
Separating Sessions Smoothly
Simon Fowler !

University of Glasgow, UK
Wen Kokke !

The University of Edinburgh, UK

Ornela Dardha !

University of Glasgow, UK
Sam Lindley !

The University of Edinburgh, UK

J. Garrett Morris !

The University of Iowa, USA

Abstract
This paper introduces Hypersequent GV (HGV), a modular and extensible core calculus for functional
programming with session types that enjoys deadlock freedom, confluence, and strong normalisation.
HGV exploits hyper-environments, which are collections of type environments, to ensure that struc-
tural congruence is type preserving. As a consequence we obtain a tight operational correspondence
between HGV and HCP, a hypersequent-based process-calculus interpretation of classical linear logic.
Our translations from HGV to HCP and vice-versa both preserve and reflect reduction. HGV scales
smoothly to support Girard’s Mix rule, a crucial ingredient for channel forwarding and exceptions.

1 Introduction

Session types [19, 45, 20] are types used to verify communication protocols in concurrent
and distributed systems: just as data types rule out dividing an integer by a string, session
types rule out sending along an input channel. Session types originated in process calculi,
but there is a gap between process calculi, which model the evolving state of concurrent
systems, and the descriptions of these systems in typical programming languages. This paper
addresses two foundations for session types: (1) a session-typed concurrent lambda calculus
called GV [31], intended to be a modular and extensible basis for functional programming
languages with session types; and, (2) a session-typed process calculus called CP [51], with a
propositions-as-types correspondence to classical linear logic (CLL) [18].

Processes in CP correspond exactly to proofs in CLL and deadlock freedom follows from
cut-elimination for CLL. However, while CP is strongly tied to CLL, at the same time it
departs from π-calculus. Independent π-calculus features can only appear in combination in
CP: CP combines name restriction with parallel composition ((νx)(P ∥ Q)), corresponding
to CLL’s cut rule, and combines sending (of bound names only) with parallel composition
(x[y].(P ∥ Q)), corresponding to CLL’s tensor rule. This results in a proliferation of process
constructors and prevents the use of standard techniques from concurrency theory, such as
labelled-transition semantics and bisimulation. Hypersequent CP (HCP) [34, 28, 27] restores
the independence of these features, factoring out parallel composition into a standalone
construct while retaining the close correspondence with CLL proofs. HCP typing reasons
about collections of processes using collections of type environments (or hyper-environments).

GV extends linear λ-calculus with constants for session-typed communication. Following
Gay and Vasconcelos [17], Lindley and Morris [31] describe GV’s semantics by combining
a reduction relation on single terms, following standard λ-calculus rules, and a reduction
relation on concurrent configurations of terms, following standard π-calculus rules. They then
give a semantic characterisation of deadlocked processes, an extrinsic [42] type system for
configurations, and show that well-typed configurations are deadlock-free. There is, however,
a large fly in this otherwise smooth ointment: process equivalence does not preserve typing.
As a result, it is not enough for Lindley and Morris to show progress and preservation for well-
typed configurations; instead, they must show progress and preservation for all configurations

mailto:simon.fowler@glasgow.ac.uk
mailto:wen.kokke@ed.ac.uk
mailto:ornela.dardha@glasgow.ac.uk
mailto:sam.lindley@ed.ac.uk
mailto:garrett-morris@uiowa.edu

2 Separating Sessions Smoothly

equivalent to well-typed configurations. This not only complicates the metatheory of GV,
but the burden is inherited by any effort to build on GV’s account of concurrency [15].

In this paper, we show that using hyper-environments in the typing of configurations
enables a metatheory for GV that, compared to that of Lindley and Morris, is simpler, is
more general, and as a result is easier to use and easier to extend. Hypersequent GV (HGV)
repairs the treatment of process equivalence—equivalent configurations are equivalently
typeable—and avoids the need for formal gimmickry connecting name restriction and parallel
composition. HGV admits standard semantic techniques for concurrent programs: we use
bisimulation to show that our translations both preserve and reflect reduction, whereas
Lindley and Morris show only that their translations between GV and CP preserve reduction
as well as resorting to weak explicit substitutions [29]. HGV is also more easily extensible:
we outline three examples, including showing that HGV naturally extends to disconnected
sets of communication processes, without any change to the proof of deadlock freedom, and
that it serves as a simpler foundation for existing work on exceptions in GV [15].

Contributions The paper contributes the following:
Section 3 introduces Hypersequent GV (HGV), a modular and extensible core calculus
for functional programming with session types which uses hyper-environments to ensure
that structural congruence is type preserving.
Section 4 shows that every well-typed GV configuration is also a well-typed HGV
configuration, and every tree-structured HGV configuration is equivalent to a well-typed
GV configuration.
Section 5 gives a tight operational correspondences between HGV and HCP via
translations in both directions that preserve and reflect reduction.
Section 6 demonstrates the extensibility of HGV through: (1) unconnected processes,
(2) a simplified treatment of forwarding, and (3) an improved foundation for exceptions.

Section 2 reviews GV and its metatheory, Section 7 discusses related work, and Section 8
concludes and discusses future work.

2 The Equivalence Embroglio

GV programs are deadlock free, which GV ensures by restricting process structures to trees. A
process structure is an undirected graph where nodes represent processes and edges represent
channels shared between the connected nodes. Session-typed programs with an acyclic
process structure are deadlock-free by construction. We illustrate this with a session-typed
vending machine example written in GV.

▶ Example 2.1. Consider the session type of a vending machine below, which sells candy
bars and lollipops. If the vending machine is free, the customer can press 1⃝ to receive a
candy bar or 2⃝ to receive a lollipop. If the vending machine is busy, the session ends.

VendingMachine ≜ ⊕
{

Free : & { 1⃝ : !CandyBar.end!, 2⃝ : !Lollipop.end!}
Busy : end!

}
The customer’s session type is dual: where the vending machine sends a CandyBar, the
customer receives a CandyBar, and so forth. Figure 1 shows the vending machine and
customer as a GV program with its process structure.

GV establishes the restriction to tree-structured processes by restricting the primitive
for spawning processes. In GV, fork has type (S ⊸ end!) ⊸ S. It takes a closure of type
S ⊸ end! as an argument, creates a channel with endpoints of dual types S and S, spawns

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 3

let vendingMachine = λs.

let s = select Free s in

let s = offer s

{
1⃝ 7→ send candyBar
2⃝ 7→ send lollipop

}
close s

in let customer = λs.

offer s


Free 7→ let s = select 1⃝ s in

let (cb, s) = recv s in
wait s; eat cb

Busy 7→ wait s; hungry


in let s = fork (λs.vendingMachine s)
in customer s

(a) Vending machine and customer as a GV program.

vendingMachine

customer

s

s

(b) Process structure of Figure 1a.

Figure 1 Example program with process structure.

the closure as a new process by supplying one of the endpoints as an argument, and then
returns the other endpoint. In essence, fork is a branching operation on the process structure:
it creates a new node connected to the current node by a single edge. Linearity guarantees
that the tree structure is preserved, even in the presence of higher-order channels.

Lindley and Morris [31] introduce a semantics for GV, which evaluates programs embedded
in process configurations, consisting of embedded programs, flagged as main (•) or child (◦)
threads, ν-binders to create new channels, and parallel compositions:

C, D ::= • M | ◦ M | (νx)C | (C ∥ D)

They introduce these process configurations together with a standard structural congru-
ence, which allows, amongst other things, the reordering of processes using commut-
ativity (C ∥ C′ ≡ C′ ∥ C), associativity (C ∥ (C′ ∥ C′′) ≡ (C ∥ C′) ∥ C′′), and scope extrusion
(C ∥ (νx)C′ ≡ (νx)(C ∥ C′) if x /∈ fv(C)). They guarantee acyclicity by defining an extrinsic
type system for configurations. In particular, the type system requires that in every parallel
composition C ∥ D, C and D must have exactly one channel in common, and that in a name
restriction (νx)C, channel x cannot be used until it is shared across a parallel composition.

These restrictions are sufficient to guarantee deadlock freedom. Unfortunately, however,
they are not preserved by process equivalence. As Lindley and Morris write:

Alas, our notion of typing is not preserved by configuration equivalence. For example,
assume that Γ ⊢ (νxy)(C1 ∥ (C2 ∥ C3)), where x ∈ fv(C1), y ∈ fv(C2), and x, y ∈
fv(C3). We have that C1 ∥ (C2 ∥ C3) ≡ (C1 ∥ C2) ∥ C3, but Γ ⊬ (νxy)((C1 ∥ C2) ∥ C3),
as both x and y must be shared between the processes C1 ∥ C2 and C3.

As a result, standard notions of progress and preservation are not enough to guarantee
deadlock freedom, as reduction sequences could include equivalence steps from well-typed to
non-well-typed terms! Instead, they must prove a stronger result:

▶ Theorem 3 (Lindley and Morris [31]). If Γ ⊢ C, C ≡ C′, and C′ −→ D′, then there exists D
such that D ≡ D′ and Γ ⊢ D.

This is not a one-time cost: languages based on GV must either also give up on type
preservation for structural congruence [15] or admit deadlocks [21, 46].

3 Hypersequent GV

We present Hypersequent GV (HGV), a linear λ-calculus extended with session types and
primitives for session-typed communication. HGV shares its syntax and static typing with
GV, but uses hyper-environments for runtime typing to simplify and generalise its semantics.

4 Separating Sessions Smoothly

Typing rules for terms Γ ⊢ M : T

TM-Var

x : T ⊢ x : T

TM-Const

· ⊢ K : T

TM-Lam
Γ, x : T ⊢ M : U

Γ ⊢ λx.M : T ⊸ U

TM-App
Γ ⊢ M : T ⊸ U ∆ ⊢ N : T

Γ, ∆ ⊢ M N : U

TM-Unit

· ⊢ () : 1

TM-LetUnit
Γ ⊢ M : 1 ∆ ⊢ N : T

Γ, ∆ ⊢ let () = M in N : T

TM-Pair
Γ ⊢ M : T ∆ ⊢ N : U

Γ, ∆ ⊢ (M, N) : T × U

TM-LetPair
Γ ⊢ M : T × T ′ ∆, x : T , y : T ′ ⊢ N : U

Γ, ∆ ⊢ let (x, y) = M in N : U

TM-Absurd
Γ ⊢ M : 0

Γ ⊢ absurd M : T

TM-Inl
Γ ⊢ M : T

Γ ⊢ inl M : T + U

TM-Inr
Γ ⊢ M : U

Γ ⊢ inr M : T + U

TM-CaseSum
Γ ⊢ L : T + T ′ ∆, x : T ⊢ M : U ∆, y : T ′ ⊢ N : U

Γ, ∆ ⊢ case L {inl x 7→ M ; inr y 7→ N} : U

Type schemas for communication primitives K : T

link : S × S ⊸ end!

fork : (S ⊸ end!) ⊸ S

send : T × !T.S ⊸ S

recv : ?T.S ⊸ T × S

wait : end? ⊸ 1

Duality S

!T.S = ?T.S ?T.S = !T.S end! = end? end? = end!

Figure 2 HGV, duality and typing rules for terms.

Types, terms, and static typing Types (T , U) comprise a unit type (1), an empty type
(0), product types (T × U), sum types (T + S), linear function types (T ⊸ U), and session
types (S).

T , U ::= 1 | 0 | T × U | T + U | T ⊸ U | S S ::= !T.S | ?T.S | end! | end?

Session types (S) comprise output (!T.S: send a value of type T , then behave like S), input
(?T.S: receive a value of type T , then behave like S), and dual end types (end! and end?).
The dual end points restrict process structure to trees [51]; conflating them loosens this
restriction to forests [3]. We let Γ, ∆ range over type environments.

The terms and typing rules are given in Figure 2. The linear λ-calculus rules are standard.
Each communication primitive has a type schema: link takes a pair of compatible endpoints
and forwards all messages between them; fork takes a function, which is passed one endpoint
(of type S) of a fresh channel yielding a new child thread, and returns the other endpoint (of
type S); send takes a pair of a value and an endpoint, sends the value over the endpoint,
and returns an updated endpoint; recv takes an endpoint, receives a value over the endpoint,
and returns the pair of the received value and an updated endpoint; and wait synchronises
on a terminated endpoint of type end?. Output is dual to input, and end! is dual to end?.
Duality is involutive, i.e., S = S.

We write M ; N for let () = M in N , let x = M in N for (λx.N) M , λ().M for λz.z; M ,
and λ(x, y).M for λz.let (x, y) = z in M . We write K : T for · ⊢ K : T in typing derivations.
▶ Remark 3.1. We include link because it is convenient for the correspondence with CP,
which interprets CLL’s axiom as forwarding. We can encode link in GV via a type directed
translation akin to CLL’s identity expansion.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 5

Typing rules for configurations G ⊢ C : R

TC-New
G ∥ Γ, x : S ∥ ∆, y : S ⊢ C : R

G ∥ Γ, ∆ ⊢ (νxy)C : R

TC-Par
G ⊢ C : R H ⊢ D : R′

G ∥ H ⊢ C ∥ D : R ⊓ R′

TC-Main
Γ ⊢ M : T

Γ ⊢ • M : • T

TC-Child
Γ ⊢ M : end!

Γ ⊢ ◦ M : ◦

TC-Link

x : S, y : S, z : end? ⊢ x
z↔y : ◦

Configuration types

R ::= ◦ | • T

Configuration type combination R ⊓ R′

• T ⊓ ◦ = • T ◦ ⊓ • T = • T ◦ ⊓ ◦ = ◦

Figure 3 HGV, typing rules for configurations.

Configurations and runtime typing Process configurations (C, D, E) comprise child threads
(◦ M), the main thread (• M), link threads (x z↔y), name restrictions ((νxy)C), and parallel
compositions (C ∥ D). We refer to a configuration of the form ◦M or x

z↔y as an auxiliary
thread, and a configuration of the form •M as a main thread. We let A range over auxiliary
threads and T range over all threads (auxiliary or main).

ϕ ::= • | ◦ C, D, E ::= ϕ M | x
z↔y | C ∥ D | (νxy)C

The configuration language is reminiscent of π-calculus processes, but has some non-standard
features. Name restriction uses double binders [49] in which one name is bound to each
endpoint of the channel. Link threads [32] handle forwarding. A link thread x

z↔y waits for
the thread connected to z to terminate before forwarding all messages between x and y.

Configuration typing departs from GV [31], exploiting hypersequents [4] to recover
modularity and extensibility. Inspired by HCP [34, 28, 27], configurations are typed under
a hyper-environment, a collection of disjoint type environments. We let G, H range over
hyper-environments, writing ∅ for the empty hyper-environment, G ∥ Γ for disjoint extension
of G with type environment Γ, and G ∥ H for disjoint concatenation of G and H.

The typing rules for configurations are given in Figure 3. Rules TC-New and TC-Par are
key to deadlock freedom: TC-New joins two disjoint configurations with a new channel, and
merges their type environments; TC-Par combines two disjoint configurations, and registers
their disjointness by separating their type environments in the hyper-environment. Rules
TC-Main, TC-Child, and TC-Link type main, child, and link threads, respectively; all three
require a singleton hyper-environment. A configuration has type ◦ if it has no main thread,
and • T if it has a main thread of type T . The configuration type combination operator
ensures that a well-typed configuration has at most one main thread.

Operational semantics HGV values (U , V , W), evaluation contexts (E), and term reduction
rules (−→M) define a standard call-by-value, left-to-right evaluation strategy (Appendix A).
A closed term either reduces to a value or is blocked on a communication action.

