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Rusty Variation (RV) is a library for session-typed communication in Rust which offers strong
compile-time correctness guarantees. Programs written using RV are guaranteed to respect a speci-
fied protocol, and are guaranteed to be free from deadlocks and races.

1 Introduction

In concurrent programming, processes commonly exchange information by sending messages on shared
channels. However, this communication often does not follow a specified protocol, and if it does, the
correctness of the implementation with respect to that protocol is rarely checked.

Session types are a substructural typing discipline, introduced by Honda [8], which describe com-
munication protocols as types, capturing both the types and the order of messages. Session type systems,
then, ensure that programs correctly implement specified protocols.

Rust is an immensely popular systems programming language.1 It aims to combine efficiency with
abstraction and thread and memory safety. However, out of the box, it does not offer a way to specify
protocols and verify communication.

In this paper, we present Rusty Variation2 (RV), a library for session-typed communication in Rust
which allows users to specify and check the adherence to communication protocols, in addition to offer-
ing strong correctness guarantees, such as freedom from deadlocks and unwanted races, while accounting
for the possibility of failure. It is these strong guarantees of correctness, together with our account of
failure, which sets us apart from previous work [9]. We assume some familiarity with Rust. For an
introduction to Rust, we refer the reader to The Rust Programming Language [3].

We base our work on Exceptional GV by Fowler et al. [5, EGV]. Exceptional GV is a descendant
of Good Variation [14, GV], which adds support for exceptions and the cancellation of sessions. GV
is a λ-calculus with operations for forking threads and sending and receiving values. Crucially, EGV
has an affine type system, and permits the explicit cancellation of sessions. EGV guarantees session
fidelity, global progress, freedom from deadlocks and livelocks, confluence, and termination. That is to
say, there are no locks or race conditions, and all programs eventually halt. For a discussion of EGV and
its metatheory, we refer the reader to the work by Fowler et al. [5].

Rusty Variation is an implementation of Exceptional GV (EGV) in Rust. We claim that RV is a
faithful implementation of EGV, preserving much of EGV’s metatheory, meaning RV guarantees session
fidelity, global progress, confluence, and freedom from deadlocks and unwanted races. However, we
depart from EGV in two ways: First, EGV relies upon exceptions and handlers. Rust, however, rejects
exceptions in favour of monadic errors, i.e., wrapping possibly failing results in error types such as

1https://insights.stackoverflow.com/survey/2019/
2https://github.com/wenkokke/rusty-variation/
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Option<T> and Result<T,E>. Second, the core language of EGV does not include general recursion. Rust
does. In the presence of non-termination, we cannot guarantee livelock freedom, or—well—termination.

RV is currently implemented on top of the channels provided by the crossbeam_channel crate, but it
can be implemented using any library which offers one-shot channels and selection.

The paper proceeds as follows. In section 2, we describe the programming interface offered by Rusty
Variation, and provide several example programs. In section 3, we compare Rusty Variation to the related
work by Laumann et al. [9]. Finally, in section 4, we describe future work on verifying the correctness
guarantees offered by RV.

2 Rusty Variation

2.1 Types, sessions, and duality

There are three basic types which we use to describe session protocols—or session types: Send, Recv, and
End. We refer to values of these types as session endpoints or, when referring to both endpoints, sessions.
Session endpoints wrap primitive channels—see section 2.6. Any type built using these primitive types
is a valid session type:

pub struct Send<T, S: Session> { ... }
pub struct Recv<T, S: Session> { ... }
pub struct End { ... }

Session types are public, but their member functions are not. Therefore, users cannot construct their
own misbehaving sessions. The continuation of a session must itself be a session. This is enforced by
the Session constraint. In addition to this “kinding” of session types, the Session trait also requires any
session type to implement duality and session generation:

pub trait Session {
type Dual: Session<Dual=Self>;
fn new() -> (Self, Self::Dual);

}

Duality works as expected: Send<T, S> is dual to Recv<T, S::Dual>—and vice versa—and End is self-
dual. The constraint Session<Dual=Self> enforces that the dual of a session type is a session type, and
that S::Dual::Dual is equal to S (involutivity).

The new function generates a new session-typed channel and returns two dual channel endpoints.
Unlike the rest of the functions discussed in this section, new is not part of the public interface—see
section 2.7.

