
Towards Races in Linear Logic

Wen Kokke1, J. Garrett Morris2, and Philip Wadler1

1 University of Edinburgh, Edinburgh, UK,
{wen.kokke@ed.ac.uk, wadler@inf.ed.ac.uk}
2 University of Kansas, Lawrence, KS, USA,

garrett@ittc.ku.edu

Abstract Process calculi based in logic, such as πDILL and CP, provide
a foundation for deadlock-free concurrent programming, but exclude non-
determinism and races. HCP is a reformulation of CP which addresses
a fundamental shortcoming: the fundamental operator for parallel com-
position from the π-calculus does not correspond to any rule of linear
logic, and therefore not to any term construct in CP.
We introduce HCP−

ND, which extends HCP with a novel account of non-
determinism. Our approach draws on bounded linear logic to provide
a strongly-typed account of standard process calculus expressions of
non-determinism. We show that our extension is expressive enough to
capture many uses of non-determinism in untyped calculi, such as non-
deterministic choice, while preserving HCP’s meta-theoretic properties,
including deadlock freedom.

Keywords: π-calculus · linear logic · session types · non-determinism ·
deadlock freedom

1 Introduction

Consider the following scenario:

Ami and Boé are working from home one morning when they each get a
craving for a slice of cake. Being denizens of the web, they quickly find
the nearest store which does home deliveries. Unfortunately for them,
they both order their cake at the same store, which has only one slice
left. After that, all it can deliver is disappointment.

This is an example of a race condition. We can model this scenario in the π-
calculus, where , and are processes modelling Ami, Boé and the store,
and and are channels giving access to a slice of cake and disappointment,
respectively. This process has two possible outcomes: either Ami gets the cake,
and Boé gets disappointment, or vice versa.

(x(y). | x(z). | x[].x[].)=⇒
?

({ /y} | { /z} |) or (| { /y} | { /z})

While Ami or Boé may not like all of the outcomes, it is the store which is
responsible for implementing the online delivery service, and the store is happy
with either outcome. Thus, the above is an interaction we would like to be able
to model.

Now consider another scenario, which takes place after Ami has already
bought the cake:

Boé is really disappointed when she finds out the cake has sold out. Ami,
always looking to make some money, offers to sell the slice to her for a
profit. Boé agrees to engage in a little bit of back-alley cake resale, but
sadly there is no trust between the two. Ami demands payment first.
Boé would rather get her slice of cake before she gives Ami the money.

This is an example of a deadlock. We can also model this scenario in the π-
calculus, where is a channel giving access to some adequate amount of money.

(x(z).y[]. | y(w).x[].) 6=⇒ ?

The above process does not reduce. As both Ami and Boé would prefer the
exchange to be made, this interaction is desired by neither. Thus, the above is
an interaction we would like to exclude.

Session types [10] statically guarantee that concurrent programs, such as
those above, respect communication protocols. Session-typed calculi with logical
foundations, such as πDILL [8] and CP [17], obtain deadlock freedom as a res-
ult of a close correspondence with logic. These systems, however, also rule out
non-determinism and race conditions. In this paper, we demonstrate that logic-
inspired type systems need not rule out races.

We present HCP−ND, an extension of CP with a novel account of non-determinism
and races. Inspired by bounded linear logic [9], we introduce a form of shared
channels in which the type of a shared channel tracks how many times it is
reused. As in the untyped π-calculus, sharing introduces the potential for non-
determinism. We show that our approach is sufficient to capture practical ex-
amples of races, such as an online store, as well as other formal characterizations
of non-determinism, such as non-deterministic choice. However, HCP−ND does
not lose the meta-theoretical benefits of CP: we show that it enjoys termination
and deadlock-freedom.

An important limitation of our work is that types in HCP−ND explicitly count
the potential races on a channel. It works fine when there are two or three races,
but not n for an arbitary n. The latter case is obviously important, and we see
the main value of our work as a stepping stone to this more general case.

HCP−ND is based on HCP [11,12]. HCP is a reformulation of CP which ad-
dresses a fundamental shortcoming: the fundamental operator for parallel com-
position from the π-calculus does not correspond to any rule of linear logic, and
therefore not to any term construct in CP.

There are two versions of HCP: a version with delayed actions, introduced
by Kokke, Montesi, and Peressotti [12]; and a version without delayed actions,
introduced by Kokke, Montesi, and Peressotti [11], referred to as HCP−. In

this work, we will base ourselves on the latter, as the former does not yet have
reduction semantics.

This paper proceeds as follows. In section 2, we discuss recent approaches
to non-determinism in logic-inspired session-typed process calculi. In section 3,
we introduce a variant of CP and prove progress and preservation. In section 4,
we introduce HCP−ND. In section 5, we discuss cuts with leftovers. Finally, in
section 7, we conclude with a discussion of the work done in this paper and
potential avenues for future work.