Figure 4 gives the configuration reduction rules. Thread contexts (F) extend evaluation
contexts to threads, i.e., F ::= ϕ E. The structural congruence rules are standard apart from
SC-LinkComm, which ensures links are undirected, and SC-NewSwap, which swaps names in
double binders. The concurrent behaviour of HGV is given by a nondeterministic reduction
relation (−→) on configurations. The first two rules, E-Reify-Fork and E-Reify-Link, create
child and link threads, respectively. The next three rules, E-Comm-Link, E-Comm-Send, and
E-Comm-Close perform communication actions. The final four rules enable reduction under
name restriction and parallel composition, rewriting by structural congruence, and term

6 Separating Sessions Smoothly

Structural congruence C ≡ D

SC-ParAssoc C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E
SC-NewComm (νxy)(νzw)C ≡ (νzw)(νxy)C
SC-ScopeExt (νxy)(C ∥ D) ≡ C ∥ (νxy)D, if x, y /∈ fv(C)

SC-ParComm C ∥ D ≡ D ∥ C
SC-NewSwap (νxy)C ≡ (νyx)C
SC-LinkComm x

z↔y ≡ y
z↔x

Configuration reduction C −→ D

E-Reify-Fork F [fork V] −→ (νxx′)(F [x] ∥ ◦ (V x′)), where x, x′ fresh
E-Reify-Link F [link (x, y)] −→ (νzz′)(x z↔y ∥ F [z′]), where z, z′ fresh

E-Comm-Link (νzz′)(νxx′)(x z↔y ∥ ◦ z′ ∥ ϕ M) −→ ϕ (M{y/x′})
E-Comm-Send (νxy)(F [send (V, x)] ∥ F ′[recv y]) −→ (νxy)(F [x] ∥ F ′[(V, y)])
E-Comm-Close (νxy)(◦ y ∥ F [wait x]) −→ F [()]

E-Res
C −→ C′

(νxy)C −→ (νxy)C′

E-Par
C −→ C′

C ∥ D −→ C′ ∥ D

E-Equiv
C ≡ C′ C′ −→ D′ D′ ≡ D

C −→ D

E-Lift-M
M −→M M ′

F [M] −→ F [M ′]

Figure 4 HGV, configuration reduction.

reduction in threads. Two rules handle links: E-Reify-Link creates a new link thread x
z↔y

which blocks on z of type end?, one endpoint of a fresh channel. The other endpoint, z′ of
type end!, is placed in the evaluation context of the parent thread. When z′ terminates a
child thread, E-Comm-Link performs forwarding by substitution.

Choice Internal and external choice are encoded with sum types and session delegation [23,
13]. Prior encodings of choice in GV [31] are asynchronous. To encode synchronous choice
we add a dummy synchronisation before exchanging the value of sum type, as follows:

S ⊕ S′ ≜ !1.!(S1 + S2).end!

S & S′ ≜ ?1.?(S1 + S2).end?

⊕{} ≜ !1.!0.end!

&{} ≜ ?1.?0.end?

select ℓ ≜ λx.

(
let x = send ((), x) in
fork (λy.send (ℓ y, x))

)
offer L {inl x 7→ M ; inr y 7→ N}

≜
let ((), z) = recv L in let (w, z) = recv z

in wait z; case w {inl x 7→ M ; inr y 7→ N}

offer L {} ≜
let ((), c) = recv L in let (z, c) = recv c

in wait c; absurd z

HGV enjoys type preservation, deadlock freedom, confluence, and strong normalisation
(details in Appendix C). Here we outline where the metatheory diverges from GV.

Preservation Hyper-environments enable type preservation under structural congruence,
which significantly simplifies the metatheory compared to GV.

▶ Theorem 3.2 (Preservation).
1. If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
2. If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Abstract process structures Unlike in GV, in HGV we cannot rely on the fact that exactly
one channel is split over each parallel composition. Instead, we introduce the notion of an
abstract process structure (APS). An APS is a graph defined over a hyper-environment G
and a set of undirected pairs of co-names (a co-name set) N drawn from the names in G.
The nodes of an APS are the type environments in G. Each edge is labelled by a distinct
co-name pair {x1, x2} ∈ N , such that x1 : S ∈ Γ1 and x2 : S ∈ Γ2.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 7

▶ Example 3.3.

Let G = Γ1 ∥ Γ2 ∥ Γ3, where Γ1 = x : S1, y : S2, Γ2 = x′ : S1, z : T ,
and Γ3 = y′ : S2, and suppose N = {{x, x′}, {y, y′}}. The APS for
G and N is illustrated to the right.

Γ1

Γ2 Γ3

{x, x′} {y, y′}

{{x, x′}, {y, y′}}

A key feature of HGV is a subformula principle, which states that all hyper-environments
arising in the derivation of an HGV program are tree-structured. We write Tree(G, N) to
denote that the APS for G with respect to N is tree-structured. An HGV program • M has
a single type environment, so is tree-structured; the same goes for child and link threads.
Read bottom-up TC-New and TC-Par preserve tree structure: these two properties follow
from Lemma B.8 (Appendix B), which is illustrated by the following two pictures.

G
N

Γ ∆

N ⊎ {{z, z′}, {x, y}}

{z, z′}

{x, y}

G
N

Γ, ∆

{z, z′}

N ⊎ {{z, z′}}

G

H

N1

N2

G

H

N1

N2

N1 ⊎ N2 ⊎ {{x, x′}}

{x, x′}

Tree canonical form We now define a canonical form for configurations that captures
the tree structure of an APS. Tree canonical form enables a succinct statement of open
progress (Lemma 3.8) and a means for embedding HGV in GV (Lemma 4.6).

▶ Definition 3.4 (Tree canonical form). A configuration C is in tree canonical form if it can
be written: (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · ·) where xi ∈ fv(Ai) for 1 ≤ i ≤ n.

▶ Theorem 3.5 (Tree canonical form). If Γ ⊢ C : R, then there exists some D such that
C ≡ D and D is in tree canonical form.
▶ Lemma 3.6. If Γ1 ∥ · · · ∥ Γn ⊢ C : R, then there exist R1, . . . , Rn and D1, . . . , Dn such
that R = R1 ⊓ · · · ⊓ Rn and C ≡ D1 ∥ · · · ∥ Dn and Γi ⊢ Di : Ri for each i.

It follows from Theorem 3.5 and Lemma 3.6 that any well-typed HGV configuration can
be written as a forest of independent configurations in tree canonical form.

Progress and Deadlock Freedom

▶ Definition 3.7 (Blocked thread). We say that thread T is blocked on variable z, written
blocked(T , z), if either: T = ◦ z; T = x

z↔y, for some x, y; or T = F [N] for some F , where
N is send (V, z), recv z, or wait z.

We let Ψ range over type environments containing only session-typed variables, i.e., Ψ ::= · |
Ψ, x : S, which lets us reason about configurations that are closed except for runtime names.
Using Lemma 3.6 we obtain open progress for configurations with free runtime names.

▶ Lemma 3.8 (Open Progress). Suppose Ψ ⊢ C : T where C = (νx1y1)(A1 ∥ · · · ∥
(νxnyn)(An ∥ ϕN) · · ·) is in tree canonical form. Either C −→ D for some D, or:

1. For each Aj (1 ≤ j ≤ n), blocked(Aj , z) for some z ∈ {xj} ∪ {yk | 1 ≤ k < j} ∪ fv(Γi)
2. Either N is a value or blocked(ϕN, z) for some z ∈ {yj | 1 ≤ j ≤ n} ∪ fv(Γi)

For closed configurations, we obtain a tighter result. If a closed configuration cannot reduce,
then each auxiliary thread must either be a value, or be blocked on its neighbouring endpoint.

8 Separating Sessions Smoothly

Typing rules for configurations Γ ⊢GV C : T

TG-New
Γ, ⟨x, y⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νxy)C : R

TG-Connect1
Γ1, x : S ⊢GV C : R

Γ2, y : S ⊢GV D : R′

Γ1, Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓ R′

TG-Connect2
Γ1, y : S ⊢GV C : R

Γ2, x : S ⊢GV D : R′

Γ1, Γ2, ⟨x, y⟩ : S♯ ⊢GV C ∥ D : R ⊓ R′

TG-Child
Γ ⊢GV M : end!

Γ ⊢GV ◦M : ◦

TG-Main
Γ ⊢GV M : T

Γ ⊢GV •M : • T

TG-Link

x : S, y : S, z : end? ⊢GV x
z↔y : ◦

Figure 5 GV, typing rules for configurations.

Finally, for ground configurations, where the main thread does not return a runtime name
or capture a runtime name in a closure, we obtain a yet tighter result, global progress, which
implies deadlock freedom [9].

▶ Definition 3.9 (Ground configuration). A configuration C is a ground configuration if
· ⊢ C : T , C is in canonical form, and T does not contain session types or function types.

▶ Theorem 3.10 (Global progress). Suppose C is a ground configuration. Either there exists
some D such that C −→ D, or C = •V for some value V .

4 Relation between HGV and GV

In this section, we show that well-typed GV configurations are well-typed HGV configurations,
and well-typed HGV configurations with tree structure are well-typed GV configuration.

GV HGV and GV share a common term language and reduction semantics, so only differ
in their runtime typing rules. Figure 5 gives the runtime typing rules for GV. We adapt the
rules to use a double-binder formulation to concentrate on the essence of the relationship
with HGV, but it is trivial to translate GV with single binders into GV with double binders.

We require a pseudo-type S♯, which is the type of un-split channels and cannot appear
in terms. Rule TG-New types a name restriction (νxy)C, adding ⟨x, y⟩ : S♯ to the type
environment, which along with TG-Connect1 and TG-Connect2 ensures that a session
channel of type S will be split into endpoints x and y over a parallel composition, in turn
enforcing a tree process structure. The remaining typing rules are as in HGV.

Embedding GV into HGV Every well-typed open GV configuration is also a well-typed
HGV configuration.

▶ Definition 4.1 (Flattening). Flattening, written ↓ , converts GV type environments and
HGV hyper-environments into HGV environments.

↓ · = ·
↓ (Γ, ⟨x, x′⟩ : S♯) = ↓ Γ, x : S, x′ : S

↓ (Γ, x : T) = ↓ Γ, x : T

↓∅ = ∅
↓ (G ∥ Γ) = ↓ G, Γ

▶ Definition 4.2 (Splitting). Splitting converts GV typing environments into hyper-environments.
Given channels {⟨xi, x′

i⟩ : S♯
i }i∈1..n in Γ, a hyper-environment G is a splitting of Γ if ↓ G = ↓ Γ

and ∃Γ1, . . . , Γn+1 such that G = Γ1 ∥ · · · ∥ Γn+1, and Tree(G, {{x1, x′
1}, . . . , {xn, x′

n}}).

A well-typed GV configuration is typeable in HGV under a splitting of its type environment.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 9

▶ Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists
some G such that G is a splitting of Γ and G ⊢ C : R.

▶ Example 4.4. Consider a configuration where a child thread pings the main thread:

(νxy)(◦ (send (ping, x)) ∥ • (let ((), y) = recv y in wait y))

We can write a GV typing derivation as follows:
x : !1.end!, ping : 1 ⊢GV ◦ (send (ping, x)) : ◦ y : ?1.end? ⊢GV • (let ((), y) = recv y in wait y) : • 1

⟨x, y⟩ : !1.end!
♯, ping : 1 ⊢GV (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : 1

ping : 1 ⊢GV (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : 1

The corresponding HGV derivation is:
x : !1.end!, ping : 1 ⊢ ◦ (send (ping, x)) : ◦ y : ?1.end? ⊢ • (let ((), y) = recv y in wait y) : • 1
x : !1.end!, ping : 1 ∥ y : ?1.end? ⊢ (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

ping : 1 ⊢ (νxy)(◦(send (ping, x)) ∥ •(let ((), y) = recv y in wait y)) : • 1

Note that x : !1.end!, ping : 1 ∥ y : ?1.end? is a splitting of ⟨x, y⟩ : (!1.end!)♯, ping : 1.

Translating HGV to GV As we saw earlier, unlike in HGV, equivalence in GV is not
type-preserving. It follows that HGV types strictly more processes than GV.

▶ Theorem 4.5. There exist configurations C where · ⊢ C : R but · ̸⊢GV C : R.

Nevertheless, every well-typed HGV configuration typeable under a singleton hyper-environment
Γ is equivalent to a well-typed GV configuration, which we show using tree canonical forms.

▶ Lemma 4.6. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

▶ Remark 4.7. It is not the case that every HGV configuration typeable under an arbitrary
hyper-environment H is equivalent to a well-typed GV configuration. This is because
open HGV configurations can form forest process structures, whereas (even open) GV
configurations must form a tree process structure.
Since we can write all well-typed HGV configurations in canonical form, and HGV tree
canonical forms are typeable in GV, it follows that every well-typed HGV configuration
typeable under a single type environment is equivalent to a well-typed GV configuration.

▶ Corollary 4.8. If Γ ⊢ C : R, then there exists some D such that C ≡ D and Γ ⊢GV D : R.

5 Relation between HGV and HCP

In this section, we explore two translations, from HGV to HCP (in Section 5) and from HCP
to HGV (in Section 5), together with their operational correspondences.

Hypersequent CP HCP [34, 28] is a session-typed process calculus with a correspondence
to CLL, which exploits hypersequents to fix extensibility and modularity issues with CP.

Types (A, B) consist of the connectives of linear logic: the multiplicative operators (⊗,
`) and units (1, ⊥) and the additive operators (⊕, &) and units (0, ⊤).

A, B ::= 1 | ⊥ | 0 | ⊤ | A ⊗ B | A ` B | A ⊕ B | A & B

Type environments (Γ, ∆) associate names with types. Hyper-environments (G, H) are
collections of type environments. The empty type environment and hyper-environment are
written · and ∅, respectively. Names in type and hyper-environments must be unique and
environments may be combined, written Γ, ∆ and G ∥ H, only if they are disjoint.

10 Separating Sessions Smoothly

Typing rules for processes P ⊢ G

TP-Link

x↔Ay ⊢ x : A, y : A⊥

TP-New
P ⊢ G ∥ Γ, x : A ∥ ∆, y : A⊥

(νxy)P ⊢ G ∥ Γ, ∆

TP-Par
P ⊢ G Q ⊢ H
P ∥ Q ⊢ G ∥ H

TP-Halt

0 ⊢ ∅

TP-Close
P ⊢ ∅

x[].P ⊢ x : 1

TP-Wait
P ⊢ Γ

x().P ⊢ Γ, x : ⊥

TP-Send
P ⊢ Γ, y : A ∥ ∆, x : B

x[y].P ⊢ Γ, ∆, x : A ⊗ B

TP-Recv
P ⊢ Γ, y : A, x : B

x(y).P ⊢ Γ, x : A ` B

TP-Offer-Absurd

x ▷ {} ⊢ Γ, x : ⊤

TP-Select-Inl
P ⊢ Γ, x : A

x ◁ inl.P ⊢ Γ, x : A ⊕ B

TP-Select-Inr
P ⊢ Γ, x : B

x ◁ inr.P ⊢ Γ, x : A ⊕ B

TP-Offer
P ⊢ Γ, x : A Q ⊢ Γ, x : B

x ▷ {inl : P ; inr : Q} ⊢ Γ, x : A & B

Duality A⊥

(A ⊗ B)⊥ = A⊥ ` B⊥

(A ` B)⊥ = A⊥ ⊗ B⊥
(1)⊥ = ⊥
(⊥)⊥ = 1

(A ⊕ B)⊥ = A⊥ & B⊥

(A & B)⊥ = A⊥ ⊕ B⊥
(0)⊥ = ⊤
(⊤)⊥ = 0

Figure 6 HCP, duality and typing rules for processes.

