq tac-
tics, such as eauto and setoid_rewrite, have been developed using Rtac. The au-
thors have identified several similar advantages of ‘programming’ tactics, rather
than using built-in primitives, that we mention in this paper, such as manipu-
lating and assembling first-class hint databases.

Idris The dependently typed programming language Idris also has a collection of
tactics, inspired by some of the more simple Coq tactics, such as rewrite, intros,
or exact. Each of these tactics is built-in and implemented as part of the Idris
system. There is a small Haskell library for tactic writers to use that exposes
common commands, such as unification, evaluation, or type checking. Further-
more, there are library functions to help handle the construction of proof terms,
generation of fresh names, and splitting sub-goals. This approach is reminiscent
of the HOL family of theorem provers [Gordon and Melham, 1993] or Coq’s
plug-in mechanism. An important drawback is that tactic writers need to write
their tactics in a different language to the rest of their Idris code; furthermore,
any changes to tactics requires a recompilation of the entire Idris system.

Agsy Agda already has a built-in ‘auto’ tactic that outperforms the auto function
we have defined here [Lindblad and Benke, 2004]. It is nicely integrated with the
IDE and does not require the users to provide an explicit hint database. It is,
however, implemented in Haskell and shipped as part of the Agda system. As
a result, users have very few opportunities for customization: there is limited
control over which hints may (or may not) be used; there is no way to assign
priorities to certain hints; and there is a single fixed search strategy. In contrast
to the proof search presented here, where we have much more fine grained control
over all these issues.

Conclusion

The proof automation presented in this paper is not as mature as some of these
alternative systems. Yet we strongly believe that this style of proof automation
is worth pursuing further.



The advantages of using reflection to program proof tactics should be clear:
we do not need to learn a new programming language to write new tactics;
we can use existing language technology to debug and test our tactics; and we
can use all of Agda’s expressive power in the design and implementation of our
tactics. If a particular problem domain requires a different search strategy, this
can be implemented by writing a new traversal over a SearchTree. Hint databases
are first-class values. There is never any built-in magic; there are no compiler
primitives beyond Agda’s reflection mechanism.

The central philosophy of Martin-Löf type theory is that the construction
of programs and proofs is the same activity. Any external language for proof
automation renounces this philosophy. This paper demonstrates that proof au-
tomation is not inherently at odds with the philosophy of type theory. Paraphras-
ing Martin-Löf [1985], it no longer seems possible to distinguish the discipline of
programming from the construction of mathematics.
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