2 Non-determinism, Logic, and Session Types

Recent work extended πDILL and CP with operators for non-deterministic be-
haviour [1,6,7]. These extensions all implement an operator known as non-
deterministic local choice. (This operator is written as P +Q, but should not be
confused with input-guarded choice from the π-calculus [14].) Non-deterministic
local choice can be summarised by the following typing and reduction rules:

P ` Γ Q ` Γ

P +Q ` Γ

P +Q =⇒ P
P +Q =⇒ Q

Local choice introduces non-determinism explicitly, by listing all possible choices.
This is unlike the π-calculus, where non-determinism arises due to multiple pro-
cesses communicating on shared channels. We can easily implement local choice
in the π-calculus, using a nullary communication:

(x[].0 | x().P | x().Q)=⇒
?

(P | x().Q) or (x().P | Q)

In this implementation, the process x[].0 will “unlock” either P or Q, leaving
the other process deadlocked. Or we could use input-guarded choice:

(x[].0 | (x().P + x().Q))

However, there are many non-deterministic processes in the π-calculus that are
awkward to encode using non-deterministic local choice. Let us recall our ex-
ample:

(x[].x[]. | x(y). | x(z).)=⇒
?

(| { /y} | { /z}) or (| { /y} | { /z})

This non-deterministic interaction involves communication. If we wanted to write
down a process which exhibited the same behaviour using non-deterministic local
choice, we would have to write the following process:

(x[].y[]. | x(z). | y(w).) + (y[].x[]. | x(z). | y(w).)=⇒
?

(| { /y} | { /z}) or (| { /y} | { /z})

In essence, instead of modelling a non-deterministic interaction, we are enumer-
ating the resulting deterministic interactions. This means non-deterministic local
choice cannot model non-determinism in the way the π-calculus does. Enumer-
ating all possible outcomes becomes worse the more processes are involved in an
interaction. Imagine the following scenario:

Three customers, Ami, Boé, and Cat, have a craving for cake. Should
cake be sold out, however, well... a doughnut will do. They prepare to
order their goods via an online store. Unfortunately, they all decide to use
the same shockingly under-stocked store, which has only one slice of cake,
and a single doughnut. After that, all it can deliver is disappointment.

We can model this scenario in the π-calculus, where , , , and are four
processes modelling Ami, Boé, Cat, and the store, and , , and are three
channels giving access to a slice of cake, a so-so doughnut, and disappointment,
respectively.

(x[].x[].x[]. | x(y). | x(z). | x(w).)=⇒
?

(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})
(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})
(| { /y} | { /z} | { /w}) or (| { /y} | { /z} | { /w})

With the addition of one process, modelling Cat, we have increased the number
of possible outcomes enormously! In general, the number of outcomes for these
types of scenarios is n!, where n is the number of processes. This means that if we
wish to translate any non-deterministic process to one using non-deterministic
local choice, we can expect a factorial growth in the size of the term.

3 Hypersequent Classical Processes

In this section, we introduce HCP [11,12], the basis for our calculus HCP−ND. The
term language for HCP− is a variant of the π-calculus [14]. In HCP, processes
(P , Q, R) communicate using names (x, y, z, . . .). Each name is one of the two
endpoints of a bidirectional communication channel [16]. A channel is formed by
connecting two endpoints using name restriction. This is in contrast to sections 1
and 2, where we used names to represent channels.

Definition 1 (Terms).

P ,Q,R ::= x↔y link
| 0 terminated process
| (νxy)P name restriction, “cut”
| (P | Q) parallel composition, “mix”
| x[y].P output
| x(y).P input
| x[].P halt
| x().P wait
| x / inl.P select left choice
| x / inr.P select right choice
| x . {inl : P ; inr : Q} offer binary choice
| x . {} offer nullary choice

The variables x, y, z, u, v, and w range over channel endpoints. Occasionally, we
use a, b, and c to range over free endpoints, i.e. those which are not connected
to another endpoint. The construct x↔y links two endpoints [15,5], forwarding
messages received on x to y and vice versa. The construct (νxy)P creates a
new channel by connecting endpoints x and y, and the construct P | Q and
composes two processes. In x(y).P and x[y].P , round brackets denote input,
square brackets denote output. We use bound output [15], meaning that both
input and output bind a new name.

Terms in HCP− are identified up to structural congruence.

Definition 2 (Structural congruence). The structural congruence ≡ is the
congruence closure over terms which satisfies the following additional axioms:

(↔-comm) x↔y ≡ y↔x
(ν-comm) (νxy)(νzw)P ≡ (νzw)(νxy)P
(|-comm) P | Q ≡ Q | P
(|-assoc) P | (Q | R) ≡ (P | Q) | R
(halt) P | 0 ≡ P
(scope-ext) (νxy)(P | Q) ≡ P | (νxy)Q if x, y 6∈ P

Channels in HCP− are typed using a session type system which is a conservative
extension of linear logic.

Definition 3 (Types).