Processes (P , Q) are a variant of the π-calculus with forwarding [44, 7], bound output [44],
and double binders [49]. The syntax of processes is given by the typing rules (Figure 6),
which are standard for HCP [34, 28]: x↔y forwards messages between x and y; (νxy)P
creates a channel with endpoints x and y, and continues as P ; P ∥ Q composes P and Q in
parallel; 0 is the terminated process; x[y].P creates a new channel, outputs one endpoint
over x, binds the other to y, and continues as P ; x(y).P receives a channel endpoint, binds it
to y, and continues as P ; x[].P and x().P close x and continue as P ; x ◁ inl.P and x ◁ inr.P
make a binary choice; x ▷ {inl : P ; inr : Q} offers a binary choice; and x ▷ {} offers a nullary
choice. As HCP is synchronous, the only difference between x[y].P and x(y).P is their
typing (and similarly for x[].P and x().P). We write unbound send as x⟨y⟩.P (short for
x[z].(y↔z ∥ P)), and synchronisation as x̄.P (short for x[z].(z[].0 ∥ P)) and x.P (short for
x(z).z().P). Duality is standard and is involutive, i.e., (A⊥)⊥ = A.

We define a standard structural congruence (≡) similar to that of HGV, i.e., parallel
composition is commutative and associative, we can commute name restrictions, swap the
order of endpoints, swap links, and have scope extrusion (similar to Figure 4).

We define the labeled transition system for HCP as a subsystem of that of Kokke et
al. [27], omitting delayed actions. Labels ℓ represent the actions a process can take. Prefixes
π are a convenient subset which can be written as prefixes to processes, i.e., π.P . The label
τ represents internal actions. We distinguish two subtypes of internal actions: α represents
only the evaluation of links as renaming, and β represents only communication.

π ::= x[y] | x[] | x(y) | x() | x ◁ inl | x ◁ inr
ℓ := π | x↔y | x ▷ inl | x ▷ inr | τ | α | β

We let ℓx range over labels on x: x↔y, x[y], x[], etc. Labeled transition ℓ−→ is defined
in Figure 7. We write ℓ−→ ℓ′

−→ for the composition of ℓ−→ and ℓ′

−→, ℓ−→+ for the transitive
closure of ℓ−→, and ℓ−→⋆ for the reflexive-transitive closure. We write bn(ℓ) and fn(ℓ) for the
bound and free names contained in ℓ, respectively.

The behavioural theory for HCP follows Kokke et al. [27], except that we distinguish two
subrelations to bisimilarity, following the subtypes of internal actions.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 11

Action rules

Act-Pref
π.P

π−→ P

Act-Link1

x↔y
x↔y−→ 0

Act-Link2

x↔y
y↔x−→ 0

Act-Off-Inl
x ▷ {inl : P ; inr : Q} x▷inl−→ P

Act-Off-Inr
x ▷ {inl : P ; inr : Q} x▷inr−→ Q

Communication Rules

Tau-Alp
P

α−→ P ′

P
τ−→ P ′

Tau-Bet
P

β−→ P ′

P
τ−→ P ′

Alp-Link
P

x↔z−→ P ′

(νxy)P α−→ P ′{z/y}

Bet-Send
P

x[x′]∥y(y′)−→ P ′

(νxy)P β−→ (νxy)(νx′y′)P ′

Bet-Close
P

x[]∥y()−→ P ′

(νxy)P β−→ P ′

Bet-Inl
P

x◁inl∥y▷inl−→ P ′

(νxy)P β−→ (νxy)P ′

Bet-Inr
P

x◁inr∥y▷inr−→ P ′

(νxy)P β−→ (νxy)P ′

Structural Rules

Str-Res
P

ℓ−→ P ′ x, y ̸∈ fn(ℓ)

(νxy)P ℓ−→ (νxy)P ′

Str-Par1

P
ℓ−→ P ′ bn(ℓ) ∩ fn(Q) = ∅

P ∥ Q
ℓ−→ P ′ ∥ Q

Str-Par2

Q
ℓ−→ Q′ bn(ℓ) ∩ fn(P) = ∅

P ∥ Q
ℓ−→ P ∥ Q′

Str-Syn
P

ℓ−→ P ′ Q
ℓ′

−→ Q′ bn(ℓ) ∩ bn(ℓ′) = ∅

P ∥ Q
ℓ∥ℓ′
−→ P ′ ∥ Q′

Figure 7 HCP, label transition semantics.

▶ Definition 5.1 (Strong bisimilarity). A symmetric relation R on processes is a strong
bisimulation if P RQ implies that if P

ℓ−→ P ′, then Q
ℓ−→ Q′ for some Q′ such that P ′ RQ′.

Strong bisimilarity is the largest relation ∼ that is a strong bisimulation.
▶ Definition 5.2 (Saturated transition). The ℓ-saturated transition relation, for ℓ ∈ {α, β, τ},
is the smallest relation =⇒ℓ such that: P

ℓ=⇒ℓ P for all P ; and if P
ℓ=⇒ℓ P ′, P ′ ℓ′

−→ Q′, and
Q′ ℓ=⇒ℓ Q, then P

ℓ′

=⇒ℓ Q. Saturated transition, with no qualifier, refers to the τ -saturated
transition relation, and is written =⇒.
▶ Definition 5.3 (Bisimilarity). A symmetric relation R on processes is an ℓ-bisimulation,
for ℓ ∈ {α, β, τ}, if P R Q implies that if P

ℓ′

=⇒ℓ P ′, then Q
ℓ′

=⇒ℓ Q′ for some Q′ such
that P ′ R Q′. The ℓ-bisimilarity relation is the largest relation ≈ℓ that is an ℓ-bisimulation.
Bisimilarity, with no qualifier, refers to τ -bisimilarity, and is written ≈.

▶ Lemma 5.4. Structural congruence, strong bisimilarity and the various forms of (weak)
bisimilarity are in the expected relation, i.e., ≡ ⊊ ∼, ∼ ⊊ ≈, ≈α, ≈β. Furthermore, bisimilar-
ity is the union of α-bisimilarity and β-bisimilarity, i.e., ≈ = ≈α ∪ ≈β.

Translating HGV to HCP We factor the translation from HGV to HCP into two translations:
(1) a translation into HGV∗, a fine-grain call-by-value [30] variant of HGV, which makes
control flow explicit; and (2) a translation from HGV∗ to HCP.

HGV∗ We define HGV∗ as a refinement of HGV in which any non-trivial term must be
named by a let binding before being used. While let is syntactic sugar in HGV, it is part
of the core language in HGV∗. Correspondingly, the reduction rule for let follows from the

12 Separating Sessions Smoothly

Translation on types TTU and VTW

T!T.SU = TTU⊥ ⊗ TSU
T?T.SU = TTU⊥ ` TSU

Tend!U = 1
Tend?U = ⊥

TTU = VTW⊥,

if T is not a session type

VT × UW = VTW ⊗ VUW
VT + UW = VTW ⊕ VUW

V1W = 1
V0W = 0

VT ⊸ UW = VTW⊥ ` (1 ⊗ VUW)
VSW = TSU⊥

Translation on configurations and terms JCKc
r, JV Kv

r, and JMKm
r

J◦ MKc
r = (νyy′)(JMKm

y ∥ y′.y′[].0)
J• MKc

r = JMKm
r

J(νxx′)CKc
r = (νxx′)JCKc

r

J C ∥ DKc
r = JCKc

r ∥ JDKc
r

Jx z↔yKc
r = z̄.z().x↔y

JxKv
r = r↔x

Jλx.MKv
r = r(x).JMKm

r

J()Kv
r = r[].0

J(V, W)Kv
r = r[x].(JV Kv

x ∥ JW Kv
r)

Jinl V Kv
r = r ◁ inl.JV Kv

r

Jinr V Kv
r = r ◁ inr.JV Kv

r

JV W Km
r = (νxx′)(νyy′)(y⟨x⟩.r↔y ∥ JV Kv

y′ ∥ JW Kv
x′)

Jlet () = V in MKm
r = (νxx′)(x().JMKm

r ∥ JV Kv
x′)

Jlet (x, y) = V in MKm
r = (νyy′)(y(x).JMKm

r ∥ JV Kv
y′)

Jcase V {inl x 7→ M ; inr y 7→ N}Km
r = (νxx′)(x ▷ {inl : JMKm

r ; inr : JN{x/y}Km
r } ∥ JV Kv

x′)
Jabsurd V Km

r = (νxx′)(x ▷ {} ∥ JV Kv
x′)

Jlet x = M in NKm
r = (νxx′)(x.JNKm

r ∥ JMKm
x′)

JV Km
r = r̄.JV Kv

r

JlinkKv
r = r(y).y(x).r̄.r().x↔y

JforkKv
r = r(x).r̄.x⟨r⟩.x.x[].0

JsendKv
r = r(y).y(x).y⟨x⟩.r̄.r↔y

JrecvKv
r = r(x).x(y).r̄.r⟨y⟩.r↔x

JwaitKv
r = r(x).x().r̄.r[].0

Figure 8 Translation from HGV∗ to HCP.

encoding in HGV, i.e. let x = V in M −→M M{V/x}.

Terms L, M, N ::= V | let x = M in N | V W

| let () = V in M | let (x, y) = V in M

| absurd V | case V {inl x 7→ M ; inr y 7→ N}
Values V , W ::= x | K | λx.M | () | (V, W) | inl V | inr V

Evaluation contexts E ::= □ | let x = E in M

We can naively translate HGV to HGV∗ (L·M) by let-binding each subterm in a value
position, e.g., Linl MM = let z = LMM in inl z. Such a translation is given in Definition E.1;
standard techniques can be applied if one wishes to avoid administrative redexes [40, 11].

HGV∗ to HCP The translation from HGV∗ to HCP is given in Figure 8. All control flow
is encapsulated in values and let-bindings. We define a pair of translations on types, T·U and
V·W, such that TTU = VTW⊥. We extend these translations pointwise to type environments
and hyper-environments. We define translations on configurations (J·Kc

r), terms (J·Km
r) and

values (J·Kv
r), where r is a fresh name denoting a special output channel over which the

process sends a ping once it has reduced to a value, and then sends the value.
We translate an HGV sequent G ∥ Γ ⊢ C : T as JCKc

r ⊢ TGU ∥ TΓU, r : 1 ⊗ TTU⊥, where Γ
is the type environment corresponding to the main thread. The translation of a value JV Kv

r

immediately pings the output channel r to announce that it is a value. The translation of a
let-binding Jlet w = M in NKm

r first evaluates M to a value, which then pings the internal
channel x/x′ and unblocks the continuation x.JNKm

r .

▶ Lemma 5.5 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a well-typed
value, then (νww′)(JMKm

r ∥ JV Kv
w′) ≈α JM{V/w}Km

r .

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 13

▶ Theorem 5.6 (Operational Correspondence). If C is a well-typed configuration:
1. if C −→ C′, then JCKc

r

β=⇒ JC′Kc
r; and

2. if JCKc
r

β−→ P , then there exists a C′ such that C −→ C′ and P ≈ JC′Kc
r.

Translating HCP to HGV We cannot translate HCP processes to HGV terms directly:
HGV’s term language only supports fork (see Appendix G for further discussion), so there
is no way to translate an individual name restriction or parallel composition. We must first
reunite each parallel composition with its corresponding name restriction, i.e., translate
to CP. We can then translate to HGV via known translations. Consequently, we factor
the translation from HCP to HGV into three translations: (1) the translation from HCP
into CP [28, Lemma 4.7]; (2) (a variant of) the translation from CP to GV [31, Figure 8];
and (3) the embedding of GV into HGV (Theorem 4.3). Translations (1) and (3) preserve
and reflect reduction. However, Lindley and Morris’s original translation from CP to GV
preserves but does not reflect reduction due to an asynchronous encoding of choice. By
adapting their translation to use a synchronous encoding of choice (Section 3), we obtain (2)
a translation from CP to GV that both preserves and reflects reduction. Thus, composing
all three translations together we obtain a translation from HCP to HGV that preserves and
reflects reduction.

6 Extensions

In this section, we outline three extensions to HGV that exploit generalising the tree structure
of processes to a forest structure. Full details are given in Appendix F. These extensions are
of particular interest since HGV already supports a core aspect of forest structure, enabling
its full utilisation merely through the addition of a structural rule. In contrast, to extend
GV with forest structure one must distinguish two distinct introduction rules for parallel
composition [31]. Other extensions to GV such as shared channels [31], polymorphism [33],
and recursive session types [32] adapt to HGV almost unchanged.

From trees to forests The TC-Mix structural rule allows two type environments Γ1, Γ2 to
be split by a hyper-environment separator without a channel connecting them. Mix [18] may
be interpreted as concurrency without communication [31, 3].

TC-Mix
G ∥ Γ1 ∥ Γ2 ⊢ C : T

G ∥ Γ1, Γ2 ⊢ C : T

A simpler link Consider threads L = F [link (x, y)], M , N , where L connects to M by x

and to N by y.
L

M N

{x, x′} {y, y′}

−→

L

M N
{y, y′}

The result of link reduction has forest structure. Well-typed closed programs in both GV
and HGV must always maintain tree structure. Different versions of GV do so in various
unsatisfactory ways: one is pre-emptive blocking [31], which breaks confluence; another is
two stage linking (Figure 4), which defers forwarding via a special link thread [32]. With
TC-Mix, we can adjust the type schema for link to (S × S) ⊸ 1 and use the following rule.

E-Link-Mix (νxx′)(F [link (x, y)] ∥ ϕN) −→ F [()] ∥ ϕN{y/x′}

This formulation enables immediate substitution, maximimising concurrency.

14 Separating Sessions Smoothly

Exceptions In order to support exceptions in the presence of linear endpoints [15, 35] we
must have a way of cancelling an end point (cancel : S ⊸ 1). Cancellation generates a
special zapper thread (x) which severs a tree topology into a forest as in the following
example.

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ •(cancel x; wait y))

• (cancel x; wait y)

◦ x′ ◦ y′

−→

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ x ∥ •((); wait y)

 x

◦ x′

• ((); wait y)

◦ y′

7 Related work

Session Types and Functional Languages HGV traces its origins to a line of work initiated
by Gay and collaborators [16, 48, 50, 17]. This family of calculi builds session types directly
into a lambda calculus. Toninho et al. [47] take an alternative approach, stratifying their
system into a session-typed process calculus and a separate functional calculus. There are
many pragmatic embeddings of session type systems in existing functional programming
languages [36, 41, 43, 22, 38, 25]. A detailed survey is given by Orchard & Yoshida [37].

Propositions as Sessions When Girard introduced linear logic [18] he suggested a connection
with concurrency. Abramsky [1] and Bellin and Scott [5] give embeddings of linear logic proofs
in π-calculus, where cut reduction is simulated by π-calculus reduction. Both embeddings
interpret tensor as parallel composition. The correspondence with π-calculus is not tight
in that these systems allow independent prefixes to be reordered. Caires and Pfenning [8]
give a propositions as types correspondence between dual intuitionistic linear logic and a
session-typed π-calculus called πDILL. They interpret tensor as output. The correspondence
with π-calculus is tight in that independent prefixes may not be reordered. With CP [51],
Wadler adapts πDILL to classical linear logic. Aschieri and Genco [2] give an interpretation
of classical multiplicative linear logic as concurrent functional programs. They interpret `
as parallel composition, and the connection to session types is less direct.

Priority-based Calculi Systems such as πDILL, CP, and GV (and indeed HCP and HGV)
ensure deadlock freedom by exploiting the type system to statically impose a tree structure
on the communication topology — there can be at most one communication channel between
any two processes. Another line of work explores a more liberal approach to deadlock freedom
enabling some cyclic communication topologies, where deadlock freedom is guaranteed via
priorities, which impose an order on actions. Priorites were introduced by Kobayashi and
Padovani [24, 39] and adopted by Dardha and Gay [12] in Priority CP (PCP) and Kokke
and Dardha in Priority GV (PGV) [26].