Using these types, we can define the types of servers which offer squaring or negation as follows,
where i32 is the type of 32-bit integers:

type SqrSrv = Recv<i32, Send<i32, End>>;
type NegSrv = Recv<i32, Send<i32, End>>;

The client types are obtained by duality.

2.2 Send, receive, close, and fork

The send and recv functions send and receive values in sessions. Sending is non-blocking, and never
fails. Sending a value on a cancelled channel is equivalent to cancelling that value—see section 2.3.
Receiving is blocking, and fails if the channel is cancelled.
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pub fn send<T, S: Session>(x: T, s: Send<T, S>) -> S
pub fn recv<T, S: Session>(s: Recv<T, S) -> Option<(T, S)>

The close function closes a completed session, i.e., of type End. Closing is synchronous, meaning that
close blocks until the dual end point is also closed. Closing a cancelled channel fails.

pub fn close(s: End) -> Option<()>

The fork function creates a new session, and spawns a new thread. The new thread runs the first argu-
ment of fork—a function—which receives one endpoint, and fork returns the dual endpoint. It has the
following type—where FnOnce(S) -> Option<()> is the type of functions from S to Option<()> which
can be invoked only once:

pub fn fork<S: Session>(p: P) -> S::Dual
where
P: FnOnce(S) -> Option<()>,

The function passed to fork is allowed to fail, hence the Option-type. If it fails, the child thread panics
silently, and all open sessions in the child thread are cancelled.

Now that we have covered the basics, let us consider an example program. The following program
forks off a child process which sends a “ping”, then waits to receive that ping and returns:

let s = fork(move |s: Send<(), End>| {
let s = send((), s);
close(s)

});
let ((), s) = recv(s)?;
close(s)

The let x = M?; N construct is Rust’s “monadic bind” notation for programs which may return errors.
If recv(s) succeeds, the ?-operator unpacks the Option. If recv(s) fails, the ?-operator short-circuits,
skips the rest of the statements, and returns the error.

2.3 Linearity and cancellation

Session types often require linearity—the protocol for a negation server in section 2.2 specifies that the
server receives one integer, and then sends one integer back. For such a server to, e.g., send back multiple
integers would be, at best, confusing, and at worst, cause an error. The following two erroneous programs
violate the linearity condition. The program on the left reuses the channel s, and the program on the right
drops it without completing the session:

let s = fork(move |s: Send<(), End>| {
let s1 = send((), s);
close(s1)?;
let s2 = send((),

:
s); // reuse s

close(s2)
});
let ((), s) = recv(s)?;
close(s)

let s = fork(move |s: Send<(), End>| {

// unintentionally
// left blank.

});
let ((), s) = recv(s)?;
close(s)

Rust is an affine language, meaning that any value can be used at most once. Hence, our first example
doesn’t compile: Rust complains about the second usage of s, which attempts to use s after transferring
ownership of the value to send.
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The second program is trickier, as Rust’s type system doesn’t help us here. Arguably, however, that
is for the best. The idea of linear session types ignores the reality that sessions may be dropped at
any time, for any number of reasons: a process may panic, dropping all sessions in scope, or—when
communicating over the network—the connection might fail. In section 1, we mentioned that EGV has
an affine type system, and permits the explicit cancellation of sessions. Following EGV, Rusty Variation
also permits the cancellation of sessions. However, instead of having cancellation be an explicit primitive,
we implement it implicitly for any dropped value, using Rust’s destructors3.

When an initialised value in Rust goes out of scope, Rust calls its destructor, the drop method. This
method can be customised by implementing the Drop trait. For instance, if we use the implementation of
Drop shown on the left, running the code on the right would print “End dropped!” twice, once from the
child thread, and once from the main thread.

impl Drop for End {
fn drop(&mut self) {
println!("End␣dropped!")

}
}

let _s = fork(move |_s: End| {
// intentionally left blank.

});
// intentionally left blank.

To mimic the cancellation behaviour in EGV, we count the number of references to a session, starting at
two when a session is created using new. Each time a session’s destructor is called, we decrement this
counter. If the counter is one, the session is marked as disconnected. Sending on a disconnected session
drops the value being sent. Receiving on or closing disconnected sessions returns an error, i.e., None.
This ensures that no process is left waiting for a message that will never come. If the counter reaches
zero, the memory for the session is deallocated.

As it turns out, this is exactly the behaviour for the channels from crossbeam_channel, which we use
in our implementation, and when a session is dropped, the channel it wraps is dropped recusively. Hence,
we inherit the correct behaviour of dropping sessions from crossbeam_channel.