A,B,C ::= A⊗B independent channels | 1 unit for ⊗
| AOB interdependent channels | ⊥ unit for O
| A⊕B internal choice | 0 unit for ⊕
| ANB external choice | > unit for N

Duality plays a crucial role in both linear logic and session types. In HCP−,
the two endpoints of a channel are assigned dual types. This ensures that, for
instance, whenever a process sends across a channel, the process on the other
end of that channel is waiting to receive. Each type A has a dual, written A⊥.
Duality (·⊥) is an involutive function on types.

Definition 4 (Duality).

(A⊗B)⊥ = A⊥ OB⊥ 1⊥ = ⊥ (AOB)⊥ = A⊥ ⊗B⊥ ⊥⊥ = 1
(A⊕B)⊥ = A⊥ NB⊥ 0⊥ = > (ANB)⊥ = A⊥ ⊕B⊥ >⊥ = 0

Environments associate channels with types. Names in environments must be
unique, and environments Γ and ∆ can only be combined (Γ ,∆) if cn(Γ) ∩
cn(∆) = ∅, where cn(Γ) denotes the set of channel names in Γ .

Definition 5 (Environments). Γ ,∆,Θ ::= x1 :A1 . . . xn :An

HCP− registers parallelism using hyper-environments. A hyper-environment is
a multiset of environments. While names within environments must be unique,
names may be shared between multiple environments in a hyper-environment.
We write G | H to combine two hyper-environments.

Definition 6 (Hyper-environments). G,H ::= ∅ | G | Γ

Typing judgements associate processes with collections of typed channels.

Definition 7 (Typing judgements). A typing judgement P ` Γ1 | . . . | Γn

denotes that the process P consists of n independent, but potentially entangled
processes, each of which communicates according to its own protocol Γi. Typing
judgements can be constructed using the inference rules below.

Structural rules

Ax
x↔y ` x :A, y :A⊥

P ` G | Γ, x :A | ∆, y :A⊥
Cut

(νxy)P ` G | Γ ,∆

P ` G Q ` H
H-Mix

P | Q ` G | H H-Mix00 ` ∅

Logical rules

P ` ∆,x :B ⊗
x[y].P ` Γ ,∆, x :A⊗B

P ` Γ, y :A, x :B
(O)

x(y).P ` Γ, x :AOB

P ` ∅
1

x[].P ` x : 1
P ` Γ (⊥)

x().P ` Γ, x :⊥

P ` Γ, x :A
(⊕1)

x / inl.P ` Γ, x :A⊕B
P ` Γ, x :B

(⊕2)
x / inr.P ` Γ, x :A⊕B

P ` Γ, x :A Q ` Γ, x :B
(N)

x . {inl : P ; inr : Q} ` Γ, x :ANB

(no rule for 0) (>)
x . {} ` Γ, x :>

Reductions relate processes with their reduced forms.

Definition 8 (Reduction). Reductions are described by the smallest relation
=⇒ on process terms closed under the rules below:

(↔) (νxy)(w↔x | P) =⇒ P{w/y}
(β⊗O) (νxy)(x[z].P | x(w).R) =⇒ (νxy)(νzw)(P | R)
(β1⊥) (νxy)(x[].P | y().Q) =⇒ P | Q
(β⊕N1) (νxy)(x / inl.P | y . {inl : Q; inr : R}) =⇒ (νxy)(P | Q)
(β⊕N2) (νxy)(x / inr.P | y . {inl : Q; inr : R}) =⇒ (νxy)(P | R)

P =⇒ P ′ (γν)
(νxy)P =⇒ (νxy)P ′

P =⇒ P ′ (γ|)
P | Q =⇒ P ′ | Q

P ≡ Q Q =⇒ Q′ Q′ ≡ P ′
(γ≡)

P =⇒ P ′

3.1 Example

HCP− uses hyper-sequents to structure communication, and it is this structure
which rules out deadlocked interactions. Let us go back to our example of a
deadlocked interaction from section 1. If we want to type this interaction in
HCP−, we run into a problem: to connect x and y, and z and w, such that we
get a deadlock, we need to construct the following term:

(νxy)(νzw)(x(u).z[]. | w(v).y[].).

However, there is no typing derivation for this term. We illustrate this with the
partial typing derivation below. In this derivation, there is no way to proceed and
type the final name restriction. The Cut rule needs a hypersequent separator
to eliminate, so that it only ever links up two independent processes, but the
bottom-most sequent has none:

` Γ, u :
⊥
, :

(⊗)
y[]. ` Γ, u :

⊥
, y :

(O)
x(u).y[]. ` Γ, x :

⊥
, y :

` ∆, : , v :
⊥

(⊗)
y[]. ` ∆, y : , v :

⊥

(O)
w(v).y[]. ` ∆, y : , w :

⊥

H-Mix
(x(u).y[]. | w(v).y[].) ` Γ, x :

⊥
, z : | ∆, y : , w :

⊥

Cut
(νzw)(x(u).z[]. | w(v).y[].) ` Γ,∆, x :

⊥
, y :

3.2 Metatheory

HCP− enjoys subject reduction, termination, and progress [11].

Lemma 9 (Preservation for ≡). If P ≡ Q, then P ` G iff Q ` G.

Proof. By induction on the derivation of P ≡ Q.