8 Conclusion and future work

HGV exploits hypersequents to resolve fundamental modularity issues with GV. As a
consequence, we have obtained a tight operational correspondence between HGV and HCP.
HGV is a modular and extensible core calculus for functional programming with binary
session types. In future we intend to further exploit hypersequents in order to develop a
modular and extensible core calculus for functional programming with multiparty session
types. We would then hope to exhibit a similarly tight operational correspondence between
this functional calculus and a multiparty variant of CP [10].

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 15

References
1 Samson Abramsky. Proofs as processes. 135(1):5–9, 1994.
2 Federico Aschieri and Francesco A. Genco. Par means parallel: multiplicative linear logic

proofs as concurrent functional programs. Proc. ACM Program. Lang., 4(POPL):18:1–18:28,
2020.

3 Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation confers concurrency. In A List
of Successes That Can Change the World, volume 9600 of Lecture Notes in Computer Science,
pages 32–55. Springer, 2016.

4 Arnon Avron. Hypersequents, logical consequence and intermediate logics for concurrency.
4:225–248, 1991.

5 Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic. 135(1):11–65, 1994.
6 Nick Benton and Andrew Kennedy. Exceptional syntax. 11(4):395–410, 2001.
7 Michele Boreale. On the expressiveness of internal mobility in name-passing calculi. Theoretical

Computer Science, 195(2):205–226, 3 1998. doi:10.1016/s0304-3975(97)00220-x.
8 Luìs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Proc.

of CONCUR, volume 6269 of LNCS, pages 222–236. Springer, 2010.
9 Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compositional lock-freedom.

In Proc. of COORDINATION, volume 8459 of Lecture Notes in Computer Science, pages
49–64. Springer, 2014. doi:10.1007/978-3-662-43376-8_4.

10 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In CONCUR,
volume 59 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

11 Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen. On one-pass CPS transformations. J.
Funct. Program., 17(6):793–812, 2007.

12 Ornela Dardha and Simon J. Gay. A new linear logic for deadlock-free session-typed processes.
In Proc. of FoSSaCS, volume 10803 of LNCS, pages 91–109. Springer, 2018.

13 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. 256:253–286,
2017.

14 Simon Fowler. Typed Concurrent Functional Programming with Channels, Actors, and Sessions.
PhD thesis, 2019.

15 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: session types without tiers. 3(POPL):28:1–28:29, 2019.

16 Simon J. Gay and Rajagopal Nagarajan. Intensional and extensional semantics of dataflow
programs. 15(4):299–318, 2003.

17 Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asynchronous session types.
20(1):19–50, 2010.

18 Jean-Yves Girard. Linear logic. 50:1–102, 1987.
19 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of Lecture Notes in

Computer Science, pages 509–523. Springer, 1993.
20 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and

type discipline for structured communication-based programming. In Proc. of ESOP, volume
1381 of LNCS, pages 122–138. Springer, 1998.

21 Atsushi Igarashi, Peter Thiemann, Yuya Tsuda, Vasco T. Vasconcelos, and Philip Wadler.
Gradual session types. 29:e17, 2019.

22 Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in Haskell. In Proc. of
PLACES, volume 69 of EPTCS, pages 74–91, 2010. doi:10.4204/EPTCS.69.6.

23 Naoki Kobayashi. Type systems for concurrent programs. pages 439–453, 2003. doi:10.1007/
978-3-540-40007-3_26.

24 Naoki Kobayashi. A new type system for deadlock-free processes. In Proc. of CONCUR,
volume 4137 of LNCS, pages 233–247. Springer, 2006.

https://doi.org/10.1016/s0304-3975(97)00220-x
https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1007/978-3-540-40007-3_26

16 Separating Sessions Smoothly

25 Wen Kokke and Ornela Dardha. Deadlock-free session types in linear Haskell. CoRR,
abs/2103.14481, 2021. URL: https://arxiv.org/abs/2103.14481, arXiv:2103.14481.

26 Wen Kokke and Ornela Dardha. Prioritise the best variation. CoRR, abs/2103.14466, 2021.
URL: https://arxiv.org/abs/2103.14466, arXiv:2103.14466.

27 Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never: A fully-abstract
semantics for classical processes. 3(POPL), 2019.

28 Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Taking linear logic apart. In Thomas
Ehrhard, Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora de Falco, editors, Proceed-
ings Joint International Workshop on Linearity & Trends in Linear Logic and Applications,
Oxford, UK, 7-8 July 2018, volume 292 of Electronic Proceedings in Theoretical Computer
Science, pages 90–103. Open Publishing Association, 2019.

29 Jean-Jacques Lévy and Luc Maranget. Explicit substitutions and programming languages.
In Foundations of Software Technology and Theoretical Computer Science, 1999, volume
1738 of LNCS. Springer, 1999. URL: http://dx.doi.org/10.1007/3-540-46691-6_14, doi:
10.1007/3-540-46691-6_14.

30 Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. 185(2):182–210, 2003.

31 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In Jan Vitek,
editor, Programming Languages and Systems, pages 560–584. Springer Berlin Heidelberg, 2015.

32 Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types.
51(9):434–447, 2016. doi:10.1145/3022670.2951921.

33 Sam Lindley and J. Garrett Morris. Lightweight functional session types. In Simon Gay and
Antonio Ravara, editors, Behavioural Types: from Theory to Tools, chapter 12, pages 265–286.
River publishers, 2017.

34 Fabrizio Montesi and Marco Peressotti. Classical transitions. Available on arXiv, 2018.
35 Dimitris Mostrous and Vasco T. Vasconcelos. Affine sessions. 14(4), 2018.
36 Matthias Neubauer and Peter Thiemann. An implementation of session types. In Proc.

of PADL, volume 3057 of Lecture Notes in Computer Science, pages 56–70. Springer, 2004.
doi:10.1007/978-3-540-24836-1_5.

37 Dominic Orchard and Nobuko Yoshida. Session types with linearity in Haskell. Behavioural
Types: from Theory to Tools, page 219, 2017.

38 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In Proc. of
POPL, pages 568–581. ACM, 2016. doi:10.1145/2837614.2837634.

39 Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In Proc. of CSL-LICS,
pages 72:1–72:10. ACM, 2014.

40 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975.

41 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In Proc. of
Haskell. ACM, 2008. doi:10.1145/1411286.1411290.

42 John C. Reynolds. The meaning of types—from intrinsic to extrinsic semantics. Technical
Report RS-00-32, BRICS, 2000.

43 Matthew Sackman and Susan Eisenbach. Session types in Haskell: Updating message passing
for the 21st century. 01 2008.

44 Davide Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. Theoretical Computer
Science, 167(1-2):235–274, 1996. doi:10.1016/0304-3975(96)00075-8.

45 Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its
typing system. In Proc. of PARLE, volume 817 of LNCS, pages 398–413. Springer, 1994.

46 Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. 4(POPL):1–29,
2020.

47 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and
sessions: A monadic integration. In ESOP, volume 7792 of Lecture Notes in Computer Science,
pages 350–369. Springer, 2013.

https://arxiv.org/abs/2103.14481
http://arxiv.org/abs/2103.14481
https://arxiv.org/abs/2103.14466
http://arxiv.org/abs/2103.14466
http://dx.doi.org/10.1007/3-540-46691-6_14
https://doi.org/10.1007/3-540-46691-6_14
https://doi.org/10.1007/3-540-46691-6_14
https://doi.org/10.1145/3022670.2951921
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1016/0304-3975(96)00075-8

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 17

48 Vasco Vasconcelos, Antonio Ravara, and Simon J. Gay. Session types for functional multith-
reading. In CONCUR, volume 3170 of LNCS, pages 497–511. Springer, 2004.

49 Vasco T. Vasconcelos. Fundamentals of session types. 217:52–70, 2012.
50 Vasco Thudichum Vasconcelos, Simon J. Gay, and Antonio Ravara. Type checking a multith-

readed functional language with session types. 368(1-2):64–87, 2006.
51 Philip Wadler. Propositions as sessions. 24(2-3):384–418, 2014.

18 Separating Sessions Smoothly

Appendices
A Omitted Definitions for Section 3: Hypersequent GV 18

A.1 Term Reduction . 18
A.2 Choice . 19

B Abstract Process Structures 20

C Omitted Proofs for Section 3: Hypersequent GV 23
C.1 Tree Canonical Forms . 28
C.2 Progress . 29
C.3 Derived typing rules for syntactic sugar . 31

D Omitted Proofs for Section 4: Relation between HGV and GV 32

E Omitted Proofs for Section 5: Relation between HGV and CP 35
E.1 Structural Congruence . 35
E.2 Translating HGV to HCP . 35

F Extensions 42
F.1 Unconnected processes . 42
F.2 A simpler link . 42
F.3 Exceptions . 43

G Hypersequents in term typing 45

A Omitted Definitions for Section 3: Hypersequent GV

A.1 Term Reduction
HGV values (U, V, W), evaluation contexts (E), and term reduction rules (−→M) implement a standard call-by-value,
left-to-right evaluation strategy. They are given in Figure 9.

Values and evaluation contexts

Values U, V , W ::= K | λx.M | () | (V, W) | inl V | inr V

Evaluation contexts E ::= □
| E M | V E

| let () = E in N

| (E, M) | (V, E) | let (x, y) = E in M

| inl E | inr E | case E {inl x 7→ M ; inr y 7→ N}

Term reduction M −→M N

E-Lam (λx.M) V −→M M{V/x}
E-Unit let () = () in M −→M M

E-Pair let (x, y) = (V, W) in M −→M M{V/x, W/y}
E-Inl case inl V {inl x 7→ M ; inr y 7→ N} −→M M{V/x}
E-Inr case inr V {inl x 7→ M ; inr y 7→ N} −→M N{V/y}
E-Lift E[M] −→M E[N], if M −→M N

Figure 9 HGV, term reduction.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 19

A.2 Choice
Internal and external choice are encoded with sum types and session delegation [23, 13]. Prior encodings of choice in
GV [31] are pleasingly direct. External choice is implemented by receiving one of two possible session continuations,
encoded as a sum type, and internal choice by forking a new thread to send such a value.

S ⊕ S′ ≜ !(S1 + S2).end!

S & S′ ≜ ?(S1 + S2).end?

⊕{} ≜ !0.end!

&{} ≜ ?0.end?

select ℓ ≜ λx.fork (λy.send (ℓ y, x))
offer L {inl x 7→ M ; inr y 7→ N}

≜
let (z, w) = recv L in wait w;
case z {inl x 7→ M ; inr y 7→ N}

offer L {} ≜
let (z, w) = recv L in wait w;
absurd z

Alas, this encoding of internal choice is asynchronous. Consider the process below:

(νxx′)
(

◦ let x = select inl x in let y = send ((), y) in M

∥ • let z = send ((), z) in offer x′ {inl x′ 7→ N1; inr x′ 7→ N2}

)
The reader may be surprised that output on y may be visible before that on z. Surely, the select in the child

thread must synchronise with the offer in the main thread? However, as select is implemented with fork, it
returns immediately. As GV is confluent, such asynchrony cannot cause any observable difference in the results of a
computation, but it is nevertheless unsatisfying from a concurrency perspective. To remedy the situation, we add a
dummy synchronisation before exchanging the the sum type value, as follows:

S ⊕ S′ ≜ !1.!(S1 + S2).end!

S & S′ ≜ ?1.?(S1 + S2).end?

⊕{} ≜ !1.!0.end!

&{} ≜ ?1.?0.end?

select ℓ ≜ λx.

(
let x = send ((), x) in
fork (λy.send (ℓ y, x))

)
offer L {inl x 7→ M ; inr y 7→ N}

≜
let ((), z) = recv L in let (w, z) = recv z

in wait z; case w {inl x 7→ M ; inr y 7→ N}

offer L {} ≜
let ((), c) = recv L in let (z, c) = recv c

in wait c; absurd z

20 Separating Sessions Smoothly

B Abstract Process Structures

Due to space constraints, we have given the intuition behind abstract process structures in the main body of the
paper. Here, we give the formal definitions and results.

Graph definitions. We begin by recalling the definition of an undirected edge-labelled multigraph: an undirected
graph that allows multiple edges between vertices.

▶ Definition B.1 (Undirected Multigraph). An undirected multigraph G is a 3-tuple (V, E , r) where:

1. V is a set of vertices
2. E is a set of edge names
3. r is a function r : E 7→ {{v, w} : v, w ∈ V} from edge names to an unordered pair of vertices

Denote the size of a set as |·|. A path is a sequence of edges connecting two vertices. A multigraph G = (V, E , r)
is connected if |V| = 1, or if for every pair of vertices v, w ∈ V there is a path between v and w. A multigraph is
acyclic if no path forms a cycle.

We define a leaf as a vertex connected to the remainder of a graph by a single edge.

▶ Definition B.2 (Leaf). Given an undirected multigraph (V, E , r), a vertex v ∈ V is a leaf if there exists a single
e ∈ E such that v ∈ r(e).

In an undirected tree containing at least two vertices, there must be at least two leaves.

▶ Lemma B.3. If G = (V, E , r) is an undirected tree where |V | ≥ 2, then there exist at least two leaves in V.

Proof. For G to be an undirected tree where |V | ≥ 2 and have fewer than two leaves, then there would need to be
a cycle, contradicting acyclicity. ◀

Abstract process structures. An abstract process structure is a graph representation of a hyper-environment,
where the vertices are typing environments and the edges are annotated by pairs of co-names.

Let envs(Γ1 ∥ · · · ∥ Γn) = {Γ1, · · · , Γn}, and |(Γ1 ∥ · · · ∥ Γn)| = n.
Given a co-name set N = {{x1, y1}, . . . , {xn, yn}}, we can induce an abstract process structure on hyper-

environments.

▶ Definition B.4 (Abstract process structure). The abstract process structure of a hyper-environment H with respect
to a co-name set N = {{x1, y1}, . . . , {xn, yn}} is an undirected multigraph (V, E , r) defined as follows:

1. V = envs(H)
2. E = N
3. r = ({x, y} 7→ {Γ1, Γ2}) for each {x, y} ∈ N such that Γ1 ∈ envs(H), Γ2 ∈ envs(H), x ∈ fv(Γ1), y ∈ fv(Γ2)

▶ Example B.5. Suppose we have a hyper-environment x : S1, y : S2 ∥ x′ : S1, z : T ∥ y′ : S2 and suppose
N = {{x, x′}, {y, y′}}. Let Γ1 = x : S1, y : S2; Γ2 = x′ : S1, z : T ; and Γ3 = y′ : S2. The abstract process structure
is defined as:

V = {Γ1, Γ2, Γ3}
E = {{x, x′}, {y, y′}}
r({x, x′}) 7→ {Γ1, Γ2})
r({y, y′}) 7→ {Γ1, Γ3})

With the graphical representation:

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 21

Γ1

Γ2 Γ3

{x, x′} {y, y′}

{{x, x′}, {y, y′}}

▶ Example B.6. Let us consider another hyper-environment:

x : S1, z′ : S3 ∥ x′ : S1, y : S2 ∥ y′ : S2, z : S3

and suppose N = {{x, x′}, {y, y′}, {z, z′}}. Let Γ1 = x : S1, z′ : S3; Γ2 = x′ : S1, y : S2; and Γ3 = y′ : S2, z : S3.
The APS is defined as:

V = {Γ1, Γ2, Γ3}
E = {{x, x′}, {y, y′}, {z, z′}}
r({x, x′}) 7→ {Γ1, Γ2})
r({y, y′}) 7→ {Γ2, Γ3}
r({z, z′}) 7→ {Γ1, Γ3}

With the graphical representation:

Γ1

Γ2 Γ3

{x, x′}

{y, y′}

{z, z′}

{{x, x′}, {y, y′}, {z, z′}}

Note that Example B.5 forms a tree, whereas Example B.6 contains a cycle.
Only configurations typeable under a hyper-environment with a tree structure can be written in tree canonical

form.