However, there is one major downside to replacing explicit cancellation with implicit cancellation:
it is no longer possible to tell whether the programmer wanted to cancel a session or simply forgot to
complete the session. We do two things to remedy this. First, the definitions of Send, Recv, and End are
annotated with #[must_use]. This causes Rust to emit a warning whenever a session is dropped. Second,
we provide an explicit cancel function, though its implementation is simply to drop its argument:

pub fn cancel<T>(_x: T) -> () { /* intentionally left blank. */ }

The following two programs illustrate our solution. The program on the left forgets to use s, and Rust
emits a warning, complaining that s isn’t used. The program on the right passes the session to cancel,
explicitly marking the drop, and hence compiles without any warnings. Both programs have the same
semantics, though: the program forks off a process which is expected to send a “ping”. Instead the forked
process cancels the session—be it implicitly or explicitly. Hence, the call to recv fails, the ?-operator
short-circuits, and the whole program returns None:

let s = fork(move |s: Send<(), End>| {
// shouldn't we be using s?
Some(())

});
let (z, s) = recv(s)?;
close(s)

let s = fork(move |s: Send<(), End>| {
cancel(s);
Some(())

});
let (z, s) = recv(s)?;
close(s)

3https://doc.rust-lang.org/1.35.0/book/ch15-03-drop.html

https://doc.rust-lang.org/1.35.0/book/ch15-03-drop.html
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2.4 Branching with offer! and choose!

The choose_left, choose_right, and offer_either functions let processes offer or make a binary choice.
These are derived constructs [8, 2]. They are implemented using only the functions in our library—new,
send, recv, close, and cancel—and the sum type Either. They send or receive a value of the type
Either<S1, S2>, where S1 and S2 are the possible continuations of the session.

type Choose<S1, S2> = Send<Either<S1, S2>, End>;
type Offer<S1, S2> = Recv<Either<S1, S2>, End>;

pub fn choose_left<S1: Session, S2: Session>(s: Choose<S1, S2>) -> S1
pub fn choose_right<S1: Session, S2: Session>(s: Choose<S1, S2>) -> S2
pub fn offer_either<S1: Session, S2: Session, P1, P2, R>(

s: Offer<S1, S2>, p1: P1, p2: P2) -> Option<R>
where
P1: FnOnce(S1) -> Option<R>,
P2: FnOnce(S2) -> Option<R>,

There is a subtlety in their implementation. The choose_left function creates a new session of type S1. It
wraps one endpoint in Either::Left, sends it over the original session s, and returns the other endpoint.
However, this leaves it with the continuation of the original session, of type End. Closing this endpoint
synchronously, using close, may fail. However, choose_left sends, and for consistency with send, we
would like it to always succeed. Therefore, we opt to cancel the continuation instead:

pub fn choose_left<S1: Session, S2: Session>(s: Choose<S1, S2>) -> S1 {
let (here, there) = S1::new();
let s = send(Either::Left(there), s);
cancel(s);
here

}

Cancelling the endpoint is harmless—as long as the other processes is prepared, and uses the correspond-
ing function offer_either, this acts as an asynchronous alternative to close. Pairing choose_left with
a manually implemented version of offer_either which attempts to close the continuation instead of
cancelling it results in a runtime error.

The choose_left, choose_right, and offer_either functions suffice to encode choice, they are not
useful in practice—a protocol with a four-way choice would require three nested Offer constructs, and
several calls to offer_either. Code written in this style rapidly becomes unreadable. For this reason, we
also define two macros, choose! and offer!, which generalise binary choice using Either to a choice on
any enum, as long as each case wraps a session. This allows processes to offer and make choices between
many labelled branches, and allows us to define the type for a calculator server as:

enum CalcOp { Sqr(SqrSrv), Neg(NegSrv) }
type CalcSrv = Recv<CalcOp, End>;
type CalcCli = CalcSrv::Dual;

Using the choose! and offer! macros, we can implement a calculator server and client. The main function
below forks off a calculator server, which offers the choice between squaring and negation. The client
then selects squaring, sends the number four, and prints the result:
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fn server(s: CalcSrv) -> Option<()> {
offer!(s, {
CalcOp::Sqr(s) => {
let (x, s) = recv(s)?;
let s = send(x * x, s);
close(s)