Theorem 10 (Preservation). If P ` G and P =⇒ Q, then Q ` G.

Proof. By induction on the derivation of P =⇒ Q.

Definition 11 (Actions). A process P acts on x whenever x is free in the
outermost term constructor of P , e.g., x[y].P acts on x but not on y, and x↔y
acts on both x and y. A process P is an action if it acts on some channel x.

Definition 12 (Canonical forms). A process P is in canonical form if

P ≡ (νx1y1) . . . (νxnyn)(P1 | · · · | Pn+m+1),

such that: no process Pi is a cut or a mix; no process Pi is a link acting on a
bound channel xi; and no two processes Pi and Pj are acting on the endpoints
xi, yi of the same channel.

Lemma 13. If a well-typed process P is in canonical form, then it is blocked
on an external communication, i.e., P ≡ (νx1y1) . . . (νxnyn)(P1 | · · · | Pn+m+1)
such that at least one process Pi acts on a free name.

Proof. We have P ≡ (νx1y1) . . . (νxnyn)(P1 | . . . | Pn+m+1), such that no Pi is
a cut or a link acting on a bound channel, and no two processes Pi and Pj

are acting on the endpoints of the same channel. The prefix of cuts and mixes
introduces n channels. Each application of cut requires an application of mix, so
the prefix introduces n+m+1 processes. Therefore, at least m+1 of the processes
Pi must be acting on a free channel, i.e., blocked on an external communication.

Theorem 14 (Progress). If P ` Γ , then either P is in canonical form, or
there exists a process Q such that P =⇒ Q.

Proof. We consider the maximum prefix of cuts and mixes of P such that P ≡
(νx1y1) . . . (νxnyn)(P1 | . . . | Pn+m+1), and no Pi is a cut. If any process Pi is a
link, we reduce by (↔). If any two processes Pi and Pj are acting on the same
channel xi, we rewrite by ≡ and reduce by the appropriate β-rule. Otherwise, P
is in canonical form.

Theorem 15 (Termination). If P ` G, then there are no infinite =⇒-
reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However,
each of these cuts is smaller, measured in the size of the cut formula. Further-
more, each instance of the structural congruence preserves the size of the cut.
Therefore, there cannot be an infinite =⇒-reduction sequence.

4 Shared Channels and Non-determinism

In this section, we will discuss our main contribution: an extension of HCP−

which allows for races while still excluding deadlocks. We have seen in section 3.1
how HCP− excludes deadlocks, but how exactly does HCP− exclude races? Let
us return to our example from section 1, to the interaction between Ami, Boé
and the store.

(x[].x[]. | x(y). | x(z).)=⇒
?

(| { /y} | { /z}) or (| { /y} | { /z})

Races occur when more than two processes attempt to communicate simultan-
eously over the same channel. However, the Cut rule of HCP− requires that
exactly two processes communicate over each channel:

P ` G | Γ, x :A | ∆, y :A⊥
Cut

(νxy)P ` G | Γ ,∆

We could attempt to write down a protocol for our example, stating that the
store has a pair of channels x, y : with which it communicates with Ami and
Boé, taking to be the type of interactions in which cake may be obtained, i.e.
of both and , and state that the store communicates with Ami and Boé
over a channel of type O . However, this only models interactions such as
the following:

` Γ, z :
⊥ ` ∆,x :

⊥

H-Mix
(|) ` Γ, z :

⊥ | ∆,x :
⊥

(⊗)
x[z].(|) ` Γ,∆, x :

⊥ ⊗ ⊥
` Θ,w : , y :

(O)
y(w). ` Θ, y : O

H-Mix
(x[z].(|) | y(w).) ` Γ,∆, x :

⊥ ⊗ ⊥ | Θ, y : O
Cut

(νxy)(x[z].(|) | y(w).) ` Γ,∆,Θ

In this interaction, Ami will get whatever the store decides to send on x, and
Boé will get whatever the store decides to send on y. This means that this
interactions gives the choice of who receives what to the store. This is not an
accurate model of our original example, where the choice of who receives the cake
is non-deterministic and depends on factors outside of any of the participants’
control!

Modelling racy behaviour, such as that in our example, is essential to describ-
ing the interactions that take place in realistic concurrent systems. We would
like to extend HCP− to allow such races in a way which mirrors the way in which
the π-calculus handles non-determinism. Let us return to our example:

(x[].x[]. | x(y). | x(z).)

In this interaction, we see that the channel x is only used as a way to connect
the various clients, Ami and Boé, to the store. The real communication, sending
the slice of cake and disappointment, takes places on the channels , , y and
z. Inspired by this, we add two new constructs to the term language of HCP−

for sending and receiving on a shared channel. These actions are marked with a
? to distinguish them from ordinary sending and receiving.

Definition 16 (Terms). We extend definition 1 as follows:

P ,Q,R ::= . . .

| ?x[y].P client creation

| ?x(y).P server interaction

As before, round brackets denote input, square brackets denote output. Note
that ?x[y].P , much like x[y].P , is a bound output: both client creation and
server interaction bind a new name. The structural congruence, which identifies
certain terms, is the same as definition 2.