▶ Definition B.7 (Tree structure). A hyper-environent H with names N has a tree structure, written Tree(H, N),
if its APS is connected and acyclic.

Read bottom-up, rules TC-New and TC-Par preserve tree structures. Recall the diagrams from Section 3:

G
N

Γ ∆

N ⊎ {{z, z′}, {x, y}}

{z, z′}

{x, y}

G
N

Γ, ∆

{z, z′}

N ⊎ {{z, z′}}

G

H

N1

N2

G

H

N1

N2

N1 ⊎ N2 ⊎ {{x, x′}}

{x, x′}

The first diagram corresponds to TC-New. Reading left-to-right (and top-to-bottom in the case of the typing
rule), since G ∥ Γ ∥ ∆ has tree structure, there must be some z, z′ linking some sub-environment of G to either Γ or
∆ (without loss of generality, we show the case for Γ). Given Γ is linked to ∆ by an edge {x, y}, we can remove the
edge and combine the vertices and retain a tree structure. Conversely, we can split some environment Γ, ∆ into two
nodes Γ and ∆, and connect them with a new edge representing a link between two variables.

22 Separating Sessions Smoothly

The second diagram corresponds to TC-Par. Reading left-to-right (and top-to-bottom in the case of the typing
rule), if we have two tree-structured abstract process structures for hyper-environments G (wrt. N1) and H (wrt.
N2), one of which has a sub-environment containing x and the other has a sub-environment containing x′ we can
connect them by adding {x, x′} to the name set. Conversely, given an APS linking G (defined wrt. N1) and H
(defined wrt. N2) using an edge x, x′, we know that G contains a sub-environment containing x, and H contains a
sub-environment containing y. By removing the edge {x, x′}, we know that G has a tree structure wrt. N1, and H
has a tree structure wrt. N2.

The following lemma states these intuitions formally. By analogy to Kleene equality, we write P ≏⇐⇒ Q, to
mean that either P or Q is undefined, or P ⇐⇒ Q.

▶ Lemma B.8 (Tree structure).
1. Tree((H ∥ Γ1, x1 : S ∥ Γ2, x2 : S), N ⊎ {{x1, x2}}) ≏⇐⇒ Tree((H ∥ Γ1, Γ2)), N)
2. Tree((H1 ∥ Γ1, x1 : S), N1) ∧ Tree((H2 ∥ Γ2, x2 : S), N2) ≏⇐⇒ Tree((H1 ∥ Γ1, x1 : S ∥ H2 ∥ Γ2, x2 :

S), N1 ⊎ N2 ⊎ {{x1, x2}})

Proof. We need only prove the cases where both sides of the bi-implication are defined.

Subcase (Clause 1).

Sub-subcase (⇒). Since H ∥ Γ1, x1 : S ∥ Γ2, x2 : S has a tree structure wrt. N ⊎ {x1, x2}, we have that there exist
y1, y2 such that {y1, y2} ∈ N , where y1 ∈ fv(H) and either y2 ∈ fv(Γ1) or y2 ∈ fv(Γ2). WLOG, assume y2 ∈ fv(Γ1).
Since {x1, x2} ∈ N and the hyper-environment forms a tree structure, we know that {x1, x2} is the only edge
connecting Γ1 and Γ2, and we know that there is no edge connecting Γ2 and H. Thus, H ∥ Γ1, Γ2 retains a tree
structure.

Sub-subcase (⇐). By similar reasoning to the ⇒ case, there exist y1, y2 such that {y1, y2} ∈ N , and y1 ∈ fv(H),
and either y2 ∈ fv(Γ1) or y2 ∈ fv(Γ2). Since both sides of the bi-implication are defined, we have that {x1, x2} ̸∈ N ,
and x1 ̸∈ fv(Γ1), and x2 ̸∈ fv(Γ2), and Γ1, Γ2 are not connected by a self-edge. Without loss of generality, assume
y2 ∈ fv(Γ1). Since {y1, y2} connects H and Γ1, and {x1, x2} connects Γ1 and Γ2, the graph remains connected and
acyclic, and therefore retains a tree structure.

Subcase (Clause 2).

Sub-subcase (⇒). Since the LHS is defined, we know that N1 and N2 are disjoint, and do not contain an edge
{x1, x2}. The result therefore follows from the standard graph theoretic result that joining two trees (in our case by
connecting Γ1 and Γ2) results in another tree.

Sub-subcase (⇐). Since {x1, x2} is in the co-name set, we know that Γ1, x1 : S and Γ2, x2 : S are connected only
by x1 and x2. Since the RHS is defined, we know there are edges connecting H1 to Γ1, and H2 to Γ2. The result
follows from the standard graph theoretic intuition that removing an edge from a tree results in two trees.

◀

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 23

C Omitted Proofs for Section 3: Hypersequent GV

▶ Lemma C.1 (Subterm typeability). Suppose D is a derivation of Γ1, Γ2 ⊢ E[M] : T . There exists a type U and
some subderivation D′ of D concluding Γ2 ⊢ M : U , where the position of D′ in D coincides with the position of the
hole in D.

Proof. By induction on the structure of E. ◀

▶ Lemma C.2 (Replacement, Evaluation Contexts). If:
D is a derivation of Γ1, Γ2 ⊢ E[M] : T

D′ is a subderivation of D concluding Γ2 ⊢ M : U

The position of D′ in D corresponds to that of the hole in E

Γ3 ⊢ N : U

Γ1, Γ3 is defined

then Γ1, Γ3 ⊢ E[N] : T .

Proof. By induction on the structure of E. ◀

▶ Lemma C.3 (Substitution). If:
1. Γ1, x : U ⊢ M : T

2. Γ2 ⊢ N : U

3. Γ1, Γ2 is defined

then Γ1, Γ2 ⊢ M{N/x} : T .

Proof. By induction on the derivation of Γ1, x : U ⊢ M : T . ◀

▶ Lemma C.4 (Preservation, −→M). If Γ ⊢ M : T and M −→M N , then Γ ⊢ N : T .

Proof. A standard induction on the derivation of −→M. ◀

Runtime type merging is commutative and associative. We make use of these properties implicitly in the
remainder of the proofs.

▶ Lemma C.5. 1. R1 ⊓ R2 ⇐⇒ R2 ⊓ R1
2. R1 ⊓ (R2 ⊓ R3) ⇐⇒ (R1 ⊓ R2) ⊓ R3

Proof. Immediate from the definition of ⊓. ◀

▶ Lemma C.6 (Preservation (≡)). If G ⊢ C : R and C ≡ D, then G ⊢ D : R.

Proof. We consider the cases for the equivalence axioms; the congruence cases are straightforward applications of
the IH.

Case (SC-ParAssoc).

C ∥ (D ∥ E) ≡ (C ∥ D) ∥ E

G1 ⊢ C : R1

G2 ⊢ D : R2 G3 ⊢ E : R3

G2 ∥ G3 ⊢ D ∥ E : R2 ⊓ R3

G1 ∥ G2 ∥ G3 ⊢ C ∥ (D ∥ E) : R1 ⊓ R2 ⊓ R3 ⇐⇒

G1 ⊢ C : R1 G2 ⊢ D : R2

G1 ∥ G2 ⊢ C ∥ D : R1 ⊓ R2 G3 ⊢ E : R3

G1 ∥ G2 ∥ G3 ⊢ (C ∥ D) ∥ E : R1 ⊓ R2 ⊓ R3

24 Separating Sessions Smoothly

Case (SC-ParComm).

C ∥ D ≡ D ∥ C

G ⊢ C : R1 H ⊢ D : R2

G ∥ H ⊢ C ∥ D : R1 ⊓ R2 ⇐⇒
H ⊢ D : U G ⊢ C : T

G ∥ H ⊢ D ∥ C : R1 ⊓ R2

Case (SC-NewComm).

(νxx′)(νyy′)C ≡ (νyy′)(νxx′)C

Two illustrative subcases:

Subcase (1).

G ∥ Γ1, x : S ∥ Γ2, x′ : S ∥ Γ3, y : S′ ∥ Γ4, y′ : S′ ⊢ C : R

G ∥ Γ1, x : S ∥ Γ2, x′ : S ∥ Γ3, Γ4 ⊢ (νyy′)C : R

G ∥ Γ1, Γ2 ∥ Γ3, Γ4 ⊢ (νxx′)(νyy′)C : R ⇐⇒

G ∥ Γ1, y : S′ ∥ Γ2, y′ : S′ ∥ Γ3, x : S ∥ Γ4, x′ : S ⊢ C : R

G ∥ Γ1, y : S′ ∥ Γ2, y′ : S′ ∥ Γ3, Γ4 ⊢ (νxx′)C : R

G ∥ Γ1, Γ2 ∥ Γ3, Γ4 ⊢ (νyy′)(νxx′)C : R

Subcase (2).

G ∥ Γ1, x : S, y : S′ ∥ Γ2, y′ : S′ ∥ Γ3, x′ : S ⊢ C : R

G ∥ Γ1, Γ2, x : S ∥ Γ3, x′ : S ⊢ (νyy′)C : R

G ∥ Γ1, Γ2, Γ3 ⊢ (νxx′)(νyy′)C : R ⇐⇒

G ∥ Γ1, x : S, y : S′ ∥ Γ2, y′ : S′ ∥ Γ3, x′ : S ⊢ C : R

G ∥ Γ1, Γ3, y : S′ ∥ Γ2, y′ : S′ ⊢ (νxx′)C : R

G ∥ Γ1, Γ2, Γ3 ⊢ (νyy′)(νxx′)C : R

Case (SC-NewSwap).

(νxy)C ≡ (νyx)C

Follows immediately since hyper-environments are treated as unordered.

Case (SC-ScopeExt).

C ∥ (νxy)D ≡ (νxy)(C ∥ D)

(where x, y ̸∈ fv(C))

G ⊢ C : R1 H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ D : R2

G ⊢ C : R1 H ∥ Γ1, Γ2 ⊢ (νxy)D : R2

G ∥ H ∥ Γ1, Γ2 ⊢ C ∥ (νxy)D : R1 ⊓ R2 ⇐⇒

G ⊢ C : R1 H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ D : R2

G ∥ H ∥ Γ1, x : S ∥ Γ2, y : S ⊢ C ∥ D : R1 ⊓ R2

G ∥ H ∥ Γ1, Γ2 ⊢ (νxy)(C ∥ D) : R1 ⊓ R2

Case (SC-LinkComm).

x
z↔y ≡ y

z↔x

Assumption:

x : S, y : S ⊢ x
z↔y : ◦

By dualising both variables, we have that x : S, y : S. Since duality is an involution, we can show
x : S, y : S ⇐⇒ x : S, y : S.
Thus:

y : S, x : S ⊢ y
z↔x : ◦

The reasoning for the symmetric case is identical.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 25

◀

▶ Lemma C.7 (Preservation (−→)). If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Proof. By induction on the derivation of C −→ D. Where there is a choice for ϕ, we prove the case for ϕ = • and
expand T [M] to •(E[M]) for some evaluation context E; the other cases are similar.

Case (E-Reify-Fork).

•E[fork V] −→ (νxy)(•E[x] ∥ ◦V y)

Assumption:

Γ ⊢ E[fork V] : T

Γ ⊢ •E[fork V] : T

By Lemma C.1, there exist Γ1, Γ2, S such that Γ = Γ1, Γ2 and Γ1, Γ2 ⊢ E[fork V] : T and:

Γ2 ⊢ V : S ⊸ end!

Γ2 ⊢ fork V : S

By Lemma C.2:

Γ1, x : S ⊢ E[x] : T

Γ1, x : S ⊢ •E[x] : T

By TM-App, Γ2, y : S ⊢ V y : end! and so by TC-Child, Γ2, y : S ⊢ V y : ◦
Recomposing:

Γ1, x : S ⊢ E[x] : T

Γ1, x : S ⊢ •E[x] : T

Γ2, y : S ⊢ V y : end!

Γ2, y : S ⊢ ◦(V y) : ◦
Γ1, x : S ∥ Γ2, y : S ⊢ •E[x] ∥ ◦(V y) : T

Γ1, Γ2 ⊢ (νxy)(•E[x] ∥ ◦(V y) : T

as required.

Case (E-Comm-Send).

(νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) −→ (νxy)(•E[x] ∥ ◦E′[(V, y)])

Assumption:

Γ, x : S ⊢ E[send (V, x)] : U

Γ, x : S ⊢ •E[send (V, x)] : U

Γ′, y : S ⊢ E′[recv y] : end!

Γ′, y : S ⊢ ◦E′[recv y] : ◦
Γ, x : S ∥ Γ′, y : S ⊢ •E[send (V, x)] ∥ ◦E′[recv y] : U

Γ, Γ′ ⊢ (νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) : U

By Lemma C.1, there exist Γ1, Γ2, S such that Γ = Γ1, Γ2, and Γ1, Γ2, x : S ⊢ E[send (V, x)] : U and:

Γ2 ⊢ V : T x : !T.S′ ⊢ x : !T.S′

Γ2, x : !T.S′ ⊢ send (V, x) : S′

26 Separating Sessions Smoothly

With the knowledge that S = !T.S, we can refine our original derivation:

Γ1, Γ2, x : !T.S′ ⊢ E[send (V, x)] : U

Γ1, Γ2, x : !T.S′ ⊢ •E[send (V, x)] : U

Γ′, y : ?T.S′ ⊢ E′[recv y] : end!

Γ′, y : ?T.S′ ⊢ ◦E′[recv y] : ◦
Γ1, Γ2, x : !T.S′ ∥ Γ′, y : ?T.S′ ⊢ •E[send (V, x)] ∥ ◦E′[recv y] : U

Γ1, Γ2, Γ′ ⊢ (νxy)(•E[send (V, x)] ∥ ◦E′[recv y]) : U

Again by Lemma C.1, we have that Γ′, y : ?T.S′ ⊢ E′[recv y] : end! and:

y : ?T.S′ ⊢ y : ?T.S′

y : ?T.S′ ⊢ recv y : T × S′

We can show:
Γ2 ⊢ V : T y : S′ ⊢ y : S′

Γ2, y : S′ ⊢ (V, y) : T × S′

By Lemma C.2, we have that Γ2, Γ′, y : S′ ⊢ E′[(V, y)] : S′.
Recomposing:

Γ1, x : S′ ⊢ E[x] : U

Γ1, x : S′ ⊢ •E[x] : U

Γ2, Γ′, y : S′ ⊢ E′[(V, y)] : end!

Γ2, Γ′, y : S′ ⊢ ◦E′[(V, y)] : ◦
Γ1, x : S′ ∥ Γ2, Γ′, y : S′ ⊢ •E[x] ∥ ◦E′[(V, y)] : U

Γ1, Γ2, Γ′ ⊢ (νxy)(•E[x] ∥ ◦E′[(V, y)]) : U

as required.

Case (E-Comm-Close).

(νxy)(T [wait x] ∥ ◦y) −→ T [()]

Taking T = •E, assumption:

Γ, x : end? ⊢ E[wait x] : T

Γ, x : end? ⊢ •E[wait x] : T

y : end! ⊢ y : end!

y : end! ⊢ ◦y : ◦
Γ, x : end? ∥ y : end! ⊢ •E[wait x] ∥ ◦y : T

Γ ⊢ (νxy)(•E[wait x] ∥ ◦y) : T

By Lemma C.1, we have that:

x : end? ⊢ x : end?

x : end? ⊢ wait x : 1

By Lemma C.2, Γ ⊢ E[()] : T .
Recomposing:

Γ ⊢ E[()] : T

Γ ⊢ •E[()] : T

as required.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 27

Case (E-Reify-Link).