},
CalcOp::Neg(s) => {
let (x, s) = recv(s)?;
let s = send(-x, s);
close(s)

},
})

}

fn client(s: CalcCli) -> Option<i32> {
let s = choose!(CalcOp::Sqr, s);
let s = send(4, s);
let (z, s) = recv(s)?;
close(s)?;
Some(z)

}

// main() prints Some(16)
fn main() {
let s = fork(server);
let z = client(s);
println!("{}", z);

}

2.5 Homogeneous Selection

Selection is a mechanism which allows processes to block on a list of actions, waiting until the first of
them fires. Writing programs which use selection can be tricky and error prone, even using libraries
specifically built to help with selection. For instance, the following is an excerpt from the documentation
of crossbeam_channel::Select4, a construct which implements a selection mechanism:

Once a list of operations has been built with Select, there are two different ways of proceed-
ing:

• Select an operation with try_select, select, or select_timeout. If successful, the
returned selected operation has already begun and must be completed. If we don’t
complete it, a panic will occur.

• Wait for an operation to become ready with try_ready, ready, or ready_timeout. If
successful, we may attempt to execute the operation, but are not obliged to. In fact, it’s
possible for another thread to make the operation not ready just before we try executing
it, so it’s wise to use a retry loop. However, note that these methods might return with
success spuriously, so it’s a good idea to always double check if the operation is really
ready.

None of this advice is enforced by Rust—instead, this must be checked by the programmer—and bugs
in the use of selection can be hard to find, especially if the approach using ready is used.

RV offers an alternative, the select_mut function. This function operates on a vector of receiving
endpoints, returning the result of the first receive operation which completes, and removing the corre-
sponding session from the vector. We restrict ourselves to the receiving endpoints, as RV’s send operation
is non-blocking, hence selecting on sending endpoints doesn’t make any sense.

pub fn select_mut<T, S: Session>(rs: &mut Vec<Recv<T, S>>) -> Option<(T, S)>

The select_mut function is implemented on top of crossbeam_channel::Select, in a way which
respects the rules listed above. In addition, RV offers an immutable variant of select_mut, named select,
which returns the remainder of the endpoints along the with result of the selection. Using select_mut,
we can write the following program, which forks off ten threads, each sending an index between 1 and

4https://docs.rs/crossbeam-channel/0.3.8/crossbeam channel/struct.Select.html

https://docs.rs/crossbeam-channel/0.3.8/crossbeam_channel/struct.Select.html
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10, and then repeatedly selects on the receiving endpoints, receiving and printing an index, printing the
numbers 1 to 10 in a random order:

let mut rs = Vec::new();
for i in 0..10 {
let s = fork(move |s: Send<i32, End>| {
let s = send(i, s);
close(s)

});
rs.push(s);

}

loop {
if rs.is_empty() {

break Ok(());
}
let (i, r) = select_mut(&mut rs)?;
println!("{}", i);
close(r)

}

The select_mut and select functions are homogeneous: they only select over vectors of endpoints
with the same type. This rules out heterogeneous uses of selection, where the operations are of different
types. Selection is not a part of EGV, and hence our strong correctness guarantees do not extend to
selection.

2.6 Implementation

So far we have avoided discussing the implementation whenever possible, and with good reason: RV can
be implemented using any library which offers one-shot channels and selection. Hence, the important
contribution in this paper is not the implementation, but the programming interface offered by RV.

Let us briefly discuss the implementation. We use the asynchronous channels from crossbeam_channel,
which at the time of writing is the de facto implementation of channels in Rust. Channels are typed, and
can only transfer values of a single type. Therefore, we use one-shot channels, and encode sessions fol-
lowing Scalas and Yoshida, and Padovani [13, 12]: Each send creates a new session for the continuation,
and uses the primitive send operation to send the value along with one endpoint of the continuation ses-
sion. If the primitive send operation returns an error, we swallow it, using unwrap_or. Each recv receives
a value together with a channel on which to continue the session. If the primitive recv operation returns
an error, the ?-operator short-circuits, and we return the error. The channels in crossbeam_channel are
highly optimised for one-shot usage.