In any non-deadlock interaction between a server and some clients, there
must be exactly as many clients as there are server interactions. Therefore, we
add two new dual types for client pools and servers, which track how many
clients or server interactions they represent.

Definition 17 (Types). We extend definition 3 as follows:

A,B,C ::= . . .
| !nA pool of n clients
| ?nA n server interactions

The types !nA and ?nA
⊥ are dual. Duality remains an involutive function.

We have to add typing rules to associate our new client and server interactions
with their types. The definition for environments will remain unchanged, but we
will extend the definition for the typing judgement. To determine the new typing
rules, we essentially answer the question “What typing constructs do we need
to complete the following proof?”

` Γ, y :
⊥

...

` ∆, y′ :
⊥

...

` Θ, z : , z′ :
...

(νxy)((?x[z]. | ?x[z′].) | ?y(w).?y(w′).) ` Γ,∆,Θ

The constructs ?x[y].P and ?x(y).P introduce a single client or server action,
respectively—hence, channels of type !1 and ?1. However, when we cut, we want
to cut on both interactions simultaneously. We need rules for the contraction of
shared channel names.

4.1 Clients and Pooling

A client pool represents a number of independent processes, each wanting to
interact with the same server. Examples of such a pool include Ami and Boé
from our example, customers for online stores in general, and any number of
processes which interact with a single, centralised server.

We introduce two new rules: one to construct clients, and one to pool them
together. The first rule, (!1), interacts over a channel as a client. It does this
by receiving a channel y over a shared channel x. The channel y is the channel
across which the actual interaction will eventually take place. The second rule,
Cont!, allows us to contract shared channel names with the same type. When
used together with H-Mix, this allows us to pool clients together.

P ` Γ, y :A
(!1)

?x[y].P ` Γ, x : !1A

P ` G | Γ, x : !mA | ∆,x′ : !nA
Cont!

P{x/x′} ` G | Γ,∆, x : !m+nA

Using these rules, we can derive the left-hand side of our proof by marking Ami
and Boé as clients, and pooling them together.

` Γ, z :
⊥

(!1)
?x[z]. ` Γ, z : !1

⊥
` ∆, z′ :

⊥

(!1)
?x′[z′]. ` ∆,x′ : !1

⊥

H-Mix
(?x[z]. | ?x′[z′].) ` Γ, x : !1

⊥ | ∆,x′ : !1
⊥

Cont!
(?x[z]. | ?x[z′].) ` Γ,∆, x : !2

⊥

4.2 Servers and Sequencing

Dual to a pool of n clients in parallel is a server with n actions in sequence. Our
interpretation of a server is a process which offers some number of interdependent
interactions of the same type. Examples include the store from our example,
which gives out slices of cake and disappointment, online stores in general, and
any central server which interacts with some number of client processes.

We introduce two new rules to construct servers. The first rule, (?1), marks
a interaction over some channel as a server interaction. It does this by sending
a channel y over a shared channel x. The channel y is the channel across which
the actual interaction will take place. The second rule, Cont?, allows us to
merge two (possibly interleaved) sequences of server interactions. This allows us
to construct a server which has multiple interactions of the same type, across
the same shared channel.

P ` Γ, y :A
(?1)

?x(y).P ` Γ, x : ?1A

P ` G | Γ, x : ?mA, x
′ : ?nA

Cont?
P{x/x′} ` G | Γ, x : ?m+nA

Using these rules, we can derive the right-hand side of our proof, by marking
each of the store’s interactions as server interactions, and then contracting them.

` Θ,w : , w′ :
(?1)

?y′(w′). ` Θ, z : , y′ : ?1
(?1)

?y(w).?y′(w′). ` Θ, y : ?1 , y′ : ?1
Cont?

?y(w).?x(w′). ` Θ, y : ?2

Thus, we complete the typing derivation of our example.

Definition 18 (Typing judgements). We extend definition 7 as follows:

P ` Γ, y :A
(!1)

?x[y].P ` Γ, x : !1A

P ` Γ, y :A
(?1)

?x(y).P ` Γ, x : ?1A

P ` G | Γ, x : !mA | ∆,x′ : !nA
Cont!

P{x/x′} ` G | Γ,∆, x : !m+nA

P ` G | Γ, x : ?mA, x
′ : ?nA

Cont?
P{x/x′} ` G | Γ, x : ?m+nA

4.3 Running Clients and Servers

Finally, we need to extend the reduction rules to allow for the reduction of client
and server processes. The reduction rule we add is a variant of the reduction
rule for ⊗ and O, (β⊗O).

Definition 19 (Reduction). We extend definition 8 as follows:

(β?) (νxy)((?x[z].P | ?y(w).Q) | R) =⇒ (νxy)((νzw)(P | Q) | R)

The difference between (β?) and (β⊗O) is that the former allows reduction
to happen in the presence of an unrelated process R, which is passed along
unchanged. This is necessary, as there may be other clients waiting to interact
with the server on the shared channel x, which cannot be moved out of scope
of the name restriction (νx). When there is no unrelated process R, i.e., when
there is only a single client, we can rewrite by (halt) before and after applying
(β?).