F [link (x, y)] −→ (νzz′)(x z↔y ∥ F [z′])

where z, z′ fresh.
Taking F = •E, we have that:

Γ ⊢ E[link (x, y)] : T

Γ ⊢ •E[link (x, y)] : T

By Lemma C.1, we have that Γ = Γ′, x : S, y : S such that:

x : S ⊢ x : S y : S ⊢ y : S

x : S, y : S ⊢ (x, y) : S × S

x : S, y : S ⊢ link (x, y) : ◦

By Lemma C.2, we have that Γ′, z : end! ⊢ E[z] : T .
Reconstructing:

z : end?, x : S, y : S ⊢ x
z↔y : ◦ Γ′, z : end! ⊢ •E[z] : T

z : end?, x : S, y : S ∥ Γ′, z : end! ⊢ x
z↔y ∥ •E[z] : T

Γ′, x : S, y : S ⊢ (νzz′)(x z↔y ∥ •E[z]) : T

as required.

Case (E-Comm-Link).

(νzz′)(νxx′)(x z↔y ∥ ◦z ∥ •M) −→ •(M{y/x})

Assumption:

x : S, y : S, z : end? ⊢ x
z↔y : ◦

z′ : end! ⊢ z : end!

z′ : end! ⊢ ◦z : ◦
Γ, x′ : S ⊢ M : T

Γ, x′ : S ⊢ •M : T

z′ : end! ∥ Γ, x′ : S ⊢ ◦z ∥ •M : T

x : S, y : S, z : end? ∥ z′ : end! ∥ Γ, x′ : S ⊢ x
z↔y ∥ ◦z′ ∥ •M : T

Γ, y : S, z : end? ∥ z′ : end! ⊢ (νxx′)(x z↔y ∥ ◦z′ ∥ •M) : T

Γ, y : S ⊢ (νzz′)(νxx′)(x z↔y ∥ ◦z′ ∥ •M) : T

By Lemma C.3, Γ, y′ : S ⊢ M{y/x′} : T , thus:

Γ, y′ : S ⊢ M{y/x′} : T

Γ, y′ : S ⊢ •M{y/x′} : T

as required.

28 Separating Sessions Smoothly

Case (E-Res).

(νxy)C −→ (νxy)D if C −→ D

Immediate by the IH.

Case (E-Par).

C ∥ D −→ C′ ∥ D if C −→ C′

Immediate by the IH.

Case (E-Equiv).

C −→ D if C ≡ C′, C′ −→ D′, and D′ ≡ D

Assumption: G ⊢ C : R.
By Lemma C.6, G ⊢ C′ : R.
By the IH, G ⊢ D′ : R.
By Lemma C.6, G ⊢ D : R, as required.

Case (E-Lift-M).

ϕM −→ ϕN if M −→M N

Immediate by Lemma C.4.

◀

▶ Theorem 3.2 (Preservation).
1. If G ⊢ C : R and C ≡ D, then G ⊢ D : R.
2. If G ⊢ C : R and C −→ D, then G ⊢ D : R.

Proof. A direct corollary of Lemmas C.6 and C.7. ◀

C.1 Tree Canonical Forms
Recall that a configuration in tree canonical form if it is of the following form:

(νx1y1)(◦M1 ∥ · · · ∥ (νxnyn)(◦Mn ∥ ϕN) · · ·)

where xi ∈ fn(Mi) for each xi, Mi.
Our technique for proving that any configuration typeable under a singleton hyper-environment can be written

in tree canonical form is to demonstrate that the configuration typing rules induce a tree structure. Since undirected
trees with at least two vertices must have at least two leaves, we can permute a child thread containing name xi

next to the binder (νxiyi).
We can now prove that all configurations typeable under a single typing environment can be written in tree

canonical form.

▶ Theorem 3.5 (Tree canonical form). If Γ ⊢ C : R, then there exists some D such that C ≡ D and D is in tree
canonical form.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 29

Proof. By induction on the number of ν-binders in C. In the case that n = 0, it must be the case that Γ ⊢ ϕM : R

for some thread M , since parallel composition is only typeable under a hyper-environment containing two or more
type environments. Therefore, C is in tree canonical form by definition.

In the case that n ≥ 1, by Lemma C.6, we can rewrite the configuration as:

(νx1y1) · · · (νxnyn)(◦M1 ∥ · · · ∥ ◦Mn ∥ ϕN)

Fix N = {{xi, yi} | 1 ≤ i ≤ n}. By definition, Γ has a tree structure wrt. an empty co-name set. By repeated
applications of TC-New, there exists some G such that G ⊢ ◦M1 ∥ · · · ∥ ◦Mn ∥ ϕN : T ; by Lemma B.8 (clause 1,
left-to-right), G has a tree structure.

Construct the APS for G using names N ; by Lemma B.3, there exist Γ1, Γ2 ∈ envs(H) such that Γ1 and Γ2 are
leaves of the tree and therefore by the definition of the APS contain precisely one ν-bound name.

By TC-Par, there must exist two threads L1, L2 such that Γ1 ⊢ L1 : R1 and Γ2 ⊢ L2 : R2. By runtime type
combination, at least one of R1, R2 must be ◦; without loss of generality assume this is R1. Suppose (again without
loss of generality) that the ν-bound name contained in Γ1 is x1 and L1 = M1.

Let D = (νx2y2) · · · (νxnyn)(◦M2 ∥ · · · ∥ ◦Mn ∥ ϕN).
By Lemma C.6 and the fact that x1 is the only ν-bound variable in M1, we have that C ≡ (νx1y1)(◦M1 ∥ D).

By the IH, there exists some D′ such that D ≡ D′ and D′ is in canonical form. By construction we have that
C ≡ (νx1y1)(◦M1 ∥ D′), which is in tree canonical form as required. ◀

C.2 Progress
Let Ψ range over type environments where the type of each variable must be a session type:

Ψ ::= · | Ψ, x : S

Functional reduction satisfies progress: under an environment only containing runtime names, a term will either
reduce, be a value, or be ready to perform a communication action.

▶ Lemma C.8 (Progress, Terms). If Ψ ⊢ M : T , then either there exists some N such that M −→M N , or M can be
written E[N] for some N ∈ {fork V , send (V, W), recv V , wait V , link (V, W)}.

Proof. A standard induction on the derivation of Ψ ⊢ M : T . ◀

Note that tree canonical forms can be defined inductively:

CF ::= ϕM | (νxy)(A ∥ CF)

Lemma 3.8 follows as a direct corollary of a slightly more verbose property, which follows from the inductive
definition of TCFs.

▶ Definition C.9 (Open progress). Suppose Ψ ⊢ C : R, where C ̸−→, and C is in canonical form. We say that C
satisfies open progress if:

1. C = (νxx′)(A ∥ D), where:
a. There exist Ψ1, Ψ2 such that Ψ = Ψ1, Ψ2
b. Ψ1, x : S ⊢ A : ◦ for some session type S, and blocked(A, y) for some y ∈ fv(Ψ1, x : S)
c. Ψ2, x′ : S ⊢ D : R, where D satisfies open progress

2. C = ϕM , and either M is a value, there exist z, z′ ∈ fv(Ψ), or blocked(ϕM, x) for some x ∈ fv(Ψ).

▶ Lemma C.10 (Open progress). If Ψ ⊢ C : R where C is in canonical form and C ̸−→, then C satisfies open progress.

30 Separating Sessions Smoothly

Proof. By induction on the derivation of G ⊢ C : R. By the definition of canonical forms, it must be the case that C
is of the form (νxy)(A ∥ D) where D is in canonical form, or •M .

We show the case where C = (νxy)(◦M ∥ D); the case for C = •M follows similar reasoning.
Assumption:

Ψ1, x : S ⊢ A : ◦ Ψ2, y : S ⊢ D : R

Ψ1, x : S ∥ Ψ2, y : S ⊢ A ∥ D : R

Ψ1, Ψ2 ⊢ (νxy)(◦M ∥ D) : R

In both cases, by the induction hypothesis, Ψ2, y : S ⊢ D : T satisfies open progress.

Subcase (A = ◦M).
By Lemma C.8, either M is a value, or M can be written E[N] for some communication and concurrency construct
N ∈ {fork V, send (V, W), recv V, wait V, link (V, W)}.
Otherwise, M is a communication or concurrency construct. If N = fork V , then reduction could occur by
E-Reify-Fork. If N = link (V, W), then by the type schema for link, we have that link (V, W) must be of the
form link (z, z′) for z, z′ ∈ fv(Ψ, x : S) and could reduce by E-Reify-Link.
Otherwise, it must be the case that blocked(◦M, y) for some z ∈ fv(Ψ1, x : S).
Thus, (νxy)(◦M ∥ D) satisfies open progress, as required.

Subcase (A = z2
z1↔z3). We have that z1, z2, z3 ∈ fv(Ψ1, x : S), and the thread must be blocked by definition.

◀

▶ Lemma C.11 (Closed Progress). Suppose Ψ ⊢ C : R where C = (νx1y1)(A1 ∥ · · · ∥ (νxnyn)(An ∥ ϕN) · · ·) is in
tree canonical form. Either C −→ D for some D, or:

1. For each Aj for 1 ≤ j ≤ n, blocked(Aj , xj)
2. N is a value

Proof. Since the environment is closed, by Lemma 3.8, for each Aj it must be that blocked(Aj , z) for some
z ∈ {yi | i ∈ 1..j − 1} ∪ {xj}.

Note that if two names x, y are co-names, and one thread is blocked on x, and another is blocked on y, then due
to typing the names must be dual and reduction can occur.

Consider A1. Since the environment is closed, A1 must be blocked on x1. Next, consider A2; the thread cannot
be blocked on y1 as reduction would occur. By the definition of TCFs, A2 must contain x2 and by the typing rules
cannot contain y2, so the thread must be blocked on x2. We can extend this argument to the remainder of the
configuration. ◀

▶ Theorem 3.10 (Global progress). Suppose C is a ground configuration. Either there exists some D such that
C −→ D, or C = •V for some value V .

Proof. By Lemma C.11, either C can reduce, or C can be written (νx1y1)(◦A1 ∥ · · · ∥ (νxnyn)(◦An ∥ •V) · · ·) where
blocked(Ai, xi) for each {xi | i ∈ 1..n}.

Since C is ground, fv(V) = ∅. Consequently, due to acyclicity, no auxiliary thread can be blocked.
It follows that if C ̸−→, then there cannot be any auxiliary threads and thus C = •V for some value V . ◀

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 31

Determinism and Strong Normalisation HGV enjoys a strong form of determinism known as the diamond
property, and due to linearity enjoys strong normalisation. Unlike with preservation and progress, the addition of
hypersequents does not substantially change the arguments from [31].

▶ Theorem C.12 (Diamond property). If G ⊢ C : T , C −→ D, and C −→ D′, then D ≡ D′.

Proof. Similar to that of GV [31, 14]: −→M is deterministic, and due to linearity, any overlapping reductions are
separate and may be performed in either order. ◀

▶ Theorem C.13 (Termination). If G ⊢ C : T , there are no infinite sequences C −→−→ · · · .

Proof. As with GV [31, 14], due to linearity, HGV has an elementary strong normalisation proof. Let the size of a
configuration be the sum of the sizes of all abstract syntax trees of all terms contained in threads. The size of a
configuration is invariant under ≡ and strictly decreases under −→, so no infinite reduction sequences can exist. ◀

C.3 Derived typing rules for syntactic sugar
T-Seq
Γ ⊢ M : 1 ∆ ⊢ N : T

Γ, ∆ ⊢ M ; N : T

T-LamUnit
Γ ⊢ M : T

Γ ⊢ λ().M : 1 ⊸ T

T-LamPair
Γ, x : T , y : T ′ ⊢ M : U

Γ ⊢ λ(x, y).M : T × T ′ ⊸ U

T-Let
Γ ⊢ M : T ∆, x : T ⊢ N : U

Γ, ∆ ⊢ let x = M in N : U

T-Select-Inl

· ⊢ select inl : S ⊕ S′ ⊸ S

T-Select-Inr

· ⊢ select inr : S ⊕ S′ ⊸ S′

T-Offer
Γ ⊢ L : S & S′ ∆, x : S ⊢ M : T ∆, y : S′ ⊢ N : T

Γ, ∆ ⊢ offer L {inl x 7→ M ; inr y 7→ N} : T

T-Offer-Absurd
Γ ⊢ L : &{}

Γ, ∆ ⊢ offer L {} : T

32 Separating Sessions Smoothly

D Omitted Proofs for Section 4: Relation between HGV and GV

A simple embedding of GV into HGV. The simplest embedding of GV in HGV relies on the observation
from Section 2 that each parallel composition splits a single channel, meaning that we can write an arbitrary closed
GV configuration in the form:

C1 ∥⟨x1,y1⟩ · · · ∥⟨xn−2,yn−2⟩ Cn−1 ∥⟨xn−1,yn−1⟩ Cn

where each C does not contain a further parallel composition, and any main thread is in Cn. We can then subsequently
embed the configuration in HGV as:

(νx1y1)(C1 ∥ · · · ∥ (νxn−2yn−2)(Cn−2 ∥ (νxn−1yn−1)(Cn−1 ∥ Cn)) · · ·)

which is well-typed by construction. As a corollary, every well-typed, closed GV configuration is equivalent to a
well-typed, closed HGV configuration.

A structure-preserving embedding of GV into HGV. Though the simple embedding of GV into HGV is sound, it
does not respect the intention of GV. With a little care, we can provide a stronger result: every well-typed open
GV configuration is exactly a well-typed HGV configuration. We proceed now with the proof of Theorem 4.3.

▶ Theorem 4.3 (Typeability of GV configurations in HGV). If Γ ⊢GV C : R, then there exists some G such that G is a
splitting of Γ and G ⊢ C : R.

Proof. By induction on the derivation of Γ ⊢ C : R.

Case (TG-New). Assumption:

Γ, ⟨y, y′⟩ : S♯ ⊢GV C : R

Γ ⊢GV (νyy′)C : R

Suppose Γ = ⟨x1, x′
1⟩ : S♯

1, . . . , ⟨xn, x′
n⟩ : S♯

n (for clarity, without loss of generality, we assume the absence of
non-session variables. As these are simply split between environments, they can be added orthogonally).
By the IH, we have that there exists some hyper-environment G such that G ⊢ C : R, where G is a splitting of
Γ, ⟨y, y′⟩ : S♯.
Since G is a splitting of C, we know that y : S ∈ G and y′ : S ∈ G, and that G has a tree structure with respect to
names {{x1, x′

1}, . . . , {xn, x′
n}, {y, y′}}.

Since G has a tree structure, by definition we have that G = G′ ∥ Γ1, y : S ∥ Γ2, y′ : S for some G′, Γ1, Γ2, where G′

has a tree structure.
By Lemma B.8 (clause 1, left-to-right), G′ ∥ Γ1, Γ2 has a tree structure with respect to names
{{x1, x′

1}, . . . , {xn, x′
n}}.