use crossbeam_channel::{Sender, Receiver}; // abbreviated import list

pub struct Send<T, S: Session> { channel: Sender<(T, S::Dual)> }
pub struct Recv<T, S: Session> { channel: Receiver<(T, S)> }

pub fn send<T, S: Session>(x: T, s: Send<T, S>) -> S
{

let (here, there) = S::new();
s.channel.send((x, there)).unwrap_or(());
here

}

pub fn recv<T, S: Session>(s: Recv<T, S>) -> Option<(T, S)>
{

let (v, s) = s.channel.recv()?;
Some((v, s))

}
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Closing is implemented using two asynchronous channels, which we use to simulate a single syn-
chronous channel. Both channels transmit a unit value. Each close operator first sends on one of the
channels (for which it has the sender) and then receives (blocking) on the other channel (for which it has
the receiver). If the other endpoint is cancelled, both channels are marked as disconnected, and thus any
close operation which is still blocking will raise an exception. Otherwise, the first close operation blocks
until the second is executed.

pub struct End { sender: Sender<()>, receiver: Receiver<()> }

pub fn close(s: End) -> Option<()> {
s.sender.send(()).unwrap_or(());
s.receiver.recv()?;
Some(())

}

While the current implementation is efficient, it could likely be improved by replacing crossbeam_channel

with a minimal implementation of one-shot channels and selection.
The Rust standard library offers std::sync::mpsc, an implementation of channels. The first imple-

mentation of RV used the channels from this library. However, std::sync::mpsc has some fundamental
issues with its design5, and seems to be on its way out. In 2018, the selection mechanism, mpsc_select!,
was deprecated6, and there are plans to phase out std::sync::mpsc altogether [7].

2.7 What If I Want to Be Evil?

There are three ways in which you can make code written using Rusty Variation lock in safe Rust. The
first is by writing an infinite loop, which we discussed earlier.

The biggest issue lies in the fact that Rust’s semantics do not guarantee that the destructors are
actually run. This does not mean that Rust can arbitrarily decide not to run destructors, but that it is
possible to write programs which leak memory. The most obvious example of this is std::mem::forget7:

Takes ownership and “forgets” about the value without running its destructor.
Any resources the value manages, such as heap memory or a file handle, will linger forever
in an unreachable state. However, it does not guarantee that pointers to this memory will
remain valid.

Explicitly calling std::mem::forget on session endpoints is unlikely to happen by accident, hence we
don’t consider this a huge shortcoming. However, it is also possible to leak memory by creating reference
cycles8—in fact, std::mem::forget was initially marked as unsafe, until it was discovered that it could
be implemented in safe Rust creating reference cycles. This means that care needs to be taken when
combining sessions and cyclic data structures, e.g., storing session endpoints in doubly linked lists.

The second problem arises from the availability of new, which creates two dual session endpoints.
Code written using only fork is guaranteed to be deadlock free [11], but using new and std::thread::spawn,
it becomes easy to write code which deadlocks. However, it is impossible to export a trait without export-
ing all its members. Arguably, hiding new is also undesirable. Using only fork, it is impossible to create
any cyclic communication structures, including those which are well behaved. Therefore, a programmer
may occasionally need access to new.

5https://github.com/rust-lang/rust/pull/42397#issuecomment-315867774
6https://github.com/rust-lang/rust/issues/27800
7https://doc.rust-lang.org/1.35.0/std/mem/fn.forget.html
8https://doc.rust-lang.org/1.35.0/book/ch15-06-reference-cycles.html

https://github.com/rust-lang/rust/pull/42397#issuecomment-315867774
https://github.com/rust-lang/rust/issues/27800
https://doc.rust-lang.org/1.35.0/std/mem/fn.forget.html
https://doc.rust-lang.org/1.35.0/book/ch15-06-reference-cycles.html
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The following two programs illustrate the two ways of constructing deadlocking programs dis-
cussed above. The program on the left uses std::mem::forget to drop the session endpoint without
running its destructors. The program on the right creates two pairs of channels to construct a deadlock:

// Deadlock using std::mem::forget
let s = fork(move |s: Send<(), End>| {

std::mem::forget(s);
Some(())

});
let ((), s) = recv(s)?;
close(s)

// Deadlock using new and spawn
let (s1, r1) = Send<Void, End>::new();
let (s2, r2) = Send<Void, End>::new();
std::thread::spawn(move || {

let (v, r1) = recv(r1)?;
close(r1)?;
let s2 = send(v, s2);
close(s2)

});
let (v, r2) = recv(r2)?;
close(r2)?;
let s1 = send(v, s1);
close(s1)

3 Related Work

Laumann et al. [9] implement session types in Rust, based on the session-typed functional language
LAST by Gay and Vasconcelos [6]. Their implementation guarantees session fidelity, albeit with some
caveats. LAST is a linear language, meaning that sessions can neither be duplicated nor dropped. As we
discussed in section 2.3, Rust is an affine language, meaning that values—and, particularly relevant here,
sessions—can be dropped. The implementation of LAST in Rust, therefore, guarantees session fidelity
under the assumption that channels are never dropped.