So where does the non-determinism in HCP−ND come from? Let us say we
have a term of the following form:

(νxy)((?x[z1].P1 | · · · | ?x[zn].Pn) | ?y(w1). . . . ?y(wn).Q)

As parallel composition is commutative and associative, we can rewrite this term
to pair any client in the pool with the server before applying (β?). Thus, like in
the π-calculus, the non-determinism is introduced by the structural congruence.

Does this mean that, for an arbitrary client pool P in (νxy)(P | ?y(w).Q),
every client in that pool is competing for the server interaction on x? Not neces-
sarily, as some portion of the clients can be blocked on an external communic-
ation. For instance, in the term below, clients ?x[zn+1].Pn+1 . . . ?x[zm].Pm are
blocked on a communication on the external channel a:

(νxy)(((?x[z1].P1 | · · · | ?x[zn].Pn)
| a().(?x[zn+1].Pn+1 | · · · | ?x[zm].Pm))
| ?y(w1). . . . ?y(wm).Q)

If we reduce this term, then only the clients ?x[z1].P1 . . . ?x[zn].Pn will be as-
signed server interactions, and we end up with the following canonical form:

(νxy)(a().(?x[zn+1].Pn+1 | · · · | ?x[zm].Pm)
| ?y(wn+1). . . . ?y(wm).Q)

This matches our intuition and the behaviour of the π-calculus.

Alternative syntax. If we choose to reuse the terms x[y].P and x(y).P for shared
channels, we could replace (β⊗O) with (β?), using the latter rule for both cases.

4.4 Metatheory

HCP−ND enjoys subject reduction, termination, and progress.

Lemma 20 (Preservation for ≡). If P ≡ Q and P ` G, then Q ` G.

Proof. By induction on the derivation of P ≡ Q.

Theorem 21 (Preservation). If P ` G and P =⇒ Q, then Q ` G.

Proof. By induction on the derivation of P =⇒ Q.

Definition 22 (Actions). A process P acts on x whenever x is free in the
outermost term constructor of P , e.g., ?x(y).P acts on x but not on y, and
x↔y acts on both x and y. A process P is an action if it acts on some channel
x. Two actions are dual when they introduce dual type constructors, e.g., x[y].P
is dual to x(z).Q, but x↔y is not dual to any action.

Definition 23 (Canonical forms). A process P is in canonical form if

P ≡ (νx1y1) . . . (νxnyn)(P1 | · · · | Pn+m+1),

such that: no process Pi is a cut or a mix; no process Pi is a link acting on a
bound channel xi; and no two processes Pi and Pj are acting on the same bound
channel xi with dual actions.

The new definition of canonical forms is slightly more precise than definition 12:
we added the phrase “with dual actions”. With the addition of shared channels,
it has become possible to have a process which cannot reduce, but in which two
processes are waiting to act on the same channel, e.g., in (?x[y]. | ?x[y′].).

Lemma 24. If a well-typed process P is in canonical form, then it is blocked
on an external communication, i.e., P ≡ (νx1y1) . . . (νxnyn)(P1 | · · · | Pn+m+1)
such that at least one process Pi acts on a free name.

Proof. We have P ≡ (νx1y1) . . . (νxnyn)(P1 | . . . | Pn+m+1), such that no Pi is
a cut or a link acting on a bound channel, and no two processes Pi and Pj are
acting on the same bound channel with dual actions. The prefix of cuts and
mixes introduces n channels. Each application of cut requires an application of
mix, so the prefix introduces n + m + 1 processes. Each application of Cont!

requires an application of mix, so there are at most m clients acting on the same
bound channel. Therefore, at least one of the processes Pi must be acting on a
free channel, i.e., blocked on an external communication.

Theorem 25 (Progress). If P ` Γ , then either P is in canonical form, or
there exists a process Q such that P =⇒ Q.

Proof. We consider the maximum prefix of cuts and mixes of P such that P ≡
(νx1y1) . . . (νxnyn)(P1 | . . . | Pn+m+1), and no Pi is a cut. If any process Pi is a
link, we reduce by (↔). If any two processes Pi and Pj are acting on the same
channel xi with dual actions, we rewrite by ≡ and reduce by the appropriate
β-rule. Otherwise, P is in canonical form.

Theorem 26 (Termination). If P ` G, then there are no infinite =⇒-
reduction sequences.

Proof. Every reduction reduces a single cut to zero, one or two cuts. However,
each of these cuts is smaller, measured in the size of the cut formula. Further-
more, each instance of the structural congruence preserves the size of the cut.
Therefore, there cannot be an infinite =⇒-reduction sequence.