Thus, we can show:

G′ ∥ Γ1, y : S ∥ Γ2, y′ : S ⊢ C : R

G′ ∥ Γ1, Γ2 ⊢ (νyy′)C : R

where G′ ∥ Γ1, Γ2 has a tree structure with respect to names {{x1, x′
1}, . . . , {xn, x′

n}} and is therefore a splitting of
Γ, as required.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 33

Case (TG-Connect1). Assumption:

Γ1, y : S ⊢GV C : R1 Γ2, y′ : S ⊢GV D : R2

Γ1, Γ2, ⟨y, y′⟩ : S♯ ⊢GV C ∥ D : R1 ⊓ R2

Suppose Γ1 = ⟨x1, x′
1⟩ : S♯

1, . . . , ⟨xm, x′
m⟩ : S♯

m and Γ2 = ⟨xm+1, x′
m+1⟩ : S♯

m+1, . . . , ⟨xn, x′
n⟩ : S♯

n.
By the IH, there exist hyper-environments G, H such that:

1. G is a splitting of Γ1, y : S

2. H is a splitting of Γ2, y′ : S

3. G ⊢GV C : R1
4. H ⊢GV D : R2

By the definition of splittings, G and H can be written G = G′ ∥ Γ′
1, y : S and H = H′ ∥ Γ′

2, y′ : S for some Γ′
1, Γ′

2.
Furthermore, G has a tree structure with respect to {{x1, x′

1}, . . . , {xm, x′
m}} and H has a tree structure with

respect to {{xm+1, x′
m+1}, . . . , {xn, x′

n}}.
By Lemma B.8 (clause 2, left-to-right), G′ ∥ Γ′

1, y : S ∥ H′ ∥ Γ′
2, y′ : S has a tree structure with respect to

{{x1, x′
1}, . . . , {xn, x′

n}, {y, y′}} and therefore G ∥ H is a splitting of Γ1, Γ2, ⟨y, y′⟩ : S♯.
Recomposing in HGV:

G ⊢ C : R1 H ⊢ D : R2

G ∥ H ⊢ C ∥ D : R1 ⊓ R2

as required.

Case (TG-Connect2). Similar to TG-Connect1.

Case (TG-Child). Assumption:

Γ ⊢ M : end!

Γ ⊢GV ◦M : ◦

Since we mandated that variables of type S♯ cannot appear in terms, there are no names of type S♯ in Γ. Therefore,
the singleton hyper-environment Γ is a valid splitting, and so we can conclude by TC-Child in HGV.

Case (TG-Main). Similar to TG-Child.

◀

▶ Lemma 4.6. Suppose Γ ⊢ C : R where C is in tree canonical form. Then, Γ ⊢GV C : R.

Proof. By induction on the number of ν-bound names.
In the case that n = 0, the result follows immediately by TG-Child or TG-Main.
In the case that n ≥ 1, we have that Γ = Γ1, Γ2 for some Γ1, Γ2 and:

Γ1, x : S ⊢ ◦L : ◦ Γ2, y : S ⊢ D : R

Γ1, x : S ∥ Γ2, y : S ⊢ ◦L ∥ D : R

Γ1, Γ2 ⊢ (νxy)(◦L ∥ D) : R

34 Separating Sessions Smoothly

such that D is in tree canonical form. That Γ1, x : S ⊢ ◦L : ◦ follows by the definition of tree canonical forms,
since x ∈ fv(L).

By the IH, Γ2, y : S ⊢ D : R in GV.
Thus, we can write:

Γ1, x : S ⊢ ◦L : ◦ Γ2, y : S ⊢ D : R

Γ1, Γ2, ⟨x, y⟩ : S♯ ⊢ ◦L ∥ D : R

Γ1, Γ2 ⊢ (νxy)(◦L ∥ D) : R

as required. ◀

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 35

E Omitted Proofs for Section 5: Relation between HGV and CP

E.1 Structural Congruence
Structural congruence for HCP processes P ≡ Q

x↔Ay ≡ y↔A⊥
x P ∥ 0 ≡ P P ∥ Q ≡ Q ∥ P P ∥ (Q ∥ R) ≡ (P ∥ Q) ∥ R

(νxx′)(νyy′)P ≡ (νyy′)(νxx′)P (νxy)P ≡ (νyx)P (νxy)(P ∥ Q) ≡ P ∥ (νxy)Q if x, y ̸∈ fv(P)

E.2 Translating HGV to HCP
▶ Definition E.1. We can naively translate HGV to HGV∗ as follows:

LxM = x

Lλx.MM = λx.LMM
LL MM = let x = LLM in let y = LMM in x y

L()M = ()
Llet () = L in MM = let z = LLM in let () = z in LMM
L(M, N)M = let x = LMM in let y = LNM in (x, y)
Llet (x, y) = L in MM = let z = LLM in let (x, y) = z in LMM
Linl MM = let z = LMM in inl z

Linr MM = let z = LMM in inr z

Lcase L {inl x 7→ M ; inr y 7→ N}M = let z = LLM in case z {inl x 7→ LMM; inr y 7→ LNM}
Labsurd LM = let z = LLM in absurd z

▶ Lemma E.2. Translations of terms are guaranteed to only have τ -transitions and transitions on the dedicated
output channel. Formally, if M is a term, then JMKr

ℓ−→, where ℓ = τ or ℓ = ℓr. Values only have transitions on
the dedicated output channel. Formally, if V is a value, then JMKr

ℓr−→.

Proof. By induction on M . ◀

▶ Definition E.3 (Process-contexts). A process-context P [] is a process with a single hole, denoted □. We extend
the typing rules, LTS and typing rules to process-contexts. We write P [] ⊢ G/H to mean that P [] is typed under
hyper-environment H expecting a process typed under G, i.e. if Q ⊢ G then P [Q] ⊢ H.

▶ Definition E.4. A process P is blocked on x if it only has transitions P
ℓx−→.

We write cn(P) to refer to the set of all channel names in P .

▶ Lemma E.5. If P [] is a process-context with z, w, w′ ̸∈ cn(P []), and Q is a process blocked on w′, then
(νww′)(P [z↔w] ∥ Q) ≈α P [Q{z/w′}].

Proof. By induction on the process-context P [].

Case (□).

(νww′)(z↔w ∥ Q)
α−→ Q{z/w′}
∼ Q{z/w′} (by reflexivity)

36 Separating Sessions Smoothly

Case ((νxy)P []).

(νww′)((νxy)(P [z↔w]) ∥ Q)
∼ (νxy)(νww′)(P [z↔w] ∥ Q) (by Lemma 5.4)
≈ (νxy)(P [Q{z/w′}]) (by Lemma 5.4 and IH)

Case (P [] ∥ R).

(νww′)(P [z↔w] ∥ R ∥ Q)
∼ (νww′)(P [z↔w] ∥ Q) ∥ R (by Lemma 5.4)
≈ P [Q{z/w′}] ∥ R (by Lemma 5.4 and IH)

Case (R ∥ P []).

(νww′)(R ∥ P [z↔w] ∥ Q)
∼ R ∥ (νww′)(P [z↔w] ∥ Q) (by Lemma 5.4)
≈ R ∥ P [Q{z/w′}] (by Lemma 5.4 and IH)

Case (π.P []). Since Q is blocked on w′, the process (νww′)(π.P [z↔w] ∥ Q) has only one transition,

(νww′)(π.P [z↔w] ∥ Q) π−→ (νww′)(P [z↔w] ∥ Q).

The process π.P [Q{z/w′}] has only one transition, also with label π,

π.P [Q{z/w′}] π−→ P [Q{z/w′}].

The resulting processes are bisimilar by the induction hypothesis.

Case (x ▷ {inl : P []; inr : P ′[]}). Since Q is blocked on w′, the process
(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q) has only two transitions,

(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q) x▷inl−→ (νww′)(P [z↔w] ∥ Q)

and

(νww′)(x ▷ {inl : P [z↔w]; inr : P ′[z↔w]} ∥ Q) x▷inr−→ (νww′)(P ′[z↔w] ∥ Q).

The process x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} has only two transitions, also with labels x ▷ inl and x ▷ inr,

x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} x▷inl−→ P [Q{z/w′}]

and

x ▷ {inl : P [Q{z/w′}]; inr : P ′[Q{z/w′}]} x▷inr−→ P ′[Q{z/w′}].

The resulting processes are bisimilar by the induction hypothesis.

◀

▶ Lemma 5.5 (Substitution). If M is a well-typed term with w ∈ fv(M), and V is a well-typed value, then
(νww′)(JMKm

r ∥ JV Kv
w′) ≈α JM{V/w}Km

r .

Proof. Immediately from Lemma E.5. ◀

▶ Lemma E.6 (Operational Correspondence, Terms). If M is a well-typed term:

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 37

1. if M −→M M ′, then JMKm
r

β=⇒ JM ′Km
r ; and

2. if JMKm
r

β−→ P , then there exists an M ′ such that M −→M M ′ and P ≈ JM ′Km
r .

Proof.
1. By induction on the reduction M −→M M ′.

Case (E-Lam). The following diagram commutes:

(λx.M) V M{V/x}

(νxx′)(νyy′)(y⟨x⟩.r↔y ∥ y′(x).JMKm
y′ ∥ JV Kv

x′)

(νxx′)(νyy′)(r↔y ∥ JMKm
y′ ∥ JV Kv

x′)

(νxx′)(JMKm
r ∥ JV Kv

x′) JM{V/x}Km
r

−→M

J·Km
r

J·Km
r

β−→ α−→

α−→
≈α (by Lemma 5.5)

Case (E-Unit). The following diagram commutes:

let () = () in M M

(νxx′)(x().JMKm
r ∥ x′[].0)

JMKr ∥ 0 JMKm
r

−→M

J·Kr

J·Kr

β−→
≡

Case (E-Pair). The following diagram commutes:

let (x, y) = (V, W) in M M{V/x}{W/y}

(νyy′)(y(x).JMKm
r ∥ y′[x′].(JV Kv

x′ ∥ JW Kv
y′))

(νyy′)(νxx′)(JMKr ∥ JV Kv
x′ ∥ JW Kv

y′) JM{V/x}{W/y}Km
r

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.5)

Case (E-Inl). The following diagram commutes:

case inl V {inl x 7→ M ; inr y 7→ N} M{V/x}

(νxx′)(x ▷ {inl : JMKm
r ; inr : JN{x/y}Km

r } ∥ x′ ◁ inl.JV Kv
x′)

(νxx′)(JMKr ∥ JV Kv
x′) JM{V/x}Km

r

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.5)

Case (E-Inr). As E-Inl.
Case (E-Let). The following diagram commutes:

let x = V in M M{V/x}

(νxx′)(x.JMKm
r ∥ x̄′.JV Kv

x′)

(νxx′)(JMKr ∥ JV Kv
x′) JM{V/x}Km

r

−→M

J·Kr

J·Kr

β−→ β−→
≈α (by Lemma 5.5)

38 Separating Sessions Smoothly

Case (E-Lift). The induction hypothesis gives us the first commuting diagram, which we use, together with
HGV’s E-Lift and HCP’s E-Lift-Res and E-Lift-Par, to show that the second diagram commutes:

M M ′

JMKm
r JM ′Km

r

−→M

J·Km
r J·Km

r
β

=⇒

let x = E[M] in N let x = E[M ′] in N

(νxx′)(x.JNKm
r ∥ JMKm

x′) (νxx′)(x.JNKm
r ∥ JM ′Km

x′)

−→M

J·Kr J·Kr
β

=⇒

2. By induction on M .
Case (U V). There are two well-typed cases for U : either U = z for some z; or U = λx.M for some x and M .
If U = z, we have (νxx′)(νyy′)(y⟨x⟩.r↔y ∥ z↔y′ ∥ JV Kv

x′) ̸ β−→, which contradicts our premise. Therefore,
U = λx.M . The only possible β-transition is the one in the following diagram:

(λx.M) V M{V/x}

(νxx′)(νyy′)(y⟨x⟩.r↔y ∥ y′(x).JMKm
y′ ∥ JV Kv

x′)

(νxx′)(νyy′)(r↔y ∥ JMKm
y′ ∥ JV Kv

x′)

(νxx′)(JMKm
r ∥ JV Kv

x′) JM{V/x}Km
r

−→M

J·Km
r

J·Km
r

β−→ α−→

α−→
≈α (by Lemma 5.5)

Hence, M ′ = M{V/x}.
Case (let () = U in M). There are two well-typed cases for U : either U = z for some z; or U = (). If U = z,
we have (νxx′)(x().JMKm

r ∥ x′↔z) ̸ β−→, which contradicts our premise. Therefore, U = (). The only possible
β-transition is the one in the following diagram:

let () = () in M M

(νxx′)(x().JMKm
r ∥ x′[].0)

JMKr ∥ 0 JMKm
r

−→M

J·Kr

J·Kr

β−→
≡

Hence, M ′ = M .
Case (let (x, y) = U in M). There are two well-typed cases for U : either U = z for some z, or U = (V, W). If
U = z, we have (νyy′)(y(x).JMKm

r ∥ y′↔z) ̸ β−→, which contradicts our premise. Therefore, U = (V, W). The
only possible β-transition is the one in the following diagram:

let (x, y) = (V, W) in M M{V/x}{W/y}

(νyy′)(y(x).JMKm
r ∥ y′[x′].(JV Kv

x′ ∥ JW Kv
y′))

(νyy′)(νxx′)(JMKr ∥ JV Kv
x′ ∥ JW Kv

y′) JM{V/x}{W/y}Km
r

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.5)

Case (case U {inl x 7→ M ; inr x 7→ N}). There are two well-typed cases for U : either U = z for some z; or
U = inl V . If U = z, we have (νxx′)(x ▷ {inl : JMKm

r ; inr : JN{x/y}Km
r } ∥ x′↔z) ̸ β−→, which contradicts our

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 39

premise. Therefore, U = inl V . The only possible β-transition is the one in the following diagram:

case inl V {inl x 7→ M ; inr y 7→ N} M{V/x}

(νxx′)(x ▷ {inl : JMKm
r ; inr : JN{x/y}Km

r } ∥ x′ ◁ inl.JV Kv
x′)

(νxx′)(JMKr ∥ JV Kv
x′) JM{V/x}Km

r

−→M

J·Kr

J·Kr

β−→
≈α (by Lemma 5.5)

Case (absurd U). There is only one well-typed case for U : U = z for some z. However,
(νxx′)(x ▷ {} ∥ x′↔z) ̸ β−→, which contradicts our premise.

Case (let x = M in N). There are two possible cases: either M = V ; or JMKm
x′

β−→ P for some P . If M is a
value, the only possible β-transition is the one in the following diagram:

let x = V in M M{V/x}

(νxx′)(x.JMKm
r ∥ x̄′.JV Kv

x′)

(νxx′)(JMKr ∥ JV Kv
x′) JM{V/x}Km

r

−→M

J·Kr

J·Kr

β−→ β−→
≈α (by Lemma 5.5)

Otherwise, if JMKm
x′

β−→ P for some P , the induction hypothesis gives us an M ′ such that M −→M M ′ and
P ≈ JM ′Km

r . We apply HGV’s E-Lift and HCP’s E-Lift-Res and E-Lift-Par.

Case (V). We have r̄.JV Kv
r ̸ β−→, which contradicts our premise.

◀

▶ Theorem 5.6 (Operational Correspondence). If C is a well-typed configuration:

1. if C −→ C′, then JCKc
r

β=⇒ JC′Kc
r; and

2. if JCKc
r

β−→ P , then there exists a C′ such that C −→ C′ and P ≈ JC′Kc
r.

Proof.
1. By induction on the reduction C −→ C′.

Case (E-Reify-Fork). The following diagram commutes:

F [fork (λw.M)] (νxx′)(F [x] ∥ ◦ M{x′/w})

JF Kc
r[(νyy′)(νzz′)

(
z⟨y⟩.v↔z ∥ z′(u).u⟨z′⟩.u.u[].0 ∥ y′(w).JMKm

y′

)
]

JF Kc
r[(νyy′)(v↔w ∥ y.y[].0 ∥ JMKm

y′)] (νxx′)(JF Kc
r[v↔x] ∥ (νyy′)(JM{x′/w}Km

y ∥ y′.y′[].0))

−→

J·Kc
r

J·Kc
r

τ−→+
≈α

The channel v is internal to JF Kc
r. The diagram is simplified: it uses the canonical form λz.M as opposed to

the opaque value form V and creates the substitution M{x′/z} as opposed to the application V x′. The final
two terms are bisimilar by Lemma E.5.