Laumann et al. [9] remark that they “cannot prevent a channel value from being dropped prema-
turely”. They offer several solutions, but remark that each of these solutions are either insufficient,
premature, or both. They note that the proposal to add linear types to Rust is currently postponed9,
and that while #[must_use] can be made to issue a warning if a value is dropped, it is “easy to acci-
dentally and purposely bypass”. Finally, they propose a compiler extension, developed in collaboration
with Manish Goregaokar, humpty_dumpty10, “which provides a lint that ensures that types annotated with
#[drop_protect] are used linearly”. However, they note that humpty_dumpty “is still a work in progress,
which by no means guarantees linearity in all cases”. No further work has been done on humpty_dumpty

since 2015. The current version of the library enforces linearity dynamically, using “destructor bombs”,
implemented by Manish Goregaokar11. This technique hides a panic! in channel destructors, which
crashes the program if the destructor ever runs. Each invocation of close then calls std::mem::forget,
bypassing the destructor bomb.

We argue that even if Rust were able to enforce linearity, the idea of linear session types is flawed
(see section 2.3), as sessions may be dropped at any time, for any number of reasons, e.g., a process
panicking, dropping all sessions in scope.

The following two programs illustrate the difference in handling failure between Rusty Variation
and the work by Laumann et al. [9]. In both programs, the programmer has forgotten to complete the

9https://github.com/rust-lang/rfcs/pull/776
10https://github.com/Manishearth/humpty dumpty
11https://github.com/Munksgaard/session-types/commit/0f25ccb7c3bc9f65fa8eaf538233e8fe344a189a

https://github.com/rust-lang/rfcs/pull/776
https://github.com/Manishearth/humpty_dumpty
https://github.com/Munksgaard/session-types/commit/0f25ccb7c3bc9f65fa8eaf538233e8fe344a189a
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server, accidentally dropping the session endpoint _s or channel _c, respectively. The program on the
left, written in RV, returns an error. The program on the right, written using the library described by
Laumann et al. [9], segfaults. We have since reported this segfault to Laumann et al., and they have fixed
it in the most recent version of the library. The program on the right now panics:

// Rusty Variation
// main() returns None
fn server(_s: Recv<(), End>) {
// unintentionally left blank.

}
fn client(s: Send<(), End>) {
close(send((), s))

}
fn main() -> Option<()> {
client(fork(server))

}

// Laumann et al.
// main() causes segfault
fn server(_c: Chan<(), Recv<(), Eps>>) {
// unintentionally left blank.

}
fn client(c: Chan<(), Send<(), Eps>>) {
c.send(()).close();

}
fn main() -> () {
connect(server, client);

}

While we haven’t discussed recursive session types in this paper, Laumann et al. [9] use a rather
cumbersome encoding for recursive session types, using type-level de Bruijn indices. Below we show
two definitions of the session type for a stream of integers, one in Rusty Variation, and one using the
library by Laumann et al. [9]:

// Rusty Variation
type IntStream = Send<i32, IntStream>;

// Laumann et al.
type IntStream = Rec<Send<i32, Var<Z>>>;

The usage of de Bruijn indices to encode recursive session types is an artefact of the fact that, when
Laumann et al. [9] implemented their library, Rust didn’t support recursive types.

A last feature which distinguishes Rusty Variation from the work by Laumann et al. [9] is in how
both libraries generalise binary choice to labelled choice. Rusty Variation uses enumerations to provide
labelled choice, as described in section 2.4. Laumann et al. [9] provide an offer! macro, which expands a
labelled offer to a series of binary offers, e.g., offering a ternary choice expands to two nested invocations
of offer_either.

The offer! macro allows—even requires—the programmer to label their choices, but during macro
expansion these labels are simply discarded without being checked. This allows us to write the program
below, in which an inconsistency between types and documentation on the one hand, and the labelled
implementation on the other hand, results in a bug. The example program implements a calculator server,
which offers the choice between squaring and negation, in that order.