4.5 HCP−
ND and Non-deterministic Local Choice

In section 2, we discussed the non-deterministic local choice operator, which is
used in several extensions of πDILL and CP [1,6,7]. This operator is admissible
in HCP−ND. We can derive the non-deterministic choice P + Q by constructing
the following term:

(νxy)((?x[z].z / inl.z[].0
| ?x[w].w / inr.w[].0)
| ?y(z).?y(w).z .
{inl : (νuv)(w . {inl : w().u[].0; inr : w().u[].0} | v().P)
;inr : (νuv)(w . {inl : w().u[].0; inr : w().u[].0} | v().Q) })

This term is a cut between two processes.

– On the left-hand side, we have a pool of two processes, ?x[z].z / inl.z[].0
and ?x[w].w / inr.w[].0. Each makes a choice: the first sends inl, and the
second sends inr.

– On the right-hand side, we have a server with both P and Q. This server
has two channels on which a choice is offered, z and w. The choice on z
selects between P and Q. The choice on w does not affect the outcome of
the process at all. Instead, it is discarded.

When these clients and the server are put together, the choices offered by the
server will be non-deterministically lined up with the clients which make choices,
and either P or Q will run.

While there is a certain amount of overhead involved in this encoding, it
scales linearly in terms of the number of processes. The reverse—encoding the
non-determinism present in HCP−ND using non-deterministic local choice—scales
exponentially, see, e.g., the examples in section 2.

5 Cuts with Leftovers

So far, our account of a non-determinism in client/server interactions only al-
lows for interactions between equal numbers of clients and server interactions. A
natural question is whether or not we can deal with the scenario in which there
are more client than server interactions or vice versa, i.e., whether or not the
following rules are derivable:

` Γ, !n+mA ` ∆, ?nA
⊥

` Γ,∆, !mA

` Γ, !nA ` ∆, ?n+mA
⊥

` Γ,∆, ?mA
⊥

These rules are derivable using a link. For instance, we can derive the rule for
the case in which there are more clients than servers as follows:

P ` Γ, x : !n+mA

Q ` ∆, y : ?nA
⊥ y′↔w ` y′ : ?mA

⊥, w : !mA
H-Mix

(Q | y′↔w) ` ∆, y : ?nA
⊥ | y′ : ?mA

⊥, w : !mA
Cont!

(Q | y↔w) ` ∆, y : ?n+mA
⊥, w : !mA

H-Mix
(P | (Q | x↔w)) ` Γ, x : !n+mA | ∆, y : ?n+mA

⊥, w : !mA
Cut

(νxy)(P | (Q | x↔w)) ` Γ,∆,w : !mA

6 Relation to Manifest Sharing

In section 2, we mentioned related work which extends πDILL and CP with non-
deterministic local choice [1,6,7], and contrasted these approaches with ours. In
this section, we will contrast our work with the more recent work on manifest
sharing [2].

Manifest sharing extends the session-typed language SILL with two connect-
ives, ↑SLA and ↓SLA, which represent the places in a protocol where a shared
resource is aquired and released, respectively. In the resulting language, SILLS ,
we can define a type for, e.g., shared queues (using the notation for types intro-
duced in this paper):

queue A ::= ↑SL(A⊥ O ↓SL(queue A)) N ((A⊕⊥) O ↓SL(queue A))

The type queue A types a shared channel which, after we aqcuire exclusive access,
gives us the choice between enqueuing a value (A⊥) and releasing the queue, or
dequeuing a value if there is any (A⊕⊥) and releasing the queue.

The language SILLS is much more expressive than HCP−ND, as it has support
for both shared channels and recursion. In fact, Balzer, Pfenning, and Toninho [3]
show that SILLS is expressive enough to embed the untyped asynchronous π-
calculus. This expressiveness comes with a cost, as SILLS processes are not
guaranteed to be deadlock free, though recent work addresses this issue [4].

Despite the difference in expressiveness, there are some similarities between
HCP−ND and SILLS . In the former, shared channels represent (length-indexed)
streams of interactions of the same type. In the latter, it is necessary for type
preservation that shared channels are always released at the same type at which
they were acquired, meaning that shared channels also represent (possibly infin-
ite) streams of interactions of the same type. In fact, in HCP−ND, the type for
queues (with n interactions) can be written as !n(A⊥ N (A⊕⊥)).

One key difference between HCP−ND and SILLS is that in SILLS a server
must finish interacting with one client before interacting with another, whereas
in HCP−ND the server may interact with multiple clients simultaneously.

7 Discussion and Future Work

We presented HCP−ND, an extension of HCP− which permits non-deterministic
communication without losing the strong connection to logic. We gave proofs for
preservation, progress, and termination for the term reduction system of HCP−ND.
We showed that we can define non-deterministic local choice in HCP−ND.

Our formalism so far has only captured servers that provide for a fixed num-
ber of clients. More realistically, we would want to define servers that provide
for arbitrary numbers of clients. This poses two problems: how would we define
arbitrarily-interacting stateful processes, and how would we extend the typing
discipline of HCP−ND to account for them without losing its static guarantees.