40 Separating Sessions Smoothly

Case (E-Reify-Link). The following diagram commutes:

◦ E[link (x, y)] (νzz′)(x z↔y ∥ ◦ E[z′])

(νaa′)(JEKm
r [(νzz′)(νww′)(w⟨z⟩.v↔w ∥ w′(t).t(s).w̄′.w′().s↔t ∥ z′⟨x⟩.y↔z′ ∥ ā′.a′[].0))]

(νaa′)(JEKm
r [v̄.v().x↔y] ∥ ā′.a′[].0) (νzz′)(z̄.z().x↔y ∥ (νaa′)(JE[v↔z′]Km

a ∥ ā′.a′[].0))

−→

J·Kc
r

τ−→+ J·Kc
r

≈α

The channel v is internal to JEKm
r .

Case (E-Comm-Link).

(νzz′)(νxx′)(x z↔y ∥ ◦ z′ ∥ ϕ M) ϕ (M{y/x′})

(νzz′)(νxx′)(z̄.z().x↔y ∥ (νww′)(z′↔w ∥ w′.w′[].0) ∥ Jϕ MKc
r)

Jϕ MKc
r{y/x′} Jϕ M{y/x′}Kc

r

−→

J·Kc
r

J·Kc
r

τ−→+
≈α

Case (E-Comm-Send).

(νxx′)(F [send (V, x)] ∥ F ′[recv x′]) (νxx′)(F [x] ∥ F ′[(V, x′)])

(νxx′)
(

JF Kc
r[(νyy′)(νzz′)(z⟨y⟩.u↔z ∥ z′(t).t(s).t⟨s⟩.z̄′.z′↔t ∥ y′[w].(JV Kv

w ∥ x↔y′))] ∥
JF ′Kc

r[(νyy′)(νzz′)(z⟨y⟩.v↔z ∥ z′(s).s(t).z̄′.z′⟨t⟩.z′↔s ∥ x′↔y′)]

)

(νxx′)(JF Kc
r[(x⟨w⟩.ū.x↔u ∥ JV Kv

w)] ∥ JF ′Kc
r[x′(t).v̄.v⟨t⟩.v↔x′])

(νxx′)(JF Kc
r[ū.x↔u] ∥ JF ′Kc

r[v̄.v[w].(JV Kv
w ∥ v↔x′)])

(νxx′)(JF Kc
r[(ū.u↔x ∥ JV Kv

w)] ∥ JF ′Kc
r[v̄.v⟨w⟩.v↔x′])

−→

J·Kc
r

τ−→+
J·Kc

r

τ−→+

≈α

The channels u and v are internal to JF Kc
r and JF ′Kc

r, respectively.
Case (E-Comm-Close).

(νxx)(◦ x ∥ F [wait x′]) F [()]

(νxx)
(

(νyy′)(ȳ.x↔y ∥ y′.y′[].0) ∥
JF Kc

r[(νzz′)(νww′)(w⟨z⟩.v↔w ∥ w′(s).s().w̄′.w′[].0 ∥ x′↔z′)]

)

JF Kc
r[v̄.v[].0] JF Kc

r[v̄.v[].0]

−→

J·Kc
r

J·Kc
r

τ−→+
=

The channel v is internal to JF Kc
r.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 41

Case (E-Res).

(νxy)C (νxy)C′

(νxy)JCKc
r (νxy)JC′Kc

r

−→

J·Kc
r J·Kc

r
β

=⇒(IH)

Case (E-Par).

C ∥ D C′ ∥ D

JCKc
r ∥ JDKc

r

JC′Kc
r ∥ JDKc

r JC′ ∥ DKc
r

−→

J·Kc
r

J·Kc
r

β
=⇒(IH)

=

Case (E-Equiv).

C C′ D′ E

JCKc
r

JC′Kc
r

JD′Kc
r JEKc

r

≡

J·Kc
r

−→ ≡

J·Kc
r≈α(Lemma 5.4)

β
=⇒(IH)

≈α(Lemma 5.4)

Case (E-Lift-M). The cases for ϕ = • and ϕ = ◦ are similar; here we show the case for •.

•M •N

JMKm
r JNKm

r

−→

J·Kc
r J·Kc

r
β

=⇒(Lemma E.6)

2. By induction on C; as with Lemma E.6, the only reductions that can occur for each case are those specified in
(1).

◀

42 Separating Sessions Smoothly

F Extensions

F.1 Unconnected processes
The TC-Par rule allows two processes to be composed in parallel if they are typeable under separate hyper-
environments. In a closed program, hyper-environment separators are introduced by TC-Res, meaning that each
process must be connected by a channel.

We can loosen this restriction by adding the following structural rule:

TC-Mix
G ∥ Γ1 ∥ Γ2 ⊢ C : T

G ∥ Γ1, Γ2 ⊢ C : T

TC-Mix allows two type environments Γ1, Γ2 to be split by a hyper-environment separator without a channel
connecting them, and is inspired by Girard’s [18] Mix rule; in the concurrent setting, Mix can be interpreted as
concurrency without communication [31, 3]. TC-Mix admits a much simpler treatment of link and provides a
crucial ingredient for handling exceptional behaviour.

Atkey et al. [3] show that conflating the 1 and ⊥ types in CP (which correspond respectively to the end! and
end? types in GV) is logically equivalent to adding the Mix rule and a 0-Mix rule (used to type an empty process).
It follows that in the presence of TC-Mix, we use self-dual end type; in the GV setting, by using a self-dual end
type, we decouple closing a channel from process termination. We therefore refine the TC-Child rule and the type
schema for fork to ensure that each child thread returns the unit value, and replace the wait constant with a close
constant which eliminates an endpoint of type end.

fork : (S ⊸ 1) ⊸ S close : end ⊸ 1

TC-Child
Γ ⊢ M : 1

Γ ⊢ ◦M : 1

E-Close
(νxy)(E[close x] ∥ E′[close y]) −→ E[()] ∥ E′[()]

Given TC-Mix, we might expect a term-level construct spawn : (1 ⊸ 1) ⊸ 1 which spawns a parallel thread
without a connecting channel. We can encode such a construct using fork and close (assuming fresh x and y):

spawn M ≜ let x = fork(λy.close y; M) in close x

Assuming the encoded spawn is running in a main thread, after two reduction steps, we are left with the
configuration:

· ⊢ M : 1
· ⊢ ◦M : ◦

TC-Child
· ⊢ M : 1
· ⊢ •() : 1

TC-Main

· ∥ · ⊢ ◦M ∥ •() : 1
TC-Par

· ⊢ ◦M ∥ •() : 1
TC-Mix

Note the essential use of TC-Mix to insert a hyper-environment separator.
The addition of TC-Mix does not affect preservation or progress. The result follows from routine adaptations of

the proof of Theorem 3.2 and Theorem 3.10.
By relaxing the tree process structure restriction using TC-Mix, we can obtain a more efficient treatment of

link, and can support the treatment of exceptions advocated by Fowler et al. [15].

F.2 A simpler link
The GV link (x, y) construct allows messages sent along x to be forwarded to y. Suppose we have three threads,
L, M, N , where L holds endpoints x and y, connected to thread M over x and connected to N over y, and wishes
to evaluate link (x, y):

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 43

L

M N

{x, x′} {y, y′}

−→

L

M N
{y, y′}

Note that the process structure after the link takes place is a forest rather than a tree! Since well-typed, closed
programs in both GV and HGV must always have a tree structure, different versions of GV have worked around
this issue in slightly unsatisfactory ways.

Pre-emptive blocking. Lindley & Morris [31] implement link using the following rule (modified here to use a
double-binder formulation):

(νxx′)(F [link (x, y)] ∥ F ′[M]) −→ (νxx′)(F [x] ∥ F ′[wait x′; M{y/x′}]) where x′ ∈ fv(M)

The first thread will eventually reduce to ◦x, at which point the second thread will synchronise to eliminate x and
x′ and then evaluate the continuation M with endpoint y substituted for x′. Unfortunately, this formulation of
link pre-emptively inhibits reduction in the second thread, since the evaluation rule inserts a blocking wait. The
resulting system does not satisfy the diamond property.

Link threads. HGV uses the incarnation of link advocated by [32], where linking is split into two stages: the first
generates a fresh pair of endpoints z, z′ and a link thread of the form x

z′

↔y, and returns z to the calling thread.
Once the calling thread has evaluated to a value (which must by typing be z), then the link substitution can take
place. This formulation recovers confluence, but we still lose a degree of concurrency: communication on y is blocked
until the linking thread has fully evaluated. In an ideal implementation, the behaviour of the linking thread would
be irrelevant to the remainder of the configuration. The operation requires additional runtime syntax and thus
complicates the metatheory.

With TC-Mix. The above issues are symptomatic of the fact that the process structure after a link takes place is a
forest rather than a tree. However, with TC-Mix, we can refine the type schema for link to (S × S) ⊸ 1 and we
can use the following rule:

(νxx′)(F [link (x, y)] ∥ ϕN) −→ F [()] ∥ ϕN{y/x′}

This formulation has the strong advantage that the substitution takes place immediately and does not inhibit
reduction. A variant of HGV replacing E-Reify-Link and E-Comm-Link with E-Link-Mix retains HGV’s
metatheory.

F.3 Exceptions
Mostrous & Vasconcelos [35] describe a process calculus allowing the explicit cancellation of a channel endpoint,
accounting for exceptional scenarios such as a client disconnecting, or a thread encountering an unrecoverable error.
Attempting to communicate with a cancelled endpoint raises an exception. Fowler et al. [15] extend these ideas to
the functional setting, introducing Exceptional GV (EGV). EGV supports exceptional behaviour by adding:

a new constant, cancel : S ⊸ 1, which allows us to discard an arbitrary session endpoint with type S

a construct raise, which raises an exception
an exception handling construct try L as x in M otherwise N in the style of Benton & Kennedy [6], which
attempts possibly-failing computation L, binding the result to x in success continuation M if successful and
evaluating N if an exception is raised

As an example, consider the following two programs:

44 Separating Sessions Smoothly

try
let s = fork (λt.close(send (42, t)) in
let (res, s) = recv s in
close s; res as res in res

otherwise (−1)

try
let s = fork (λt.cancel t) in
let (res, s) = recv s in
close s; res as res in res

otherwise (−1)
In the first program, the child thread will send 42 to the parent thread, close its endpoint, and the exception

handler will evaluate to 42. In the second program, instead of sending a value along t, the child thread discards its
endpoint using cancel; the recv operation will then raise an exception and the exception handler will evaluate to
−1.

Since hypersequents do not substantially change the operational semantics from the original presentation of
EGV [15], we do not provide a full formal treatment here.

Why Mix? The runtime treatment of exceptional behaviour relies crucially on Mix. The key reason is that by
explicitly discarding an endpoint, cancel generates a zapper thread which severs a tree process structure into a
forest; future communications on the zapped name will trigger an exception. Consider the following example, where
a thread cancels an endpoint x and then waits on an endpoint y.

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ •(cancel x; wait y))

•cancel x; wait y

◦x′ ◦y′

−→

(νxx′)(νyy′)(◦x′ ∥ ◦y′ ∥ x ∥ •((); wait y)

 x

◦x′

•(); wait y

◦y′

The configuration on the left has a tree process structure. However, after reduction, we obtain the configuration
on the right which is clearly a forest and thus needs TC-Mix to be typable.

We have described a synchronous version of EGV. Extending our treatment to asynchrony as in the work of [15]
is a routine adaptation.

S. Fowler, W. Kokke, O. Dardha, S. Lindley, and J. G. Morris 45

G Hypersequents in term typing

Hypersequents allow us to cleanly separate name restriction and parallel composition in process configurations.
Could we formulate a language HGV+ which uses this technique at the term level to split fork into separate
constructs for channel creation and thread creation? We argue splitting fork is more trouble than it’s worth.

Suppose we extended term typing to allow hyper-environments, G ⊢ M : T , and introduced terms let ⟨x, x′⟩ = new in M

and let ⟨⟩ = spawn M in N—which evaluate by simply creating a ν-binder and parallel composition, respectively—
with the following typing rules:

TM-LetNew
G ∥ Γ1, x : S ∥ Γ2, x′ : S ⊢ M : T

G ∥ Γ1, Γ2 ⊢ let ⟨x, x′⟩ = new in M : T

TM-LetSpawn
G ⊢ M : end! H ⊢ N : T

G ∥ H ⊢ let ⟨⟩ = spawn M in N : T

These rather ad-hoc rules mirror hypersequent cut and hypersequent composition: TM-LetNew creates a new
channel with endpoints x and x′, and requires them to be used in separate threads in the continuation M ; and
TM-LetSpawn takes a term M , spawns it as a child thread, and continues as N . Using these rules, we can encode
fork M as let ⟨x, x′⟩ = new in let ⟨⟩ = spawn (M x) in x′.

Where else can we allow hyper-environments? In HCP, we have two options: (1) if we restrict all logical rules to
singleton hypersequents and allow hyper-environments only in the rules for name restriction and parallel composition,
we can use standard sequential semantics [34, 28]; but (2) if we allow hyper-environments in any logical rules, we
must use a semantics which allows the corresponding actions to be delayed [27]. However, this is unlikely to be a
property of logical rules, but rather due to the fact that the logical rules correspond exactly to the communication
actions—which block reduction—and the structural rules to name restriction and parallel composition—which do
not block reduction. Therefore, we expect the positions where hypersequents can safely occur to follow from the
structure of evaluation contexts and whether any blocking term performs communication actions.

Regardless of our choice, we would be left with restrictions on the syntax of terms which seem sensible in a
process calculus, but are surprising in a λ-calculus. In the strictest variant, where we disallow hyper-environments
in all but the above two rules, uses of TM-LetNew and TM-LetSpawn may be interleaved, but no other construct
may appear between a TM-LetNew and its corresponding TM-LetSpawn. Consider the following terms, where M

uses x and y, and N uses x′. Term (1) may be well-typed, but (2) is always ill-typed:

let y = 1 in let ⟨x, x′⟩ = new in let ⟨⟩ = spawn M in N (1)
let ⟨x, x′⟩ = new in let y = 1 in let ⟨⟩ = spawn M in N (2)

Note that let ⟨x, x′⟩ = new in M is a single, monolithic term constructor—exactly what hypersequents were
meant to prevent! However, if we attempt to decompose these constructors, we find that these are not the regular
product and unit.

	1 Introduction
	2 The Equivalence Embroglio
	3 Hypersequent GV
	4 Relation between HGV and GV
	5 Relation between HGV and HCP
	6 Extensions
	7 Related work
	8 Conclusion and future work
	A Omitted Definitions for sec:hgv: Hypersequent GV
	A.1 Term Reduction
	A.2 Choice

	B Abstract Process Structures
	C Omitted Proofs for sec:hgv: Hypersequent GV
	C.1 Tree Canonical Forms
	C.2 Progress
	C.3 Derived typing rules for syntactic sugar

	D Omitted Proofs for sec:relation-to-gv: Relation between HGV and GV
	E Omitted Proofs for sec:relation-to-cp: Relation between HGV and CP
	E.1 Structural Congruence
	E.2 Translating HGV to HCP

	F Extensions
	F.1 Unconnected processes
	F.2 A simpler link
	F.3 Exceptions

	G Hypersequents in term typing