In the server function, the order in which the NEG-case and the SQR-case are handled doesn’t match
the order in which they are declared in the types. However, the code compiles, not because the cases are
associated correctly through the use of labels, but because the labels aren’t checked, and squaring and
negation happen to have the same type signature.

When the client selects the first option, they wrongly assume it represents squaring, based on the
types. Unfortunately, it represents negation. The main program, when run, therefore execute negation,
and erroneously returns -42:

// Laumann et al.
type SqrSrv = Recv<i32, Send<i32, Eps>>;
type NegSrv = Recv<i32, Send<i32, Eps>>;
type CalcSrv = Offer<SqrSrv, NegSrv>;

type SqrCli = Send<i32, Recv<i32, Eps>>;
type NegCli = Send<i32, Recv<i32, Eps>>;
type CalcCli = Choose<SqrCli, NegCli>;



Wen Kokke 11

fn server(c: Chan<(), CalcSrv>) {
offer!{c,
NEG => {
let (c, n) = c.recv();
let c = c.send(-n);
c.close();

},
SQR => {
let (c, n) = c.recv();
let c = c.send(n * n);
c.close();

}
}

}

fn client(c: Chan<(), CalcCli>) {
let c = c.sel1(); // select SqrCli
let c = c.send(42);
let (c, n) = c.recv();
println!("{}", n);
c.close();

}

// main() prints -42
fn main() {
connect(server, client);

}

4 Future Work

4.1 Heterogeneous Selection

In section 2.5, we mention that the select_mut and select functions are homogeneous: they only select
over vectors of endpoints with the same type. Heterogeneous selection is an important operation for
channel-based communication. Typing heterogeneous selection, and by extension, heterogeneous vectors
is notoriously cumbersome without dependent types. There are several avenues for future research:

The frunk crate12 provides an encoding of heterogeneous lists in Rust. We could use this encoding
to define a heterogeneous variant of selection.

Rust has limited support for existential types13, which could be used to quantify over the types of
the values received and the session continuations, and select on a homogeneous vector of the (purely
fictional) type Vec<∃T.∃S.Recv<T,S>>.

4.2 Testing & Verification

In section 2, we claim that RV preserves the metatheory of EGV, and while a full discussion of the testing
and formal verification efforts we have undertaken to ensure the correctness of RV is out of the scope of
this paper, it would be remiss of us not substantiate this claim.

Firstly, RV is unit tested. We test various use-cases from EGV, from basic operations and their
interactions with cancellation, to delegation and recursive session types. This test suite has caught several
errors in the implementation. However, unit tests are error prone, and it is hard (if not impossible) to
obtain a set of tests which cover all use-cases of a library. Unfortunately, tools such as RustBelt [10] and
Rust Distilled [15] are not yet mature enough to allow us to prove the correctness of RV.

In the absence of a mature formal semantics for Rust, we are designing a formal language, RV (or
“formal RV”), which matches, as close as possible, the semantics of our Rust library. It is a concurrent
lambda calculus with heap-based shared-memory semantics. We plan to prove that formal RV guarantees
preservation, progress, termination, confluence and the diamond property, and deadlock and livelock

12https://beachape.com/frunk/frunk/index.html
13https://github.com/rust-lang/rfcs/blob/master/text/2071-impl-trait-existential-types.md

https://beachape.com/frunk/frunk/index.html
https://github.com/rust-lang/rfcs/blob/master/text/2071-impl-trait-existential-types.md
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freedom. Furthermore, we plan to show that there exists a translation from EGV to formal RV, based
on the monadic reflection of exceptions into the Option monad [4] and the translation of channel-based
communication to shared memory, which is in operational correspondence with EGV. This would show
that formal RV is a faithful implementation of EGV.

Lastly, we plan to ensure the correspondence between formal RV and the implementation of RV,
using property-based testing. We plan to generate a series of random formal RV terms, using Neat [1],
and check if their behaviour, when run as Rust programs, corresponds to the behaviour of the term in
formal RV.

4.3 Extending Exceptional GV

Several features of Rusty Variation are not covered by the formal language EGV. In section 2.5, we
mention that selection isn’t a part of EGV. In section 3, we mention that recursion isn’t part of EGV. If
we wish to have any hope of formally verifying RV, along the lines described in section 4.2, we would
need to extend EGV to cover these features.
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