One approach to defining server processes would be to combine HCP−ND with
structural recursion and corecursion, following the µCP extension of Lindley
and Morris [13]. Their approach can express processes which produce streams of
A channels. Such a process would expose a channel with the co-recursive type
νX.AO (1⊕X). Given such a process, it is possible to produce a channel of type
A O A O · · · O A for any number of As, allowing us to satisfy the type ?nA for
an arbitrary n.

We would also need to extend the typing discipline to capture arbitrary use
of shared channels. One approach would be to introduce resource variables and
quantification. Following this approach, in addition to having types ?nA and !nA
for concrete n, we would also have types ?xA and !xA for resource variables x.
These variables would be introduced by quantifiers ∀xA and ∃xA. Defining terms
corresponding to ∀xA, and its relationship with structured recursion, presents
an interesting area of further work.

Our account of HCP− did not include the exponentials ?A and !A. The
type !A denotes arbitrarily many independent instances of A, while the type ?A
denotes a concrete (if unspecified) number of potentially-dependent instances
of A. Existing interpretations of linear logic as session types have taken !A to
denote A-servers, while ?A denotes A-clients. However, the analogy is imperfect:
while we expect servers to provide arbitrarily many instances of their behaviour,
we also expect those instances to be interdependent.

With quantification over resource variables, we can give precise accounts
of both CP’s exponentials and idealised servers and clients. CP exponentials
could be embedded into this framework using the definitions !A ::= ∀n!nA and
?A ::= ∃n?nA. We would also have types that precisely matched our intuitions
for server and client behavior: an A server is of type ∀n?nA, as it serves an
unbounded number of requests with the requests being interdependent, while a
collection of A clients is of type ∃n!nA, as we have a specific number of clients
with each client being independent.

References

1. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley,
S., McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can

Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday. Lecture Notes in Computer Science (2016). https://doi.org/10.1007/978-
3-319-30936-1˙2

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. Proceedings
of the ACM on Programming Languages 1(ICFP), 1–29 (Aug 2017). ht-
tps://doi.org/10.1145/3110281

3. Balzer, S., Pfenning, F., Toninho, B.: A Universal Session Type for Un-
typed Asynchronous Communication. In: Schewe, S., Zhang, L. (eds.) 29th
International Conference on Concurrency Theory (CONCUR 2018). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 118, pp. 30:1–30:18.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). ht-
tps://doi.org/10.4230/LIPIcs.CONCUR.2018.30

4. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Programming Languages and Systems, pp. 611–639. Springer Interna-
tional Publishing (2019). https://doi.org/10.1007/978-3-030-17184-1˙22

5. Boreale, M.: On the expressiveness of internal mobility in name-
passing calculi. Theoretical Computer Science 195(2), 205–226 (3 1998).
https://doi.org/10.1016/s0304-3975(97)00220-x

6. Caires, L.: Types and logic, concurrency and non-determinism. In: Abadi, M.,
Gardner, P., Gordon, A., Mardare, R. (eds.) Essays for the Luca Cardelli Fest.
Microsoft Research (9 2014)

7. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: Pro-
gramming Languages and Systems – 26th European Symposium on Programming,
ESOP 2017, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings.
Springer (4 2017)

8. Caires, L., Pfenning, F.: Session Types as Intuitionistic Linear Proposi-
tions, pp. 222–236. Springer Berlin Heidelberg, Berlin, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4˙16

9. Girard, J.Y., Scedrov, A., Scott, P.J.: Bounded linear logic: A modular approach
to polynomial-time computability. Theor. Comput. Sci. 97(1), 1–66 (Apr 1992).
https://doi.org/10.1016/0304-3975(92)90386-T

10. Honda, K.: Types for dyadic interaction. In: CONCUR'93, pp. 509–523. Springer
Nature (1993). https://doi.org/10.1007/3-540-57208-2˙35

11. Kokke, W., Montesi, F., Peressotti, M.: Taking linear logic apart. In: Workshop on
Linearity & TLLA at FloC’18 (Jul 2018)

12. Kokke, W., Montesi, F., Peressotti, M.: Better late than never: A fully-abstract
semantics for classical processes. PACMPL 3(POPL) (Jan 2019)

13. Lindley, S., Morris, J.G.: Talking bananas: Structural recursion for session types.
In: Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming. pp. 434–447. ICFP 2016, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2951913.2951921

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, II. Informa-
tion and Computation 100(1), 41–77 (Sep 1992). https://doi.org/10.1016/0890-
5401(92)90009-5

15. Sangiorgi, D.: π-calculus, internal mobility, and agent-passing calculi. Theoret-
ical Computer Science 167(1-2), 235–274 (1996). https://doi.org/10.1016/0304-
3975(96)00075-8

16. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)

https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1145/3110281
https://doi.org/10.1145/3110281
https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1016/s0304-3975(97)00220-x
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1016/0304-3975(96)00075-8

17. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming. pp. 273–286. ICFP ’12,
ACM, New York, NY, USA (2012). https://doi.org/10.1145/2364527.2364568

https://doi.org/10.1145/2364527.2364568

	Towards Races in Linear Logic

